
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Intermittent dynamics in externally driven ferroelastics and
strain glasses

Marcel Porta, Teresa Castán, Pol Lloveras, Avadh Saxena, and Antoni Planes
Phys. Rev. E 98, 032143 — Published 28 September 2018

DOI: 10.1103/PhysRevE.98.032143

http://dx.doi.org/10.1103/PhysRevE.98.032143


Intermittent dynamics in externally driven ferroelastics and strain glasses

Marcel Porta,1 Teresa Castán,2 Pol Lloveras,3 Avadh Saxena,4 and Antoni Planes2
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The interplay of elastic anisotropy and disorder dictates many of the properties of ferroic materi-
als, specifically martensites. We use a phase field model for ferroelastic athermal materials to study
their response to an increasing external stress that couples to the strain order parameter. We show
that these systems evolve through avalanches, and study the avalanche-size distribution for ferroe-
lastic systems (large anisotropy and/or small disorder) and for the strain glass (small anisotropy
and/or large disorder) using various statistical analysis techniques including the maximum likelihood
method. The model predicts that in the former case the distribution is subcritical or power-law (in
agreement with experimental observations) whereas in the latter case it becomes supercritical. Our
results are consistent with experiments on martensitic materials and we predict specific avalanche
behavior that can be tested and used as an alternative means to characterize strain glasses.

I. INTRODUCTION

Disorder is a key factor for the occurrence of inher-
ent inhomogeneities in ferroic materials on a mesoscopic
spatial scale.[1] Usually these textures precede a phase
transition to the ferroic phase and are thus signatures
of the incoming ground state.[2] Relaxor ferroelectrics[3]
and random magnets[4] are well known examples of ma-
terials displaying this behavior. In ferroelastic materials
these kinds of precursors are also known from a very long
time. They usually show up in the form of cross-hatched
modulation patterns, denoted as tweed,[5] which are em-
bedded in the high temperature phase matrix. Therefore,
precursor states are multi-phase states, which consist of
coexisting regions with properties varying over nanome-
ter distances.

In this class of ferroic materials, the presence of disor-
der gives rise to a distribution of energy barriers that,
in some circumstances, is responsible for the suppres-
sion of the transition to the long-range ordered ferroic
state due to the breakdown of the correlation effects.[6–
9] Then, the inhomogeneous state becomes frozen and
the system displays glassy features. This behavior is
well known to occur in the case of relaxor ferroelectrics
and magnetic cluster glasses. More recently it has been
shown to occur in some ferroelastic/martensitic systems
as well,[10] where it takes place mainly due to kinetic ar-
rest rather than geometrical frustration.[11–13] In these
materials it has been reported that above a certain crit-
ical amount of disorder, which has been shown to de-
pend on the strength of an anisotropic long-range elastic
interaction,[13] the transition to the twinned ferroelastic
structure is suppressed and glassy behavior ensues giv-
ing rise to a strain glass phase.[6, 14–16] Glassy behavior
occurs because while local transformations to the ferroic
phase take place at short time scales, coalescence into
a global phase requires much longer times, which tend

to diverge as temperature is lowered.[12] Consequently,
more and more time is required for the system to reach
for paths leading to the final state. This is indeed the
mechanism giving rise to kinetic arrest in this class of
materials.

It is known that within the glassy phase, application
of an external field that couples to the order parame-
ter (magnetic, polar, structural) enables to induce the
otherwise inhibited long-range ordered phase. The ex-
istence of disorder together with the minor role played
by thermal fluctuations suggests that these externally
driven systems should display an intermittent, stochas-
tic dynamics (or crackling noise).[17] This means that
the system may respond to changes of the external driv-
ing conditions through discrete, impulsive events span-
ning a broad range of sizes. Therefore, it is expected
that strain glasses evolve through a sequence of transition
events that can be described as an avalanche process. In
fact, such an intermittent avalanche dynamics has been
reported to occur associated with martensitic transitions
induced both thermally and by application of an external
field (stress) in many different materials.[18, 19]

It has been confirmed that often, the avalanches oc-
cur with the absence of characteristic scales. Actu-
ally, this scale-free intermittent dynamics is then known
as avalanche criticality. An interesting result is that
for this class of out-of-equilibrium criticality to occur,
some models suggest that a critical amount of disorder
is required,[17] which has been experimentally corrobo-
rated in a few cases.[20] This fact immediately suggests
the following question: Is this amount of disorder related
to the amount needed for glassy behavior to occur? This
is the main issue that we address in the present paper.
To this end, a phase field model for a ferroelastic transi-
tion is used.[2, 13, 14] The model includes disorder and
an anisotropic long-range interaction and follows a purely
relaxational athermal dynamics. It was previously found
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that the amount of disorder required for glassy behav-
ior to occur scales with the square root of the elastic
anisotropy, which controls the strength of the long-range
elastic interaction.[13] In the present work we study the
response of the model system to an increasing external
stress in both the martensite and the strain glass phase.
At low temperature criticality is found in the boundary
separating both phases as well as in the martensite phase.
In contrast, in the strain glass phase the distribution of
avalanches is supercritical.[21] At higher temperatures,
as the transition from these phases to the high symme-
try phase (austenite) is approached, the distribution of
avalanches in the martensite phase is consistent with a
subcritical distribution whereas in the strain glass phase
the distribution remains supercritical.
The paper is organized as follows. The strain based

martensitic model is summarized in Sec. II. Section III
presents the numerical simulation results dealing with
the dynamics of the system driven by an applied external
stress. The statistical analysis of the avalanches obtained
in the stress driven evolution is given in Sec. IV. Finally,
Sec. V provides a general discussion of the results and
concludes.

II. MODEL

The model used was introduced previously with the
purpose of studying various textures (or microstructure)
in ferroelastics.[2, 13, 14] In this section we summarize
its main features.
The starting point is a strain based two-dimensional

(2D) Ginzburg-Landau free energy density for the square-
to-rectangle structural transition that includes local cou-
pling to quenched disorder. We recall that for this trans-
formation the three available elastic modes are e1 =
(εxx + εyy)/

√
2 (bulk dilatation), e2 = (εxx − εyy)/

√
2

(deviatoric strain) and e3 = εxy (shear strain), where εij
are the components of the linear strain tensor. First of
all we write an expansion of the free energy density in
terms of the deviatoric strain only, which is the order
parameter of the transition,

fGL =
1

2
A2(T )e

2
2−

1

4
βe42+

1

6
γe62+

1

2
κ|~∇e2|2−σ2e2, (1)

where the deviatoric stress, defined as σ2 = (σxx −
σyy)/

√
2, is the externally applied field. The harmonic

coefficient A2 is related to the elastic constant C′ =
(C11 −C12)/2 = A2/2 and it is assumed to vary linearly
with temperature, A2 = a(T − Tc), with a > 0 and Tc

being the lower stability limit of the square phase. The
coefficients β and γ are higher order elastic constants and
together with the parameter κ are taken to be positive.
The disorder is introduced via the harmonic coefficient,
A2, in a manner that is equivalent to introducing a spa-
tial dependence of the stability limit of the square phase,
Tc(r), and therefore of the transition temperature, T0(r).

That is,

Tc(r) = Tc[1 + η(r)], (2)

where η(r) is a Gaussian distributed random variable
with zero mean, standard deviation ζ and spatially corre-
lated with an exponential pair correlation function with
correlation length ξ,

〈η(r)η(r′)〉 = ζ2 exp (−|r− r
′|/ξ) . (3)

The spatial variation of the stability limit is intended
to reproduce the statistical fluctuations of composition
in materials. In addition, the spatial correlation of the
disorder ensures that such variations are smooth.
Another important ingredient is the effective long-

range strain interaction. Its origin lies in the contribution
from the non-order-parameter strain components arising
from the coherent matching between nearby transformed
unit cells. Consequently we add to expression (1) the
simplest expansion in e1 and e3,

f = fGL +
1

2
A1e

2
1 +

1

2
A3e

2
3, (4)

where the coefficients A1 = C11 + C12 and A3 = 4C44

are again second-order elastic constants. Notice that the
local free energy density f(r) is a functional of the strain
fields e1(r), e2(r) and e3(r). These are linked by the
Saint-Venant’s compatibility condition which ensures the
integrity of the lattice.[22] Minimization of the integral
free energy,

F =

∫

drf(r), (5)

with respect to the non-order parameter strain compo-
nents, e1(r) and e3(r), with the constraint of compati-
bility yields the free energy density as a function of the
order parameter only. That is,

f(r) = fGL(r) +
1

2

∫

e2(r)U(r − r
′)e2(r

′)dr′. (6)

Interestingly, U(r − r
′) is a long-range kernel that, in

Fourier space, is given by,

Û(k) = A3

(k2x − k2y)
2

(A3

A1

)(k2x + k2y)
2 + 8k2xk

2
y

. (7)

This expression embodies the anisotropic character of the
free energy and is minimized when the strain modula-
tions are oriented along 〈11〉 directions (kx = ±ky). The
magnitude of such a long-range anisotropic term is di-
rectly proportional to the elastic coefficient A3, provided
that the ratio A3/A1 is constant. Notice that the elastic
anisotropy factor is A =C44/C

′=A3/2A2, so that at con-
stant temperature A ∼ A3. This energy term enhances
the correlation of the order parameter at different loca-
tions. On the contrary, the disorder (characterized by ζ)
inhibits such correlations. Once the model is discretized,
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the interplay between the disorder and the long-range
interaction yields a distribution of energy barriers that
the system has to cope with in order to minimize its en-
ergy. Depending on the structure of such a distribution
of energy barriers the low temperature phase is either
martensitic or a strain glass. Thus, by varying the model
parameter A3 and in conjunction with the disorder the
model predicts a crossover from a twinned martensite to
a strain glass phase.[13, 14] This is illustrated in Fig. 1
where we plot the boundary separating both phases in
the A3 − ζ parameter space. Such boundary was deter-
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FIG. 1: Phase Diagram of the model presented in Sec. II
in the A3 − ζ parameter space. The strain glass phase is
stabilized for large values of disorder (ζ) or small values of
elastic anisotropy (A ∼ A3). The insets show examples of
the ZFC/FC strain curves that were used to distinguish the
strain glass phase from the martensite phase.

mined in Ref. [13] from the behavior of the zero-field-
cooled/field-cooled (ZFC/FC) strain curves. A large de-
viation between these curves at low temperature is com-
monly associated with glassy behavior.[23] Representa-
tive examples are shown in the insets of Fig. 1. These
correspond to the simulation of a small system where the
size of the elastic domains is of the order of the size of the
simulation cell, especially in the martensite phase. Thus,
as soon as a stress is applied before heating, a jump in the
strain is obtained in the ZFC curves. We also note that
the first order martensite-austenite transition becomes
smooth because of the distribution of transition temper-
atures (disorder). The strain glass phase corresponds to
those values of the disorder and elastic anisotropy that
yield a large splitting of the ZFC/FC curves.
Avalanche behavior is usually related to athermal and

rate independent dynamics to a good approximation.[24]
For this class of dynamics, thermal fluctuations are ir-
relevant compared to the high energy barriers separating
metastable states. Thus, in order that the dynamics can
proceed it is necessary to drive the system externally with
a field that couples to the order parameter (stress, in our
case). Keeping this in mind, we define the fluctuationless

relaxational dynamics,

∂e2(r)

∂t
= −Γ

δF

δe2(r)
, (8)

where the relationship between the strain components
due to compatibility is taken into account in the func-
tional derivative of the free energy with respect to the
deviatoric strain, which yields anisotropic and nonlocal
elastic forces [see Eq. (6)].
All physical quantities are given in the reduced units

defined in Ref. [2]. The size of the simulation cell is
L × L = 1000 × 1000 except otherwise stated, and the
discretization parameter is Λ = 1.9531, so that the simu-
lation cell is discretized onto a 512×512mesh. The elastic
anisotropy, controlled by the parameter A3, is varied in
our simulations while the ratio A3/A1 and the strength
of the disorder are fixed to A3/A1 = 2 and ζ = 0.22. The
remaining model parameters are the same as in Ref. [2].

III. THERMOMECHANICAL TREATMENT

AND INTERMITTENT RESPONSE

In this section we describe the thermomechanical pro-
tocol applied to the model and study its intermittent re-
sponse through avalanches.
First of all, we generate a disordered configuration

with a small amount of strain which is consistent with
the high temperature, high symmetry phase (austenite).
This configuration is thermally quenched to T = 0.2Tc

and fully relaxed[25] in the absence of external stresses
using the relaxational dynamics defined in Eq. (8). Then,
an increasing deviatoric stress is applied at constant tem-
perature. We start with a stress σ2 = 10−8 and the strain
field is fully relaxed to the new equilibrium configuration,
which ensures that the dynamics is rate independent (adi-
abatic limit). This last step is repeated iteratively; the
applied stress is increased by an amount δσ2 = 10−8

and the strain configuration is relaxed. This yields a
stress-strain relation where the average strain eventually
responds to the applied stress through jumps. That is,
infinitesimal increments of the applied stress may pro-
duce finite changes in the average strain. This is what
we denote as avalanches. This behavior is shown in Fig.
2 where we plot a stress-strain curve corresponding to
A3 = 0.1. Notice in the inset, where a small portion of
the stress-strain relation is enlarged, that periods of elas-
tic response (shown as thick continuous lines) are sepa-
rated by jumps in the average strain (indicated by dashed
lines). This is qualitatively similar to the stress-strain re-
lation obtained at larger scales. This self-similarity sug-
gests the absence of a characteristic length (or avalanche
size) in a given strain range.
According to the phase diagram shown in Fig. 1, de-

pending on the model parameter A3 the obtained strain
configurations correspond to a martensite phase (low-
symmetry low-temperature phase) or a strain glass. Thus
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FIG. 2: Stress-strain relation of a strain glass (A3 = 0.1,
ζ = 0.22) obtained by thermal quench of a disordered strain
configuration to T = 0.2Tc. The inset shows an enlarged frac-
tion of the curve where jumps (avalanches) of the equilibrium
strain induced by small increments of the applied stress are
clearly visible.

the stress-strain curves qualitatively depend on this pa-
rameter. In Fig. 3 we show a typical stress-strain curve
in the strain glass phase (A3 = 0.2, Fig. 3(a)), in the
martensite phase (A3 = 1.0, Fig. 3(c)) and near the
boundary between both phases (A3 = 0.4, Fig. 3(b)).
We find that for quenches into the martensite phase the
system responds with large avalanches at a characteristic
yield stress, whereas for the other values of the applied
stress the avalanche sizes are smaller. This establishes
several stress regimes, namely low stress, yield stress and
high stress regimes. When the system is quenched into
the strain glass phase, on the other hand, the distribu-
tion of avalanche sizes is less correlated with the mag-
nitude of the applied stress. As the crossover from the
martensite phase to the strain glass phase is smooth, the
correlation between the applied stress and the size of the
avalanches also decreases smoothly from the martensite
phase to the strain grass phase. For illustrational pur-
poses in Fig. 3 we also depict several snapshots of the
strain configuration corresponding to the applied stresses
(from left to right) σ2 = 0, σ2 = 2×10−4, σ2 = 4×10−4,
σ2 = 6× 10−4, and σ2 = 8× 10−4.

In Figs. 4 and 5 we show snapshots of the devia-
toric strain variation that occurs in single avalanches for
A3 = 0.4. This is computed as the difference between
the strain field before and after a given avalanche has
occurred. The corresponding stress-strain curve is also
shown with arrows indicating the jump in the average
strain associated with each one of the snapshots. We use
a color scale, where red indicates positive strain varia-
tion, white indicates no strain variation and blue stands
for negative strain variation. As a reference, in the right
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FIG. 3: Stress-strain relation in the strain glass phase (a), in
the ferroelastic (martensite) phase (c), and at the crossover
between these phases (b) in the A3−ζ parameter space. In all
cases the initial microstructure is generated by the thermal
quench of a disordered strain configuration to T = 0.2Tc.
Snapshots of the strain configuration for σ2 = 0, σ2 = 2 ×

10−4, σ2 = 4× 10−4, σ2 = 6× 10−4, and σ2 = 8× 10−4 (from
left to right) are also shown.

bottom corner of each figure we show the strain config-
uration before the avalanches, shown in the snapshots,
occur. Figure 4 shows avalanches corresponding to the
small stress regime. We obtain that small avalanches are
associated with local changes in the strain configuration,
mainly to the displacement of a single twin boundary.
Larger avalanches, on the contrary, are associated with
global changes of the strain field; many twin boundaries
in different locations move simultaneously generating a
single strain jump. This cooperative behavior is more
evident in Fig. 5 where we depict a single, and much
larger, avalanche in the yield stress regime. In this case
we observe the displacement of twin boundaries occurring
simultaneously with the flipping of entire domains.

IV. STATISTICAL ANALYSIS OF THE

AVALANCHES

In this section we analyze the statistical properties
of the avalanches. This study requires a large number
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FIG. 4: Snapshots of the strain field change that occurs in sin-
gle avalanches for A3 = 0.4 in the low stress regime. Arrows
indicate the corresponding jump in the stress-strain curve.
Red indicates positive strain variation, white indicates no
strain variation and blue stands for negative strain variation.
As a reference, in the right bottom corner we show the strain
configuration before the avalanches, shown in the snapshots,
occur.

of events. Thus, for each set of model parameters the
thermomechanical protocol described above is repeated
n = 64 times. For each one of the runs we use a different
configuration of the quenched disorder and start from
a different initial strain configuration. This procedure
ensures that a large number of avalanches is available
without having to deal with large systems.
A first insight into the probability distribution of the

avalanche sizes is obtained graphically by plotting the
number of avalanches obtained versus the associated
strain variation using logarithmically binned data. This
is shown in Fig. 6 for different values of the elastic
anisotropy, controlled by the parameter A3. The results
are consistent with a power-law probability distribution
in a limited strain variation regime, ∆e2min < ∆e2 <
∆e2max,

P [∆e2 < X < ∆e2 + d(∆e2)] ∝ ∆e2
−αd(∆e2). (9)

The exponent of the power-law distribution, α, can be
determined by a least squares fit, shown in Fig. 6 as a
red line. We note that because of the logarithmic binning
of the data the slope of the distribution of avalanches in
the log-log plot is one unit smaller than the exponent α.
For ∆e2 < ∆e2min the number of avalanches decays

when decreasing the strain variation. This occurs be-
cause there is a minimum size for the avalanches which
depends on characteristic lengths of the model such as
the width of the domain boundaries or the correlation
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FIG. 5: Snapshot of the strain field change that occurs in a
single avalanche for A3 = 0.4 in the yield stress regime. The
color scale is the same as in Fig. 4. As a reference, in the
right bottom corner we show the strain configuration before
the avalanche, shown in the snapshot, occurs.

length of the disorder. As the strain is computed as an
intensive quantity the larger the size of the simulation
cell the smaller the strain variation that can be detected.
Thus, ∆e2min depends on the size of the simulation cell,
L, as well. In order to avoid any ambiguity we denote as
avalanche size the scaled strain variation, L2∆e2. With
this definition the minimum avalanche size of the power-
law regime, L2∆e2min is independent of the size of the
simulation cell, as we will show below.
On the other hand, the largest strain variation that can

occur is a jump from a single variant with strain −eeq2 to
a single variant with strain +eeq2 , where eeq2 is the equi-
librium strain at the corresponding temperature. If the
effect of the applied stress is neglected, the equilibrium
strain can be approximated as,

eeq2 ≈

√

β +
√

β2 − 4γA2

2γ
. (10)

Thus,

∆e2max ≈ 2

√

β +
√

β2 − 4γA2

2γ
. (11)

Using this approximation, the current values of the model
parameters yield ∆e2max ≈ 0.08. Thus, the largest
strain variations observed, which are of the order of
∆e2 ∼ 10−2, correspond to the flip of large domains and
are only observed once or twice for each run.
For quenches into the martensite phase we obtain that

∆e2max ∼ eeq2 , and the distribution of avalanches ends
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FIG. 6: Log-log plot of the number of avalanches versus the
strain variation for A3 = 0.1 (a), A3 = 0.2 (b), A3 = 0.3 (c),
A3 = 0.4 (d), A3 = 0.5 (e), A3 = 1.0 (f) and A3 = 5.0 (g).
The red line in each plot is a least squares fit to a power-law
relation.

around this value. However, for quenches into the strain
glass phase ∆e2max is substantially smaller, and the de-
viation from the power-law distribution expands over a
large range of avalanche sizes (see the distribution for
A3 = 0.1). This raises the question of whether the
avalanches may have a non-power-law distribution in the
strain glass phase or rather this deviation is due to finite
size effects.

In order to clarify this point, for A3 = 0.1 we have plot-
ted the distribution of avalanche sizes for three different
sizes of the simulation cell, using the same discretization
parameter in all cases. For completeness this study is
also performed for A3 = 1.0 and A3 = 0.4, which cor-
respond to quenches into the martensite phase and the
boundary between this phase and the strain glass phase,
respectively. The results are shown in Fig. 7 where we
denote the avalanche size as the scaled strain variation as
defined above. As expected, we find that L2∆e2min and
the distribution of avalanches for ∆e2 < ∆e2min is inde-
pendent of the size of the simulation cell for all values
of A3 considered, as the distribution of small avalanches
should not depend on the size of the system. On the
contrary, in general L2∆e2max depends on the size of the
simulation cell. For quenches into the martensite phase

and the boundary between this phase and the strain glass
phase (A3 = 1 and A3 = 0.4, respectively) L2∆e2max

scales to a good approximation as,

L2∆e2max ∼ L2. (12)

Thus, the distribution of avalanche sizes is consistent
with a power-law with an upper cutoff determined by the
size of the simulation cell. On the contrary, for quenches
into the strain glass phase (A3 = 0.1) L2∆e2max is almost
independent of the size of the simulation cell, and thus
the drop of the number of avalanches for ∆e2 > ∆e2max

cannot be related to the size of the system. Therefore, the
distribution of avalanches is supercritical. In this case,
the value of ∆e2max must depend on other characteristic
lengths of the system such as the size of the domains that
are stabilized by the energy barriers that arise from the
disorder.

10
0

10
2

10
4

n
u
m

b
er

 o
f 

av
al

an
ch

es
 (

×1
0
, 
×1

 o
r 

×0
.1

) 

10
0

10
2

10
4

L=1000
L=500
L=250

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

L
2∆e

2

10
0

10
2

10
4

(b) A
3
=0.4

(a) A
3
=0.1

(c) A
3
=1.0

×10

×0.1

×10

×0.1

×10

×0.1

FIG. 7: Number of stress induced avalanches versus the
avalanche size for three different sizes of the simulation cell
(L = 1000, L = 500 and L = 250) and three different val-
ues of the elastic constant A3 (A3 = 0.1 (a) , A3 = 0.4 (b)
and A3 = 1.0 (c) ) using the same discretization parameter,
Λ = 1.9531, in all cases. The red lines are least square fits to a
power-law relation. The number of independent simulations
performed is n = 64, n = 128 and n = 256 for L = 1000,
L = 500 and L = 250, respectively.

The distribution of avalanche sizes has also been ana-
lyzed using a maximum likelihood method.[26] We con-
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sider the likelihood function,

L(α) =
N
∏

i=1

p(∆e2i, α), (13)

where the normalized probability density p(∆e2, α) with
∆e2min < ∆e2 < ∆e2max is assumed to be power-law,

p(∆e2, α) =
1− α

∆e2
1−α
max −∆e2

1−α
min

∆e2
−α. (14)

The exponent α is obtained as the value that maximizes
the logarithm of the likelihood function, lnL(α), which
is the solution of the equation,

N
∑

i=1

ln∆e2i +
N

1− α
− N

∆e2
1−α
max −∆e2

1−α
min

×
(

∆e2
1−α
max ln∆e2max −∆e2

1−α
min ln∆e2min

)

= 0,

(15)

where N is the total number of avalanches obtained in
the n runs with ∆e2min < ∆e2 < ∆e2max and ∆e2i is
the variation of the deviatoric strain obtained in the i-th
avalanche.
In Figs. 8(a)-8(g) we plot the exponent of the power-

law distribution obtained with the likelihood method as
a function of ∆e2max for a fixed value of ∆e2min, as in-
dicated in the figure. A clear plateau is obtained for
0.2 ≤ A3 ≤ 0.5 with an exponent α = 1.50 ± 0.05. For
A3 ≥ 1 the number of avalanches obtained is small, and
consequently the uncertainty is too large to conclude un-
ambiguously if a plateau exists. For A3 = 0.1 on the
other hand, the effective exponent depends on the upper
cutoff and, as concluded above, the distribution is not
consistent with a power-law.
In Figs. 8(h)-8(n) we plot the exponent of the power-

law distribution obtained with the likelihood method as
a function of ∆e2min. In this case, the upper cutoff,
∆e2max, is fixed to the value obtained from Figs. 8(a)-
8(g) and from the log-log plots of the avalanche size dis-
tribution shown in Fig. 6. Again, a plateau is obtained
only for 0.2 ≤ A3 ≤ 0.5. For A3 ≥ 1 the number of
avalanches obtained is not sufficient to draw conclusions.
For ζ = 0.22, which is the amount of disorder used in

the present work, the splitting between the field-cooled
and the zero-field-cooled curves that was used to distin-
guish the strain glass phase from the martensite phase[13]
typically occurs at temperatures T < 0.5Tc, depending
on the value of A3. Thus, it is insightful to see if above
the splitting temperature the distribution of avalanches
in the strain glass phase is also different from the distri-
bution in the martensite phase. To this end, we study
the distribution of stress induced avalanches when the
thermal quench is performed to T = 0.8Tc, near the fer-
roelastic phase transition. The number of avalanches ob-
tained versus the associated strain variation is plotted in
Fig. 9 for several values of the elastic anisotropy using
logarithmically binned data.
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FIG. 8: (a)-(g) Exponent α of the power-law probability dis-
tribution P ∼ ∆e2

−α versus ∆e2max for a fixed value of
∆e2min. (h)-(n) Exponent α of the power-law probability
distribution P ∼ ∆e2

−α versus ∆e2min for a fixed value of
∆e2max.

For quenches into the strain glass phase the result is
qualitatively similar to the results obtained at the lower
temperature T = 0.2Tc. On the contrary, for quenches
into the martensite phase (A3

>∼ 0.3), at T = 0.8Tc we ob-
tain an excess amount of large avalanches superimposed
to the power-law distribution that was not obtained at
T = 0.2Tc. This excess of large avalanches can be char-
acterized as a peak in the distribution of avalanche sizes.
We have also studied how these results depend on the
size of the simulation cell. In Fig. 10 we show the dis-
tribution of avalanche sizes for quenches into the strain
glass phase (A3 = 0.1, Fig. 10(a)) and the martensite
phase (A3 = 1.0, Fig. 10(b)) for L = 1000, L = 500
and L = 250, using the same discretization parameter
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FIG. 9: Log-log plot of the number of avalanches versus the
strain variation obtained after a thermal quench to T = 0.8Tc.
The red line in each plot is a least squares fit to a power law
relation.

in all cases. For quenches into the strain glass phase
we find that the upper cutoff of the power-law distribu-
tion is almost independent of the size of the simulation
cell. Therefore, as obtained at the lower temperature
T = 0.2Tc, the distribution of avalanche sizes is super-
critical. For quenches into the martensite phase we an-
alyze the dependence of the position of the peak in the
distribution of avalanche sizes on the size of the simu-
lation cell. This position, indicated with arrows in the
figure, scales approximately as,

L2∆e2peak ∼ L2. (16)

This is consistent with a subcritical distribution of
avalanche sizes as it indicates that a few avalanches have
a characteristic size that is proportional to the size of
the simulation cell. Thus, we conclude that at T = 0.8Tc

criticality is only obtained at the crossover between the
martensite and the strain glass phases.

V. DISCUSSION AND CONCLUSIONS

In this work, we have sought to establish a realis-
tic framework based on a phase field model suitable to
describe low temperature avalanche dynamics in stress-
driven martensitic/ferroelastic systems. Although the
model is formulated in 2D it corresponds to a pro-
jection of the three-dimensional (3D) models suitable
for the cubic-to-tetragonal or tetragonal-to-orthorhombic
transitions.[22] It takes into account the effects of long-
range anisotropic interactions arising from elastic com-
patibility constraints, and quenched disorder, which is as-
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FIG. 10: Number of stress induced avalanches versus the
avalanche size after a quench to T = 0.8Tc for three dif-
ferent sizes of the simulation cell (L = 1000, L = 500 and
L = 250) and two values of the elastic constant A3 (A3 = 0.1
(a) and A3 = 1.0 (b) ) using the same discretization param-
eter, Λ = 1.9531, in all cases. The red lines are least square
fits to a power-law relation. The number of independent sim-
ulations performed is n = 64, n = 128 and n = 256 for
L = 1000, L = 500 and L = 250, respectively. The inset
shows the scaling relation between the position of the peak in
the distribution of avalanche sizes for A3 = 1.0 and the size
of the simulation cell.

sumed to originate from composition fluctuations. In the
model, the microstructure of the low temperature phase
reached by cooling from high temperature, is controlled
by the ratio of the amount of disorder, measured by the
standard deviation of its distribution, and the strength of
the long-range interaction, which is proportional to the
elastic anisotropy of the system. In particular, fixing the
amount of disorder, for low anisotropy the system gets
frozen in a strain glass phase, while for high anisotropy
a twinned martensitic phase forms. We have numerically
investigated the athermal strain response of these sys-
tems when driven by an externally applied stress. We
have found that due to the existence of disorder the sys-
tem evolves towards a single variant martensite through
strain jumps, which define avalanches.

In all cases, avalanches distribute in a broad range of
sizes. However, a detailed study demonstrates that the
distribution is supercritical when starting from a deep
strain glass phase and becomes critical, and thus char-
acterized by a power-law distribution, only when start-
ing from close enough to the boundary that separates
glassy from twinned martensitic behavior in the phase
diagram. In fact, criticality occurs in a broad crossover
region that seems to have an excursion rather inside the
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interior of the twinned martensitic region. In any case,
results suggest that for large enough anisotropy or very
low amount of disorder, subcritical behavior must occur.
Indeed, this is consistent with the analytical solution of
the clean limit.
The main idea behind supercritical and subcritical dy-

namics is the following. Subcritical dynamics would cor-
respond to a situation with a low density of energy barri-
ers where the long-range interaction, which induces long-
range strain correlations, dominates over the disorder. In
this case, the transformation of a small domain induces
the transformation of neighboring domains and this ef-
fect propagates to relatively long distances giving rise to
very large avalanches characterized by a certain length
scale related to the scale of the system. Supercritical
dynamics, on the other hand, corresponds to a situation
with a high density of energy barriers where the disor-
der dominates over the long-range interaction. Thus, the
disorder is expected to be able to break the correlations
and suppress the possibility of propagation of local trans-
formations. The dynamics in this case is controlled by
small avalanches with a characteristic length scale.
In general, avalanche dynamics is accepted to be in-

herent to any externally driven, athermal disordered
system.[17] Beyond martensitic transitions, avalanches
have been reported to occur during magnetization
processes,[27, 28] plastic deformation[29] or failure under
compression of inhomogeneous materials[30, 31] among
many others. Usually, simple lattice models such as the
Random Field Ising Model (RFIM)[32] or the Random
Bond Ising Model (RBIM)[33] with athermal local relax-
ation dynamics (which is in fact equivalent to the dy-
namics used in the present study) are employed to sim-
ulate the field-driven behavior of these systems. Com-
pared with such models, our model has the advantage
of properly taking into account symmetry properties of
both parent and martensitic phases, and thanks to in-
corporating long range effects due to which our model is
able to reproduce the actual microstructure that grows
at the transition. The main result obtained from lat-
tice models is that criticality occurs for a given critical
amount of disorder. Indeed, this result is also reproduced
by the present model, which has been based on specific
properties of the low temperature phase.
It is worth reminding that in some cases, avalanches

have also been studied using models less simplified than
the simple lattice models mentioned above. An interest-
ing approach based on a phase field model, was reported
by Ahluwalia and Ananthakrishna in Ref. [34]. They
also took into account the long-range effects in order to
model a 2D system undergoing a martensitic transition.
The aim of the paper was modeling acoustic emission
(AE) avalanches that occur during thermally induced
martensitic transitions. Actually, the AE is related to
the strain avalanches, and the authors assumed that it
can be taken into account from the dissipation associ-
ated with the movement of the parent-product interfaces,
which was modeled by a Rayleigh dissipative functional.

The authors were able to reproduce the power-law be-
havior of the statistical distribution of the amplitudes,
energy and duration of the AE avalanches. Compared to
our work, the results reported in that paper would corre-
spond to avalanches expected in the high anisotropy and
low disorder limit.
To our knowledge, no experiments have been reported

so far of avalanche behavior in stress-driven strain glass
phases. In systems transforming to twinned martensitic
phases, experimental results based on AE measurements
suggest that the distribution of AE avalanches tends to
be power-law in systems with a sufficiently large amount
of disorder.[20] The power-law behavior reflects the ab-
sence of characteristic scales and thus corroborates the
existence of avalanche criticality. AE experiments sug-
gest that the exponents that identify the power-law show
weak universality, depending essentially on the symme-
try change taking place at the transition. More specifi-
cally, they depend on the ratio R of symmetry operations
of the high and low temperature phases.[18] So far, it
is not yet clear to which extent the exponents depend
on dimensionality. The presently studied 2D square-
to-rectangle transition mimics a 3D cubic-to-tetragonal
transition. For this change of symmetry, an ampli-
tude exponent, α3D = 2.0± 0.3 has been determined
experimentally.[18, 35] The critical exponent obtained in
our work is smaller than the 3D experimental exponent
(α2D ≡ α = 1.50 ± 0.05 ≤ α3D) as expected since the
ratio R is 2 in our case instead of 3 in the real 3D case
(two low temperature martensitic variants exist instead
of three). However, small differences could also arise from
the different dimensionality or from the symmetry break-
ing effects of the applied field that effectively reduces the
ratio R. A detailed analysis is certainly needed in order
to clarify this point further.
In summary, the results presented in this work con-

firm the relevance in martensitic and in general ferroe-
lastic systems of the competition between long-range
anisotropic elastic interaction and quenched disorder,
that controls not only characteristic features of the do-
main pattern formed at the transition but also their dy-
namics under an applied stress field. We expect that the
simulation results reported in the present paper provide
guidance on how to proceed experimentally, in order to
verify the ideas and predictions presented here, and in
particular corroborate the crossover from supercritical to
critical behavior at the boundary of strain glass behav-
ior. The study of avalanches could provide an interesting
alternative method in order to characterize strain glasses.
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