This is the accepted manuscript made available via CHORUS. The article has been published as:

Intermittent dynamics in externally driven ferroelastics and strain glasses
Marcel Porta, Teresa Castán, Pol Lloveras, Avadh Saxena, and Antoni Planes
Phys. Rev. E 98, 032143 — Published 28 September 2018
DOI: 10.1103/PhysRevE.98.032143
Intermittent dynamics in externally driven ferroelastics and strain glasses

Marcel Porta,1 Teresa Castán,2 Pol Lloveras,3 Avadh Saxena,4 and Antoni Planes2

1Departament de Física Quàntica i Astrofísica, Facultat de Física, Universitat de Barcelona. Martí i Franquès 1, 08028 Barcelona, Catalonia.
2Departament de Física de la Materia Condensada, Facultat de Física, Universitat de Barcelona. Martí i Franquès 1, 08028 Barcelona, Catalonia.
3Departament de Física, EEBE, Campus Diagonal-Besòs and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya. Eduard Maristany 10-14, 08019 Barcelona, Catalonia.
4Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

The interplay of elastic anisotropy and disorder dictates many of the properties of ferroic materials, specifically martensites. We use a phase field model for ferroelastic athermal materials to study their response to an increasing external stress that couples to the strain order parameter. We show that these systems evolve through avalanches, and study the avalanche-size distribution for ferroelastic systems (large anisotropy and/or small disorder) and for the strain glass (small anisotropy and/or large disorder) using various statistical analysis techniques including the maximum likelihood method. The model predicts that in the former case the distribution is subcritical or power-law (in agreement with experimental observations) whereas in the latter case it becomes supercritical. Our results are consistent with experiments on martensitic materials and we predict specific avalanche behavior that can be tested and used as an alternative means to characterize strain glasses.

I. INTRODUCTION

Disorder is a key factor for the occurrence of inherent inhomogeneities in ferroic materials on a mesoscopic spatial scale.[1] Usually these textures precede a phase transition to the ferroic phase and are thus signatures of the incoming ground state.[2] Relaxor ferroelectrics[3] and random magnets[4] are well known examples of materials displaying this behavior. In ferroelastic materials these kinds of precursors are also known from a very long time. They usually show up in the form of cross-hatched modulation patterns, denoted as tweed,[5] which are embedded in the high temperature phase matrix. Therefore, precursor states are multi-phase states, which consist of coexisting regions with properties varying over nanometer distances.

In this class of ferroic materials, the presence of disorder gives rise to a distribution of energy barriers that, in some circumstances, is responsible for the suppression of the transition to the long-range ordered ferroic state due to the breakdown of the correlation effects.[6–9] Then, the inhomogeneous state becomes frozen and the system displays glassy features. This behavior is well known to occur in the case of relaxor ferroelectrics and magnetic cluster glasses. More recently it has been shown to occur in some ferroelastic/martensitic systems as well,[10] where it takes place mainly due to kinetic arrest rather than geometrical frustration.[11–13] In these materials it has been reported that above a certain critical amount of disorder, which has been shown to depend on the strength of an anisotropic long-range elastic interaction,[13] the transition to the twinned ferroelastic structure is suppressed and glassy behavior ensues giving rise to a strain glass phase.[6, 14–16] Glassy behavior occurs because while local transformations to the ferroic phase take place at short time scales, coalescence into a global phase requires much longer times, which tend to diverge as temperature is lowered.[12] Consequently, more and more time is required for the system to reach for paths leading to the final state. This is indeed the mechanism giving rise to kinetic arrest in this class of materials.

It is known that within the glassy phase, application of an external field that couples to the order parameter (magnetic, polar, structural) enables to induce the otherwise inhibited long-range ordered phase. The existence of disorder together with the minor role played by thermal fluctuations suggests that these externally driven systems should display an intermittent, stochastic dynamics (or crackling noise).[17] This means that the system may respond to changes of the external driving conditions through discrete, impulsive events spanning a broad range of sizes. Therefore, it is expected that strain glasses evolve through a sequence of transition events that can be described as an avalanche process. In fact, such an intermittent avalanche dynamics has been reported to occur associated with martensitic transitions induced both thermally and by application of an external field (stress) in many different materials.[18, 19]

It has been confirmed that often, the avalanches occur with the absence of characteristic scales. Actually, this scale-free intermittent dynamics is then known as avalanche criticality. An interesting result is that for this class of out-of-equilibrium criticality to occur, some models suggest that a critical amount of disorder is required,[17] which has been experimentally corroborated in a few cases.[20] This fact immediately suggests the following question: Is this amount of disorder related to the amount needed for glassy behavior to occur? This is the main issue that we address in the present paper. To this end, a phase field model for a ferroelastic transition is used.[2, 13, 14] The model includes disorder and an anisotropic long-range interaction and follows a purely relaxational athermal dynamics. It was previously found
that the amount of disorder required for glassy behavior to occur scales with the square root of the elastic anisotropy, which controls the strength of the long-range elastic interaction.[13] In the present work we study the response of the model system to an increasing external stress in both the martensite and the strain glass phase. At low temperature criticality is found in the boundary separating both phases as well as in the martensite phase. In contrast, in the strain glass phase the distribution of avalanches is supercritical.[21] At higher temperatures, as the transition from these phases to the high symmetry phase (austenite) is approached, the distribution of avalanches in the martensite phase is consistent with a subcritical distribution whereas in the strain glass phase the distribution remains supercritical.

The paper is organized as follows. The strain based martensitic model is summarized in Sec. II. Section III presents the numerical simulation results dealing with the dynamics of the system driven by an applied external stress. The statistical analysis of the avalanches obtained in the stress driven evolution is given in Sec. IV. Finally, Sec. V provides a general discussion of the results and concludes.

II. MODEL

The model used was introduced previously with the purpose of studying various textures (or microstructure) in ferroelastics.[2, 13, 14] In this section we summarize its main features.

The starting point is a strain based two-dimensional (2D) Ginzburg-Landau free energy density for the square-to-rectangle structural transition that includes local coupling to quenched disorder. We recall that for this transformation the three available elastic modes are

\[\varepsilon_1 = (\varepsilon_{xx} + \varepsilon_{yy})/\sqrt{2} \] (bulk dilatation),

\[\varepsilon_2 = (\varepsilon_{xx} - \varepsilon_{yy})/\sqrt{2} \] (deviatoric strain) and

\[\varepsilon_3 = \varepsilon_{xy} \] (shear strain), where \(\varepsilon_{ij} \) are the components of the linear strain tensor. First of all we write an expansion of the free energy density in terms of the deviatoric strain only, which is the order parameter of the transition,

\[f_{GL} = \frac{1}{2} A_2(T) \varepsilon_2^2 - \frac{1}{4} \beta \varepsilon_2^4 + \frac{1}{6} \gamma \varepsilon_2^6 + \frac{1}{2} \kappa |\nabla \varepsilon_2|^2 - \sigma_2 \varepsilon_2, \] (1)

where the deviatoric stress, defined as \(\sigma_2 = (\sigma_{xx} - \sigma_{yy})/\sqrt{2} \), is the externally applied field. The harmonic coefficient \(A_2 \) is related to the elastic constant \(C' = (C_{11} - C_{12})/2 = A_2/2 \) and it is assumed to vary linearly with temperature, \(A_2 = a(T - T_c) \), with \(a > 0 \) and \(T_c \) being the lower stability limit of the square phase. The coefficients \(\beta \) and \(\gamma \) are higher order elastic constants and together with the parameter \(\kappa \) are taken to be positive. The disorder is introduced via the harmonic coefficient, \(A_2 \), in a manner that is equivalent to introducing a spatial dependence of the stability limit of the square phase, \(T_c(\mathbf{r}) \), and therefore of the transition temperature, \(T_0(\mathbf{r}) \).

That is,

\[T_c(\mathbf{r}) = T_c[1 + \eta(\mathbf{r})], \] (2)

where \(\eta(\mathbf{r}) \) is a Gaussian distributed random variable with zero mean, standard deviation \(\zeta \) and spatially correlated with an exponential pair correlation function with correlation length \(\xi \),

\[\langle \eta(\mathbf{r})\eta(\mathbf{r}') \rangle = \zeta^2 \exp\left(-|\mathbf{r} - \mathbf{r}'|/\xi\right). \] (3)

The spatial variation of the stability limit is intended to reproduce the statistical fluctuations of composition in materials. In addition, the spatial correlation of the disorder ensures that such variations are smooth.

Another important ingredient is the effective long-range strain interaction. Its origin lies in the contribution from the non-order-parameter strain components arising from the coherent matching between nearby transformed unit cells. Consequently we add to expression (1) the simplest expansion in \(\varepsilon_1 \) and \(\varepsilon_3 \),

\[f = f_{GL} + \frac{1}{2} A_1 \varepsilon_1^2 + \frac{1}{2} A_3 \varepsilon_3^2, \] (4)

where the coefficients \(A_1 = C_{11} + C_{12} \) and \(A_3 = 4C_{44} \) are again second-order elastic constants. Notice that the local free energy density \(f(\mathbf{r}) \) is a functional of the strain fields \(\varepsilon_1(\mathbf{r}) \), \(\varepsilon_2(\mathbf{r}) \) and \(\varepsilon_3(\mathbf{r}) \). These are linked by the Saint-Venant’s compatibility condition which ensures the integrity of the lattice.[22] Minimization of the integral free energy,

\[F = \int d\mathbf{r} f(\mathbf{r}), \] (5)

with respect to the non-order parameter strain components, \(\varepsilon_1(\mathbf{r}) \) and \(\varepsilon_3(\mathbf{r}) \), with the constraint of compatibility yields the free energy density as a function of the order parameter only. That is,

\[f(\mathbf{r}) = f_{GL}(\mathbf{r}) + \frac{1}{2} \int \varepsilon_2(\mathbf{r}) U(\mathbf{r} - \mathbf{r}') \varepsilon_2(\mathbf{r}') d\mathbf{r}'. \] (6)

Interestingly, \(U(\mathbf{r} - \mathbf{r}') \) is a long-range kernel that, in Fourier space, is given by,

\[\hat{U}(\mathbf{k}) = A_3 - \frac{(k_x^2 - k_y^2)^2}{(A_1)^2(k_x^2 + k_y^2)^2 + 8k_x^2k_y^2}. \] (7)

This expression embodies the anisotropic character of the free energy and is minimized when the strain modulations are oriented along (11) directions \((k_x = \pm k_y) \). The magnitude of such a long-range anisotropic term is directly proportional to the elastic coefficient \(A_3 \), provided that the ratio \(A_3/A_1 \) is constant. Notice that the elastic anisotropy factor is \(\mathcal{A} = C_{44}/C = A_3/2A_1 \), so that at constant temperature \(\mathcal{A} \sim A_3 \). This energy term enhances the correlation of the order parameter at different locations. On the contrary, the disorder (characterized by \(\zeta \)) inhibits such correlations. Once the model is discretized,
the interplay between the disorder and the long-range interaction yields a distribution of energy barriers that the system has to cope with in order to minimize its energy. Depending on the structure of such a distribution of energy barriers the low temperature phase is either martensitic or a strain glass. Thus, by varying the model parameter A_3 and in conjunction with the disorder the model predicts a crossover from a twinned martensite to a strain glass phase.[13, 14] This is illustrated in Fig. 1 where we plot the boundary separating both phases in the $A_3 - \zeta$ parameter space. Such boundary was determined in Ref. [13] from the behavior of the zero-field-cooled/field-cooled (ZFC/FC) strain curves. A large deviation between these curves at low temperature is commonly associated with glassy behavior.[23] Representative examples are shown in the insets of Fig. 1. These correspond to the simulation of a small system where the size of the elastic domains is of the order of the size of the simulation cell, especially in the martensite phase. Thus, as soon as a stress is applied before heating, a jump in the strain is obtained in the ZFC curves. We also note that the first order martensite-austenite transition becomes smooth because of the distribution of transition temperatures (disorder). The strain glass phase corresponds to those values of the disorder and elastic anisotropy that yield a large splitting of the ZFC/FC curves.

Avalanche behavior is usually related to athermal and rate independent dynamics to a good approximation.[24] For this class of dynamics, thermal fluctuations are irrelevant compared to the high energy barriers separating metastable states. Thus, in order that the dynamics can proceed it is necessary to drive the system externally with a field that couples to the order parameter (stress, in our case). Keeping this in mind, we define the fluctuationless relaxational dynamics,

$$\frac{\partial e_2(r)}{\partial t} = -\Gamma \frac{\delta F}{\delta e_2(r)}, \quad (8)$$

where the relationship between the strain components due to compatibility is taken into account in the functional derivative of the free energy with respect to the deviatoric strain, which yields anisotropic and nonlocal elastic forces [see Eq. (6)].

All physical quantities are given in the reduced units defined in Ref. [2]. The size of the simulation cell is $L \times L = 1000 \times 1000$ except otherwise stated, and the discretization parameter is $\lambda = 1.9531$, so that the simulation cell is discretized onto a 512×512 mesh. The elastic anisotropy, controlled by the parameter A_3, is varied in our simulations while the ratio A_3/A_1 and the strength of the disorder are fixed to $A_3/A_1 = 2$ and $\zeta = 0.22$. The remaining model parameters are the same as in Ref. [2].

III. THERMOMECHANICAL TREATMENT AND INTERMITTENT RESPONSE

In this section we describe the thermomechanical protocol applied to the model and study its intermittent response through avalanches.

First of all, we generate a disordered configuration with a small amount of strain which is consistent with the high temperature, high symmetry phase (austenite). This configuration is thermally quenched to $T = 0.2T_c$ and fully relaxed[25] in the absence of external stresses using the relaxational dynamics defined in Eq. (8). Then, an increasing deviatoric stress is applied at constant temperature. We start with a stress $\sigma_2 = 10^{-8}$ and the strain field is fully relaxed to the new equilibrium configuration, which ensures that the dynamics is rate independent (adiabatic limit). This last step is repeated iteratively; the applied stress is increased by an amount $\delta\sigma_2 = 10^{-8}$ and the strain configuration is relaxed. This yields a stress-strain relation where the average strain eventually responds to the applied stress through jumps. That is, infinitesimal increments of the applied stress may produce finite changes in the average strain. This is what we denote as avalanches. This behavior is shown in Fig. 2 where we plot a stress-strain curve corresponding to $A_3 = 0.1$. Notice in the inset, where a small portion of the stress-strain relation is enlarged, that periods of elastic response (shown as thick continuous lines) are separated by jumps in the average strain (indicated by dashed lines). This is qualitatively similar to the stress-strain relation obtained at larger scales. This self-similarity suggests the absence of a characteristic length (or avalanche size) in a given strain range.

According to the phase diagram shown in Fig. 1, depending on the model parameter A_3 the obtained strain configurations correspond to a martensite phase (low-symmetry low-temperature phase) or a strain glass.
the stress-strain curves qualitatively depend on this parameter. In Fig. 3 we show a typical stress-strain curve in the strain glass phase \((A_3 = 0.2, \text{Fig. 3(a)})\), in the martensite phase \((A_3 = 1.0, \text{Fig. 3(c)})\) and near the boundary between both phases \((A_3 = 0.4, \text{Fig. 3(b)})\). We find that for quenches into the martensite phase the system responds with large avalanches at a characteristic yield stress, whereas for the other values of the applied stress the avalanche sizes are smaller. This establishes several stress regimes, namely low stress, yield stress and high stress regimes. When the system is quenched into the strain glass phase, on the other hand, the distribution of avalanche sizes is less correlated with the magnitude of the applied stress. As the crossover from the martensite phase to the strain glass phase is smooth, the correlation between the applied stress and the size of the avalanches also decreases smoothly from the martensite phase to the strain glass phase. For illustrational purposes in Fig. 3 we also depict several snapshots of the strain configuration corresponding to the applied stresses (from left to right) \(\sigma_2 = 0, \sigma_2 = 2 \times 10^{-4}, \sigma_2 = 4 \times 10^{-4}, \sigma_2 = 6 \times 10^{-4}, \text{and} \sigma_2 = 8 \times 10^{-4}\).

In Figs. 4 and 5 we show snapshots of the deviatoric strain variation that occurs in single avalanches for \(A_3 = 0.4\). This is computed as the difference between the strain field before and after a given avalanche has occurred. The corresponding stress-strain curve is also shown with arrows indicating the jump in the average strain associated with each one of the snapshots. We use a color scale, where red indicates positive strain variation, white indicates no strain variation and blue stands for negative strain variation. As a reference, in the right bottom corner of each figure we show the strain configuration before the avalanches, shown in the snapshots, occur. Figure 4 shows avalanches corresponding to the small stress regime. We obtain that small avalanches are associated with local changes in the strain configuration, mainly to the displacement of a single twin boundary. Larger avalanches, on the contrary, are associated with global changes of the strain field; many twin boundaries in different locations move simultaneously generating a single strain jump. This cooperative behavior is more evident in Fig. 5 where we depict a single, and much larger, avalanche in the yield stress regime. In this case we observe the displacement of twin boundaries occurring simultaneously with the flipping of entire domains.

IV. STATISTICAL ANALYSIS OF THE AVALANCHES

In this section we analyze the statistical properties of the avalanches. This study requires a large number
in a limited strain variation regime, Δe are consistent with a power-law probability distribution α.

The log-log plot is one unit smaller than the exponent of the data the slope of the distribution of avalanches is determined by a least squares fit, shown in Fig. 6 as a grey line.

The width of the domain boundaries or the correlation depends on characteristic lengths of the model such as the size of the disorder. As the strain is computed as an intensive quantity the larger the size of the simulation cell, the smaller the strain variation that can be detected.

Thus, $\Delta e_{2\text{min}}$ depends on the size of the simulation cell, L, as well. In order to avoid any ambiguity we denote as avalanche size the scaled strain variation, $L^2\Delta e_2$. With this definition the minimum avalanche size of the power-law regime, $L^2\Delta e_{2\text{min}}$ is independent of the size of the simulation cell, as we will show below.

A first insight into the probability distribution of the avalanche sizes is obtained graphically by plotting the number of avalanches obtained versus the associated avalanche sizes. Thus, for each set of model parameters the thermomechanical protocol described above is repeated $n = 64$ times. For each one of the runs we use a different configuration of the quenched disorder and start from a different initial strain configuration. This procedure ensures that a large number of avalanches is available without having to deal with large systems.

A snapshot of the strain field change that occurs in a single avalanche for $A_3 = 0.4$ in the low stress regime. Arrows indicate the corresponding jump in the stress-strain curve. Red indicates positive strain variation, white indicates no strain variation and blue stands for negative strain variation. As a reference, in the right bottom corner we show the strain configuration before the avalanche, shown in the snapshot, occurs.

For quenches into the martensite phase we obtain that $\Delta e_{2\text{min}} \approx 0.08$. Thus, the largest strain variations observed, which are of the order of $\Delta e_2 \sim 10^{-2}$, correspond to the flip of large domains and are only observed once or twice for each run.

For quenches into the martensite phase we obtain that $\Delta e_{2\text{max}} \sim e_2^{\text{eq}}$, and the distribution of avalanches ends.
FIG. 6: Log-log plot of the number of avalanches versus the strain variation for $A_3 = 0.1$ (a), $A_3 = 0.2$ (b), $A_3 = 0.3$ (c), $A_3 = 0.4$ (d), $A_3 = 0.5$ (e), $A_3 = 1.0$ (f) and $A_3 = 5.0$ (g). The red line in each plot is a least squares fit to a power-law relation.

around this value. However, for quenches into the strain glass phase $\Delta e_{2\text{max}}$ is substantially smaller, and the deviation from the power-law distribution expands over a large range of avalanche sizes (see the distribution for $A_3 = 0.1$). This raises the question of whether the avalanches may have a non-power-law distribution in the strain glass phase or rather this deviation is due to finite size effects.

In order to clarify this point, for $A_3 = 0.1$ we have plotted the distribution of avalanche sizes for three different sizes of the simulation cell, using the same discretization parameter in all cases. For completeness this study is also performed for $A_3 = 1.0$ and $A_3 = 0.4$, which correspond to quenches into the martensite phase and the boundary between this phase and the strain glass phase ($A_3 = 1$ and $A_3 = 0.4$, respectively) $L^2 \Delta e_{2\text{max}}$ scales to a good approximation as,

$$L^2 \Delta e_{2\text{max}} \sim L^2.$$

Thus, the distribution of avalanche sizes is consistent with a power-law with an upper cutoff determined by the size of the simulation cell. On the contrary, for quenches into the strain glass phase ($A_3 = 0.1$) $L^2 \Delta e_{2\text{max}}$ is almost independent of the size of the simulation cell, and thus the drop of the number of avalanches for $\Delta e_2 > \Delta e_{2\text{max}}$ cannot be related to the size of the system. Therefore, the distribution of avalanches is supercritical. In this case, the value of $\Delta e_{2\text{max}}$ must depend on other characteristic lengths of the system such as the size of the domains that are stabilized by the energy barriers that arise from the disorder.

FIG. 7: Number of stress induced avalanches versus the avalanche size for three different sizes of the simulation cell ($L = 1000$, $L = 500$ and $L = 250$) and three different values of the elastic constant A_3 ($A_3 = 0.1$ (a) , $A_3 = 0.4$ (b) and $A_3 = 1.0$ (c)) using the same discretization parameter, $\Lambda = 1.9531$, in all cases. The red lines are least square fits to a power-law relation. The number of independent simulations performed is $n = 64$, $n = 128$ and $n = 256$ for $L = 1000$, $L = 500$ and $L = 250$, respectively.

The distribution of avalanche sizes has also been analyzed using a maximum likelihood method.\[26\] We con-
sider the likelihood function,
\[\mathcal{L}(\alpha) = \prod_{i=1}^{N} p(\Delta e_{2i}, \alpha), \]
(13)
where the normalized probability density \(p(\Delta e_2, \alpha) \) with \(\Delta e_{2\min} < \Delta e_2 < \Delta e_{2\max} \) is assumed to be power-law,
\[p(\Delta e_2, \alpha) = \frac{1 - \alpha}{\Delta e_{2\max}^{1-\alpha} - \Delta e_{2\min}^{1-\alpha}} \Delta e_2^{-\alpha}. \]
(14)
The exponent \(\alpha \) is obtained as the value that maximizes the logarithm of the likelihood function, \(\ln \mathcal{L}(\alpha) \), which is the solution of the equation,
\[\sum_{i=1}^{N} \ln \Delta e_{2i} + \frac{N}{1 - \alpha} \ln \frac{\Delta e_{2\max}^{1-\alpha} - \Delta e_{2\min}^{1-\alpha}}{\Delta e_{2\max}^{1-\alpha} - \Delta e_{2\min}^{1-\alpha}} \times (\Delta e_{2\max}^{1-\alpha} \ln \Delta e_{2\max} - \Delta e_{2\min}^{1-\alpha} \ln \Delta e_{2\min}) = 0, \]
(15)
where \(N \) is the total number of avalanches obtained in the \(n \) runs with \(\Delta e_{2\min} < \Delta e_2 < \Delta e_{2\max} \) and \(\Delta e_{2i} \) is the variation of the deviatoric strain obtained in the \(i \)-th avalanche.

In Figs. 8(a)-(g) we plot the exponent of the power-law distribution obtained with the likelihood method as a function of \(\Delta e_{2\max} \) for a fixed value of \(\Delta e_{2\min} \), as indicated in the figure. A clear plateau is obtained for \(0.2 < A_3 < 0.5 \) with an exponent \(\alpha = 1.50 \pm 0.05 \). For \(A_3 \geq 1 \) the number of avalanches obtained is small, and consequently the uncertainty is too large to conclude unambiguously if a plateau exists. For \(A_3 = 0.1 \) on the other hand, the effective exponent depends on the upper cutoff and, as concluded above, the distribution is not consistent with a power-law.

In Figs. 8(h)-(n) we plot the exponent of the power-law distribution obtained with the likelihood method as a function of \(\Delta e_{2\min} \). In this case, the upper cutoff, \(\Delta e_{2\max} \), is fixed to the value obtained from Figs. 8(a)-(g) and from the log-log plots of the avalanche size distribution shown in Fig. 6. Again, a plateau is obtained only for \(0.2 < A_3 < 0.5 \). For \(A_3 \geq 1 \) the number of avalanches obtained is not sufficient to draw conclusions.

For \(\zeta = 0.22 \), which is the amount of disorder used in the present work, the splitting between the field-cooled and the zero-field-cooled curves that was used to distinguish the strain glass phase from the martensite phase[13] typically occurs at temperatures \(T < 0.5T_c \), depending on the value of \(A_3 \). Thus, it is insightful to see if above the splitting temperature the distribution of avalanches in the strain glass phase is also different from the distribution in the martensite phase. To this end, we study the distribution of stress induced avalanches when the thermal quench is performed to \(T = 0.87T_c \), near the ferroelastic phase transition. The number of avalanches obtained versus the associated strain variation is plotted in Fig. 9 for several values of the elastic anisotropy using logarithmically binned data.

For quenches into the strain glass phase the result is qualitatively similar to the results obtained at the lower temperature \(T = 0.2T_c \). On the contrary, for quenches into the martensite phase \((A_3 \geq 0.3) \), at \(T = 0.8T_c \) we obtain an excess amount of large avalanches superimposed to the power-law distribution that was not obtained at \(T = 0.2T_c \). This excess of large avalanches can be characterized as a peak in the distribution of avalanche sizes. We have also studied how these results depend on the size of the simulation cell. In Fig. 10 we show the distribution of avalanche sizes for quenches into the strain glass phase \((A_3 = 0.1, \) Fig. 10(a)) and the martensite phase \((A_3 = 1.0, \) Fig. 10(b)) for \(L = 1000 \), \(L = 500 \) and \(L = 250 \), using the same discretization parameter.
in all cases. For quenches into the strain glass phase we find that the upper cutoff of the power-law distribution is almost independent of the size of the simulation cell. Therefore, as obtained at the lower temperature is almost independent of the size of the simulation cell. Thus, we conclude that at criticality is only obtained at the crossover between the martensite and the strain glass phases.

V. DISCUSSION AND CONCLUSIONS

In this work, we have sought to establish a realistic framework based on a phase field model suitable to describe low temperature avalanche dynamics in stress-driven martensitic/ferroelastic systems. Although the model is formulated in 2D it corresponds to a projection of the three-dimensional (3D) models suitable for the cubic-to-tetragonal or tetragonal-to-orthorhombic transitions.[22] It takes into account the effects of long-range anisotropic interactions arising from elastic compatibility constraints, and quenched disorder, which is assumed to originate from composition fluctuations. In the model, the microstructure of the low temperature phase reached by cooling from high temperature, is controlled by the ratio of the amount of disorder, measured by the standard deviation of its distribution, and the strength of the long-range interaction, which is proportional to the elastic anisotropy of the system. In particular, fixing the amount of disorder, for low anisotropy the system gets frozen in a strain glass phase, while for high anisotropy a twinned martensitic phase forms. We have numerically investigated the athermal strain response of these systems when driven by an externally applied stress. We have found that due to the existence of disorder the system evolves towards a single variant martensite through strain jumps, which define avalanches.

In all cases, avalanches distribute in a broad range of sizes. However, a detailed study demonstrates that the distribution is supercritical when starting from a deep strain glass phase and becomes critical, and thus characterized by a power-law distribution, only when starting from close enough to the boundary that separates glassy from twinned martensitic behavior in the phase diagram. In fact, criticality occurs in a broad crossover region that seems to have an excursion rather inside the

FIG. 9: Log-log plot of the number of avalanches versus the strain variation obtained after a thermal quench to . The red line in each plot is a least squares fit to a power law relation.

FIG. 10: Number of stress induced avalanches versus the avalanche size after a quench to for three different sizes of the simulation cell (and) and two values of the elastic constant (a) and (b)) using the same discretization parameter, , in all cases. The red lines are least square fits to a power-law relation. The number of independent simulations performed is and for and for and , respectively. The inset shows the scaling relation between the position of the peak in the distribution of avalanche sizes for and the size of the simulation cell.
interior of the twinned martensitic region. In any case, results suggest that for large enough anisotropy or very low amount of disorder, subcritical behavior must occur. Indeed, this is consistent with the analytical solution of the clean limit.

The main idea behind supercritical and subcritical dynamics is the following. Subcritical dynamics would correspond to a situation with a low density of energy barriers where the long-range interaction, which induces long-range strain correlations, dominates over the disorder. In this case, the transformation of a small domain induces the transformation of neighboring domains and this effect propagates to relatively long distances giving rise to very large avalanches characterized by a certain length scale related to the scale of the system. Supercritical dynamics, on the other hand, corresponds to a situation with a high density of energy barriers where the disorder dominates over the long-range interaction. Thus, the disorder is expected to be able to break the correlations and suppress the possibility of propagation of local transformations. The dynamics in this case is controlled by small avalanches with a characteristic length scale.

In general, avalanche dynamics is accepted to be inherent to any externally driven, athermal disordered system.[17] Beyond martensitic transitions, avalanches have been reported to occur during magnetization processes,[27, 28] plastic deformation[29] or failure under compression of inhomogeneous materials[30, 31] among many others. Usually, simple lattice models such as the Random Field Ising Model (RFIM)[32] or the Random Bond Ising Model (RBIM)[33] with athermal local relaxation dynamics (which is in fact equivalent to the dynamics used in the present study) are employed to simulate the field-driven behavior of these systems. Compared with such models, our model has the advantage of properly taking into account symmetry properties of both parent and martensitic phases, and thanks to incorporating long-range effects due to which our model is able to reproduce the actual microstructure that grows at the transition. The main result obtained from lattice models is that criticality occurs for a given critical amount of disorder. Indeed, this result is also reproduced by the present model, which has been based on specific properties of the low temperature phase.

It is worth reminding that in some cases, avalanches have also been studied using models less simplified than the simple lattice models mentioned above. An interesting approach based on a phase field model, was reported by Ahluwalia and Ananthakrishna in Ref. [34]. They also took into account the long-range effects in order to model a 2D system undergoing a martensitic transition. The aim of the paper was modeling acoustic emission (AE) avalanches that occur during thermally induced martensitic transitions. Actually, the AE is related to the strain avalanches, and the authors assumed that it can be taken into account from the dissipation associated with the movement of the parent-product interfaces, which was modeled by a Rayleigh dissipative functional. The authors were able to reproduce the power-law behavior of the statistical distribution of the amplitudes, energy and duration of the AE avalanches. Compared to our work, the results reported in that paper would correspond to avalanches expected in the high anisotropy and low disorder limit.

To our knowledge, no experiments have been reported so far of avalanche behavior in stress-driven strain glass phases. In systems transforming to twinned martensitic phases, experimental results based on AE measurements suggest that the distribution of AE avalanches tends to be power-law in systems with a sufficiently large amount of disorder.[20] The power-law behavior reflects the absence of characteristic scales and thus corroborates the existence of avalanche criticality. AE experiments suggest that the exponents that identify the power-law show weak universality, depending essentially on the symmetry change taking place at the transition. More specifically, they depend on the ratio R of symmetry operations of the high and low temperature phases.[18] So far, it is not yet clear to which extent the exponents depend on dimensionality. The presently studied 2D square-to-rectangle transition mimics a 3D cubic-to-tetragonal transition. For this change of symmetry, an amplitude exponent, $\alpha_{3D} = 2.0 \pm 0.3$ has been determined experimentally.[18, 35] The critical exponent obtained in our work is smaller than the 3D experimental exponent ($\alpha_{2D} = 1.50 \pm 0.05 \leq \alpha_{3D}$) as expected since the ratio R is 2 in our case instead of 3 in the real 3D case (two low temperature martensitic variants exist instead of three). However, small differences could also arise from the different dimensionality or from the symmetry breaking effects of the applied field that effectively reduces the ratio R. A detailed analysis is certainly needed in order to clarify this point further.

In summary, the results presented in this work confirm the relevance in martensitic and in general ferroelastic systems of the competition between long-range anisotropic elastic interaction and quenched disorder, that controls not only characteristic features of the domain pattern formed at the transition but also their dynamics under an applied stress field. We expect that the simulation results reported in the present paper provide guidance on how to proceed experimentally, in order to verify the ideas and predictions presented here, and in particular corroborate the crossover from supercritical to critical behavior at the boundary of strain glass behavior. The study of avalanches could provide an interesting alternative method in order to characterize strain glasses.

Acknowledgments

This research was supported by MINECO, AEI (Spain) and FEDER under projects MAT2016-75823-R, MAT2015-69777-REDT and FIS2017-82625-P and in part by the U.S. Department of Energy. We thank E. Vives for useful comments.