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The kinetic compensation effect, observed in many fields of science, is the systematic variation in
the apparent magnitudes of the Arrhenius parameters, the activation energy Ea and the preexpo-
nential factor ν, as a response to perturbations. If, in a series of closely related activated processes,
these parameters exhibit a strong linear correlation, then it is expected that an isokinetic relation
will occur, and the rates assume a common value at the compensation temperature Tc. The reality
of these two phenomena continues to be debated as they have not been explicitly demonstrated
and their physical origins remain poorly understood. Using kinetic Monte Carlo simulations on a
model interface, we explore how site and adsorbate interactions influence the Arrhenius parameters
during a typical desorption process. We find that their transient variations result only in a partial
compensation as the variations in the prefactor are not large enough to completely offset those in
Ea. In addition, the observed isokinetic relation arises as a result of a transition to a non-interacting
regime, and not due to compensation between Ea and ln ν. These results provide a deeper insight
into the microscopic events from which compensation effects and isokinetic relations originate in
this system, suggesting similar mechanisms may be at play in other systems where compensation
effects have been reported.

PACS numbers: PACS numbers: 82.20.Db, 68.43.Vx, 68.43.Nr, 68.43.De

I. INTRODUCTION

Many physical, biological, and chemical processes ex-
hibit a strong temperature dependence, in the sense that
they rely on thermally activated mechanisms to overcome
energy barriers in order for the process to proceed. The
rate k of many such processes follows an Arrhenius type
behavior

k = ν exp

(
−Ea
kBT

)
, (1)

where Ea is the activation energy, ν the preexponential
factor, T the temperature, and kB is Boltzmann’s con-
stant. When a series of measured values of ln k is plot-
ted as function of 1/T in a so-called Arrhenius plot, the
activation energy is extracted from the slope, and the
preeponential factor from the y−intercept [1].

A characteristic feature in a series of closely related
thermally activated processes where a parameter has
been varied (e.g., the concentration of an additive in a
chemical reaction) is a systematic change in the apparent
magnitudes of Ea and ν [2–4] as a response to perturba-
tions, known as the kinetic compensation effect (KCE).
A series of experiments carried out in this fashion usually
yields a set of Arrhenius plots with different slopes [5, 6]
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FIG. 1: (Color Online) Schematic idealized Arrhenius
plots for a set of closely related thermally activated
processes. The ln k = ln ν − Ea/kBT curves cross at the
compensation temperature Tc, where the rates appear
to have the same value, kc.

that intersect at a common compensation temperature Tc
[2, 4, 5, 7], such as the hypothetical set schematically
represented in Fig. 1.

With the extracted Arrhenius parameters from each
activated process, one can construct a Constable plot [8],
ln νi vs. Ea,i [2, 9, 10], such as that schematically repre-
sented in Fig. 2. The subindex i indicates that the data
pair was extracted from the ith Arrhenius curve in the
set. Following this method of analysis, a kinetic com-
pensation effect is observed when the data points on the
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FIG. 2: (Color Online) A schematic idealized Constable
plot for a set of closely related thermally activated
processes. Each data point represents a data pair of
apparent Arrhenius parameters [Ea,i,ln νi] extracted
from the slope and y−intercept, respectively, of the
corresponding ith plot in Fig. 1.

Constable plot fall on a straight line [7], and satisfy the
linear relationship [5, 6]

ln νi = βEa,i + α, (2)

where α and β are constants.
Historically, the KCE has been defined interchange-

ably with the isokinetic relation (IKR) [11], defined as
β = 1

kBTc
[4, 7]. This is because the observation of one

phenomenon is thought to directly imply the occurrence
of the other [2, 11]. In Fig. 1 the IKR is the point where
the Arrhenius plots cross at Tc, where the rates “become
the same and independent of external parameters and
perturbations” [2, 5, 7, 12, 13]. If both the KCE (Eq. 2)
and the IKR are satisfied, then it is expected that one can

combine Eq. 1 with Eq. 2, lnνi = ln ki+
Ea,i

kBT
= βEa,i+α

and, equating coefficients, obtain the slope β = 1/kBTc,
and the y−intercept α = ln kc, where kc is the rate of all
processes at Tc [2, 4, 5, 9].

Liu and Guo note [2] that this is only exact when the
linear correlation coefficient between data points in the
Constable plot is 1. In addition, they propose that the
KCE and IKR are separate phenomena, which may be
observed independently and should be characterized as
such. The KCE should be identified solely by the strong
linear correlation between Ea and ln ν [2, 6, 7, 9, 13,
14], and the IKR by the convergence of Arrhenius plots
around a single temperature [2, 13].

The extraction of parameters from the slope and
y−intercept of an Arrhenius plot has proven to be a
useful and important method that allows for the semi-
empirical determination of rates [11, 15]. However, it has
been widely accepted that Ea and ν need not be constant

throughout many activated processes [6, 16–21]. The cur-
rent physical explanation for the KCE establishes that
the changes in Ea must be ‘compensated’ by a concomi-
tant change in ν, in the same direction and with nearly
the same magnitude, such that the overall rate remains
relatively unchanged [2–4, 10, 12, 17, 21–24], and there-
fore the different values of Ea and ln ν satisfy Eq. 2 for
constant α and β. If true, this may justify the extraction
of fixed values from the Arrhenius plots. However, this
behavior has not been explicitly demonstrated [1, 2, 25],
but has been the a priori assumption behind many stud-
ies that attempt to characterize the transient variations
in Ea and ν [2, 3, 7, 10, 22, 23] through analytical ex-
pressions.

The proposed strong interdependence between Ea and
ln ν has been attributed to them being obtained from
the same temperature dependent data [2, 7, 26], instead
of through independent measurements (which are not al-
ways possible). This could be, as mentioned by Cornish-
Bowden in [26], the consequence of the two parameters
being “largely the same variable looked at in two ways”.

Moreover, some instances of the IKR do not yield a
compensation temperature that falls within the exper-
imental range, and is therefore found by extrapolation
[4, 26]. Thus the reality of the KCE and the IKR
continue to be the subject of heated debate, as they
are often believed to have a purely mathematical origin
[7, 9, 15, 26, 27], or to be the consequence of experi-
mental errors [7], and to lack any physical or chemical
significance.

Nevertheless, the KCE and IKR, as well as the closely
related enthalpy-entropy compensation, continue to be
reported in many different areas of science, such as tem-
perature programmed desorption [1], fouling [15], grain
boundary migration [10], heterogeneous catalysis [3],
crystallization of amorphous solids [28], glass transitions
[29], adsorption [5, 30, 31], chemical reactions [5], molec-
ular self-assembly [12, 32], and the melting of solids [24]
among others.

As previosuly stated, much of the existing work is cen-
tered around the derivation of analytical expressions for
Ea and ν [1, 22, 23], where a relation between the param-
eters is assumed, such that if one varies, the other varies,
by an equal or nearly equal amount. The net effect is
expected to be the compensation effect that leaves the
rate relatively unchanged [1–3, 22, 23, 33, 34]. Although
most authors agree that there is no general rule that dic-
tates the occurrence of this mutually offsetting behavior
[24, 33, 34], the strong linear correlation is cited as ex-
perimental evidence for it.

In the present work we follow the reverse approach,
through the ab initio kinetic Monte Carlo [35] calculation
of the variations in the activation energy as function of
the decreasing coverage during the thermal desorption of
interacting and non-interacting adsorbates from an ener-
getically homogeneous, crystalline lattice. The numerical
results also allow us to extract the preexponential factor,
and therefore to verify and explicitly quantify the level
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of compensation that has not been successfully achieved
to date using more traditional methods.

This approach falls in line with the idea proposed by
Liu and Guo in [2], where they mention the need for a
study that captures the events at the molecular level,
and without using preconceived functional forms. To our
knowledge, this has not been done before.

Our numerical results span a range of adsorbate-
adsorbate attractive interaction strengths, calculated as a
percentage of the fixed surface binding energy. This pro-
vides the experimental parameter to be altered in a series
of similar activated processes while keeping the substrate
structure fixed.

II. MODEL SYSTEM AND METHODOLOGY

Temperature programmed desorption (TPD), or ther-
mal desorption spectroscopy, is an experimental tech-
nique used in surface science to extract surface parame-
ters such as binding energies, pore distribution [36], and
sorption capacity, and it has applications in chemical spe-
ciation [37] and contaminant removal [38]. In a typical
experiment, a surface in an evacuated chamber is exposed
to a gas until the desired uptake is achieved. The sam-
ple is then heated with a linear temperature ramp of the
form T (t) = T (0) + γt, where γ is the size of the tem-
perature step, and t is time. Experimental results are in
the form of a peak in the rate of desorption θ̇(T ) as a
function of the increasing temperature T [39].

The most common method of data analysis starts with
the Polanyi-Wigner equation, given by

θ̇ = θnνe−Ea/kBT , (3)

where θ is the fractional surface coverage, and n is the
order of the process. Physical desorption from a uni-
form planar surface corresponds to order 1, thus we set
n = 1 for the remainder of the present work. In the
corresponding Arrhenius plot the rate is calculated as
k ≡ θ̇/θ. The parameters of interest, Ea and ln ν, can be
extracted from the slope and y−intercept, respectively.
As discussed before, such a parameterization has proven
useful in the semi-empirical determination of rates [15].
However, the parameters Ea and ν may exhibit variations
throughout the desorption process due to one or more
factors, such as surface energetic heterogeneity [40, 41],
lateral interactions [1, 25], multiple chemical species [42],
and/or changes in surface configuration [22].

Our methodology was to simulate a TPD process from
a quasi-two dimensional, square lattice of side L, with
N = L2 = 1600 sites and periodic boundary conditions
using a kinetic Monte Carlo algorithm [35]. The lat-
tice is energetically homogeneous, so that the jth site
has a binding energy Ejb = Eb = 100 in units where
kB = 1. We explore attractive interaction strengths ε in
the range from 0 ≤ ε ≤ 0.9Eb. To track the desorption
process, the kinetic Monte Carlo scheme follows a series

FIG. 3: (Color Online) Visualization of the kinetic
Monte Carlo simulations during a desorption run for a
2D square lattice substrate. The snapshots are in order
of increasing temperature, from left to right; blue
(filled) circles represent occupied sites (Eb = 100, ε = 0).

of steps. First, the initial conditions are specified, in-
cluding the binding and interaction energies, initial tem-
perature (which is altered depending on ε), step size, and
initial surface coverage (which is set to 100% in all cases).
The second step is to calculate the number of occupied
nearest neighbors per site and the site energies. Next, the
probabilities associated with each of the allowed transi-
tions are calculated as Wj = eβEj , where Ej is the energy
barrier of the jth adsorption site, calculated as

Ej = Eb +

z∑
m=1

njmε, (4)

where each site j picks up an energy contribution from
its m nearest occupied neighbors. Thus, njm = 1 when a
neighbor site is occupied, and is zero if empty. Next, an
allowable transition - desorption or diffusion to a neigh-
boring site - is selected by generating a random number
x1 between 0 and 1. The change of state that takes place
is the one with the largest probability, which satisfies the
following inequality

1

W

k−1∑
i=1

Wji < x1 <
1

W

k∑
i=1

Wji, (5)

where Wji = eβ(Ej−Ei) is the transition probability from
state j to state i. The sum is over all k allowed tran-
sitions for a particle in site j, and W is the sum of all
probabilities. Lower probability transitions are still al-
lowed so that the system evolves in a free manner, rather
than forcing it through a particular path. After every
change of state, the time variable increases by a frac-
tional amount determined by a second random number.
The temperature is increased as T = To + γt, where a
change occurs only when γt is incremented by 1. The
average site occupancy and energy are recorded at ev-
ery iteration, and the process is repeated until the lat-
tice is completely empty. The results are obtained as an
(ensemble) average over many independent runs. The
resultant coverage decrease curve can be fitted using a
Fermi-Dirac distribution function

θ =
1

1 + eβ(ε−µ)
, (6)

where the chemical potential µ can be extracted for every
data point using the calculated average site occupancy
and energy. Snapshots of the computer simulations are
shown in Fig. 3.
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FIG. 4: (Color Online) Typical profile for the numerical
simulation of the thermal desorption of non-interacting
adsorbates from a 2D square lattice starting from full
fractional coverage (θ = 1). As the temperature (T )
increases the coverage (θ) decreases. The site binding
energy is set to Eb = 100 and the interaction energy is
set to ε = 0 (in simulation units).

III. RESULTS

The simulation results are in the form of the substrate
fractional coverage θ(T ) as function of increasing tem-
perature T . A typical simulation data set is shown in
Fig. 4 for the non-interacting species examples shown in
Fig. 3. The corresponding rate and Arrhenius plots are
shown in Fig. 5.

The first step is to verify that the simulation results
in the non-interacting regime (ε = 0) can be fitted to
Eq. 3. This is shown in Fig. 5(a) where the numerical

derivative θ̇ (symbols) is superimposed with the analyt-
ically calculated rate (solid lines) using Eq. 3, for fixed
Ea = 100, and ν = 1, and the coverage decrease data θ.
Also in Fig. 5(b) is a linear fit to the corresponding Ar-
rhenius plot, from which the following parameters were
extracted: Ea = 100 ± 2 and ν = 1 ± 0.01 (extrapolated
y−intercept). The value for Ea, as expected, matches
the input binding energy, Eb, within error.

A. Activation Energy

The average site occupancy data are plotted as a func-
tion of temperature in Fig. 6(a), and the correspond-
ing Arrhenius curves are plotted as a function of 1

T
in Fig. 6(b). The average activation energy per site
is plotted in Fig. 7 as function of coverage (symbols).
These results correspond to various regimes of interaction
strength, as indicated in the figure legends. In the non-
interacting regime, the activation energy remains con-

FIG. 5: (Color Online) Rate of coverage decrease (θ̇) as
a function of temperature (T ) (Fig. (a)), and
corresponding Arrhenius plot (Fig. (b)) for the thermal
desorption of non-interacting species (ε = 0) from a
square lattice with binding energy Eb = 100. The solid
lines in Fig. (a) represent the fit to Eq. 3, and to the
Arrhenius plot in Fig. (b), ln k = −βEa + ln ν, with

k ≡ θ̇/θ. Scatter in the numerical data at higher
temperatures in the Arrhenius plot is due to division by
small numbers as the surface coverage reaches zero.

stant and matches the binding energy, as expected, which
is consistent with the fact that it represents the only en-
ergetic barrier to desorption. This feature of the non-
interacting regime also applies locally at each site. In
the case of interacting species, on the other hand, ad-
ditional contributions from site-occupied nearest neigh-
bors result in a stronger binding of the adsorbates to the
surface, which varies locally due to the heterogeneous
distribution of interacting occupied sites throughout the
desorption process. This leads to an enhanced effective
desorption barrier, and also to an increasing curvature of
the Arrhenius plots as function of increasing ε. The in-
creased effective potential barrier results in the reduced
motility of the particles on the surface due to cluster for-
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FIG. 6: (Color Online) Fractional coverage decrease
data as function of temperature (Fig. (a)) for all
regimes of interaction strength, indicated in the legend
as a percentage of the surface binding strength
Eb = 100. Corresponding Arrhenius plots (Fig. (b))
(ln θ̇/θ vs.1/T) shown with the corresponding best linear
fit (solid lines). The curvature of the plots increases
with interaction strength.

mation, and this decreased freedom to diffuse and desorb,
combined with energetic heterogeneity, leads to a more
pronounced curvature [44].

In a mean field (MF) approximation, the additional
contributions to the activation energy due to occupied
sites interacting with occupied neighbors is given by zθε,
where z is the coordination number of the (square) lat-
tice (here z = 4), and ε is the adsorbate-adsorbate in-
teraction energy. The total mean activation energy is
< Ea >= (1 + zfθ)Eb, where f = ε/Eb is the fractional
interaction energy. This analysis is shown by the solid
lines in Fig. 7, where it can be seen that the MF ap-
proach is only accurate for the non-interacting regime
(when f = 0), and for interacting systems at extreme
coverage values (i.e. when θ = 1 and 0). The reason
behind this is that the MF approach presupposes that,
at the molecular level, each site sees the same number of

FIG. 7: (Color Online) Magnitude of the activation
energy Ea as a function of coverage θ (symbols) for
different interaction strengths, indicated in the legend
as a percentage of the surface binding strength
Eb = 100. The solid lines are a mean field (MF)
analysis of the data.

FIG. 8: (Color Online) Distributions P (zo) of the
interacting site-occupied coordination number zo at
several values of the coverage θ (indicated in the
legend). For this representative example ε = 30%.
Other non-zero interaction energies exhibit similar
behavior.

occupied neighbors throughout the substrate. In other
words, the coordination of occupied interacting sites zo
is delta-function distributed. This is only true at com-
plete coverage, where the distribution of interacting sites
is P (zo) = δ(zo − 4), and again at zero coverage, where
P (zo) = δ(0). Thus, deviations from the MF picture orig-
inate from the distribution of interacting sites during the
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FIG. 9: (Color Online) Rate of coverage decrease (θ̇)
computed as the numerical time-derivative of the
coverage decrease data (symbols) from Fig. 6(a) for
selected regimes of interaction strength, indicated in the
legend as a percentage of the surface binding strength
Eb = 100. These are compared to the analytically
calculated rates (solid lines), using Eq. 3 with ν = 1,
and the numerical data for Ea.

kinetics. As a result, due to the added energy contribu-
tions when interactions are present, the sites become en-
ergetically heterogeneous. To illustrate this point, Fig. 8
shows P (zo) for one interaction energy at several values
of the coverage, which demonstrates how the distribution
of the occupation coordination becomes wider at cover-
ages away from complete and zero coverage.

B. Preexponential Factor

The preexponential factor is obtained by computing
the ratio of two desorption rates. One is the direct nu-
merical derivative with respect to time θ̇ (symbols in
Fig. 9) of the coverage decrease data (from Fig. 6(a)).
This yields the typical TPD spectra. The second is the
analytically calculated rate for each interaction regime
(solid lines in Fig. 9), using Eq. 3 with the numerical des-
orption decrease data, and average energy per site (from
Fig. 7) with ν = 1. A comparsion between the two shows
a difference that increases with interaction strength, indi-
cating some degree of variation in the prefactor, and some
level of compensation between Ea and ν. The extracted
preexponential factor is plotted as function of coverage in
Fig. 10 where, in the non-interacting regime, ν remains
constant at unity (the observed fluctuations are due to
the numerical derivatives) while, for ε > 0, ν exhibits
a systematic deviation from the non-interacting value as
the interaction strength increases. In this sense ν(ε = 0)
is the bare desorption rate that is renormalized in the

FIG. 10: (Color Online) Preexponential factor (ν) as a
function of coverage (θ) for all regimes of interaction
strength, indicated in the legend as a percentage of the
surface binding strength Eb = 100.

presence of interactions. A thermodynamic point of view
posits that the changes in ν can be attributed to changes
in the entropy [10, 33, 45]. This view is somewhat con-
tained within the Erying-Polanyi equation [4, 46, 47]

k = κ
kBT

h
e

∆S
kB e

−∆H
kBT , (7)

where h is Planck’s constant, Ea is associated with the
enthalpy of activation ∆H, and ν has a frequency compo-
nent κ, a temperature dependence, and an entropy com-
ponent ∆S [10]. It follows that, for the non-interacting
case (ε = 0), the frequency component of ν is unchanged
due to the fact that desorption and diffusion events are
unaffected by the presence of nearest neighbors, as seen
in Fig. 10, whereas for the entropy component, ν al-
ways starts and ends at (or close to) 1. At interme-
diate times/temperatures, the number of available mi-
crostates increases due to more possible distributions of
particles on the surface. The initial phase of desorp-
tion occurs through eating away of the large, percolat-
ing, connected clusters of occupied sites. Yet, in the
non-interacting regime, there is a lack of correlation as
to which sites become unoccupied. As ε increases, site
occupation is correlated over longer timescales since des-
orption and diffusion events are slowed down, resulting
in a decrease in the frequency of events, as well as in the
configurational entropy, an indicator of the compensation
effect [33]. These enhanced correlations can be quanti-
fied through the time autocorrelation function for site
occupancy, Cj =< σj(t + τ)σj(t) >, where σ is the site
occupation number and takes on the values 0 or 1, and
τ is the time lag over which correlations are measured.
These results, shown in Fig. 11(a), demonstrate that cor-
relations in site occupation become greatly enhanced as
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FIG. 11: (Color Online) Correlation and cluster
analyses. Fig. (a): site time autocorrelation function Cj
(see text for definition), for various interaction
strengths, indicated in the legend as a percentage of the
surface binding energy. Simulation times were chosen to
span the desorption processes for the different energies.
Fig. (b): number of distinct clusters (Nc) as a function
of coverage for zero, intermediate, and large interaction
strengths.

ε increases. As desorption proceeds, the occupied lattice
starts to break up into connected (smaller) island clus-
ters of occupied sites, as has been observed experimen-
tally [48]. The number of clusters reaches a maximum
at a coverage value where both depend on interaction
strength (see Fig. 11( b)).

We can interpret these features as follows: for a given
value of the coverage, systems with stronger interac-
tions are likely to exist in larger but fewer clusters,
due to enhanced site correlations that persist for longer
times/temperatures. If the number of clusters decreases,
the entropy is expected to decrease, which is reflected in
the value of ν in Fig. 10. The data in Fig. 11 show that
the coverage at which the difference in the number of
clusters is largest coincides with the greatest difference
in the ν values in Fig. 10. And, although the numerical
difference in the number of clusters of Fig. 11 appears

FIG. 12: (Color Online) Fig. (a): Arrhenius plots
calculated as ln k = −Ea/kBT , with ν = 1 (solid lines),
superimposed with the Arrhenius plots from Fig. 6 for
selected regimes of interaction strength, indicated in the
legend as a percentage of the surface binding strength.
Fig. (b): Contribution of the preexponential factor to
the same Arrhenius plots, calculated as ln k = ln ν.

insignificant at first sight (only about 10% difference),
it becomes significantly magnified when evaluating the
entropy through counting the number of accessible mi-
crostates.

C. Kinetic Compensation Effect

The separate contributions of Ea and ln ν to the Ar-
rhenius plots are shown in Fig. 12 for various regimes
of interaction strength. Fig. 12(a) shows two sets of su-
perimposed Arrhenius plots. The symbols represent the

plots calculated directly from the desorption data as ln θ̇
θ .

The solid lines represent the Arrhenius plots calculated
by taking into account only the contribution from the
activation energy (and ν is set to 1), as ln k = −Ea

kBT
, with

the numerical data for Ea. The curvatures of these plots
remain almost unchanged, indicating that the relative
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contribution from ln ν is rather small. Fig. 12(b) shows
this contribution as ln ν vs. 1/T . It can be seen that ln ν
remains approximately constant and relatively close to 1
throughout the process. While this could be interpreted
as a lack of compensation, the results in Fig. 9, as well
as those in Fig. 10, show that the prefactor does exhibit
variations that are consistent with a decrease in config-
urational entropy as a consequence of stronger binding
strength [33], therefore supporting the occurrence of a
partial compensation effect between Ea and ln ν. This
does not seem to change significantly with increasing ε.

From these results we observe that, for this system,
caution should be exercised when attempting to develop
analytical expressions to describe the behavior of the pa-
rameters in a manner that is consistent with their varia-
tions occuring in the same direction and with almost the
same magnitudes. This may be the case in other systems.

FIG. 13: (Color Online) Second order, coverage
dependent terms appearing in the parentheses of Eq. 8
for selected regimes of interaction strength, indicated in
the legend as a percentage of the surface binding
strength. The derivatives of Ea (Fig. (a)) and ln ν (Fig.
(b)), with respect to coverage θ are expected to add to
zero as a special manifestation of the compensation
effect.

FIG. 14: (Color Online) Calculated second order terms
in parentheses in Eq. 8 for some regimes of interaction
strength, indicated in the legend as a percentage of the
surface binding strength Eb = 100. The second order
terms only add to zero in the non-interacting regime.

D. False kinetic compensation effects in Thermal
Desorption

A theory which predicts the variations in Ea and ln ν
to occur in a mutually offsetting manner was previously
explained by Miller et al. [1] and by Nieskens et al. [25],
as a possible cause for a false KCE. This theory states
that, in the presence of lateral interactions, the Arrhenius
parameters become coverage dependent. Then, consider-
ing all explicit dependencies, the slope of the Arrhenius
plot, d ln k

d(1/T ) , becomes [1, 25]

−Ea(θ)

kB
+

dθ

d (1/T )

(
∂ln ν(θ)

∂θ
− 1

kBT

∂Ea(θ)

∂θ

)
, (8)

where the second order terms (in parentheses) yield a
non-constant slope, and can only be ignored if: (1) the
parameters are constant, (2) measurements are made
over a region where the change in the coverage is vanish-

ingly small
(

dθ
d(1/T ) ∼ 0

)
, or (3) the terms sum to zero,

i.e. ∂ln ν(θ)
∂θ = 1

kBT
∂Ea(θ)
∂θ , as a special manifestation of

the compensation effect, and the solution to the resultant
differential equation reduces to Eq. 2 [1, 25].

The derivatives with respect to coverage were calcu-
lated using the numerical data, and the results are shown
in Fig. 13. In Fig. 13(a), the derivative of Ea exhibits
much larger variations than ln ν (Fig. 13(b)). When the
terms are added, according to Eq. 8, the result is only
zero in the non-interacting case, as expected. Otherwise,
it yields a non-zero, finite contribution, shown in Fig. 14.
This is the case even when the factor 1/kBT attenuates

variations in ∂Ea(θ)
∂θ . The increasing curvature of the Ar-
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rhenius plots in Fig. 6(b) should be the first visible in-
dicator that the second order terms do not add to zero.
When this is ignored, a straight line is imposed upon the
data, which can lead to a false KCE [1, 25].

E. Isokinetic relation (IKR)

The Arrhenius plots in Fig. 6(b) exhibit a tendency
to converge towards the region of high temperature and
low coverage, but they do not cross at a single value
of Tc, such as those in the idealized set shown in Fig. 1.
However, the interacting curves cross the non-interacting
one, or an extrapolation of it, at different points. The
values of T at these crossings were visually estimated, as
indicated by the vertical lines in Fig. 15, and the obtained
values are shown in Table I, where they are referred to as
compensation temperatures. The numerically calculated
values of Ea, ν, and ln k at the crossing temperatures are
also displayed in Table I.

TABLE I: Numerical values of Ea and ν at approximate
compensation temperatures. The numerical values of
the energies of activation approach the binding energy
of the surface, and the values of ν are close to 1,
indicating a transition to a non-interacting regime at
the corresponding Tc.

ε Tc Ea ν ln k
10% 60 -100.35 1.01 −1.67
30% 78 -100.12 0.93 −1.36
50% 89 -100.64 1.0 −1.13
70% 104 -100.32 0.91 −1.06
90% 118 -100.24 0.88 −0.98

When an IKR is observed, the rates are expected to
acquire similar values and become independent of exter-
nal perturbing parameters at Tc [5] and, if all the rates
have the same equilibrium value, it is said that they have
reached isokinetic equilibrium. The values of k in Ta-
ble I are not exactly equal. Nevertheless, they become
independent of external parameters since the calculated
values of Ea and ν show that, at the crossing tempera-
tures, the rates are governed only by the parameters of
the surface. This makes physical sense because this oc-
curs in the region of low coverage and high temperature
but, perhaps more importantly, the convergence does not
seem to occur due to a compensation between Ea and ν.

The discrepancy in the crossing temperatures for each
Arrhenius plot can be attributed to the 10% difference
between regimes of interaction strength, and it would be
of interest to observe what happens if a different param-
eter is varied while keeping the interaction strength the
same.

FIG. 15: (Color Online) Estimated compensation
temperatures for all Arrhenius plots in Fig. 6(b),
indicated by the vertical lines in the same color as the
corresponding curve. The interaction strength is
indicated in the legend as a percentage of the surface
binding energy Eb = 100.

F. Weak Adsorbate Interactions

Compensation effects continue to be reported in many
different fields of science [2, 5], therefore this discussion
would not be complete without addressing a regime of
interaction strength in which a KCE and an IKR, as cur-
rently defined, would be observed. In thermal desorp-
tion this corresponds to adsorbate-adsorbate interaction
strengths that fall within the range ε ≤ 10% of the bind-
ing energy of a planar, energetically homogeneous sur-
face, such as the desorption of Xe from graphite [49]. The
numerical results in this regime are plotted in Fig. 16.

The Arrhenius parameters were extracted through a
linear fit, and are displayed in Table II, along with se-
lected results for stronger interaction regimes, obtained
through the same method, for comparison. The numer-
ically calculated values of Ea,max and < ν > are also
shown. For weakly interacting adsorbates, the fit pro-
vides reasonably accurate estimates while, at stronger
values of ε, deviations grow dramatically. These re-
sults present a stark contrast with strong coverage de-
pendent preexponential factors which can be obtained
in the regime of strong interactions [14, 19, 20, 50, 51],
and which have been identified as an indicator of false
compensation effects in thermal desorption [25], mainly
due to forced linearization [14, 44]. Since the Arrhe-
nius plots in Fig. 16 cross, the compensation temperature
was estimated (rightmost dashed line in the figure) to be
Tc = 59.17.

The corresponding Constable plot for (Ea,i, ln νi) data
pairs in the interaction range 1% − 9% is displayed in
Fig. 17, with a linear correlation coefficient of 0.99998.
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FIG. 16: (Color Online) Arrhenius plots for interaction
strengths ε = 1%, 5%, and 9% of the surface binding
energy. The symbols are the simulation data, and the
solid lines are the best linear fits to the Arrhenius plots.
The vertical dashed lines indicate a visually estimated
compensation temperature Tc = 59 (left line), and
Tc = 65 (right line), obtained from the slope of the
Constable plot in Fig. 17. The insets show Ea (top) and
ν (bottom) as function of coverage (θ).

TABLE II: Arrhenius parameters, Ea and ν, obtained
through linear fits to the Arrhenius plots. The results
are compared to the numerically calculated values from
the simulations. The percentage error increases with
interaction strength.

ε Ea max. Ea linear fit < ν > calculated ν linear fit
0% 100 102 0.99 1.0
1% 104 107 1.02 1.12
5% 120 125 0.96 1.41
9% 145 161 0.931 2.58
10% 140 167 0.93 2.4
30% 220 292 0.89 8.18
90% 460 785 0.89 121.94

This indicates the observation of a KCE according to
traditional criteria. However, the insets in Fig. 16 show
that the parameters vary in the same manner as they
did in stronger interaction regimes, supporting the oc-
currence of a partial compensation effect instead of a
complete one. The slope of the line in Fig. 17 yields
Tc = 64.94, indicated by the leftmost dashed line in
Fig. 16. This is higher than the previous estimate of
Tc = 59 . The numerically calculated values of Ea and
ν at both T = 59.17 ≈ 59 and T = 64.94 ≈ 65 are
displayed in Table III. The data show that, in both in-
stances, the effects of lateral interactions tend to become
negligible at Tc, and the rates acquire close values.

The intercept of the Constable plot is α = ln kc =

FIG. 17: (Color Online) Constable plot using fitted
parameters Ea and ln ν for interaction strength regimes
of 1%, 5%, and 9% of the surface binding energy. A
linear fit of Eq. 2 to this plot (dashed line) yields
β = 0.0154, which corresponds to temperature
Tc = 68.94 and α = −1.5461. Note that the x axis
starts at 100.

TABLE III: Numerical values of Ea, ν, and ln k, at
T = 59 and Tc = 65, obtained from a linear fit to the
Constable plot in Fig. 17 using Eq. 2. The numerical
values of the rates, and the numerical values of Ea,
indicate a transition to the non-interacting regime,
where the rates are governed solely by the bare
parameters of the surface.

ε Tc Ea at Tc ν at Tc ln k at Tc

1% 59 -100.00 0.97 −1.67
5% 59 -100.07 0.93 −1.69
9% 59 -100.33 1.05 −1.65
1% 65 -100.00 0.99 −1.55
5% 65 -100.00 0.96 −1.54
9% 65 -100.03 1.07 −1.47

−1.5461 ≈ −1.55, this is close to the rates at T = 65.
The rates do not have the exact same value, but the
results show a transition to the non-interacting regime.

The KCE and IKR are generally attributed to weak
molecular interactions [24], and the numerical results in
this regime predict an IKR and a KCE in the form of
Eq. 2, with α = −1.5461 and β = 0.0154. However,
strict adherence to these criteria exclude the occurrence
of compensation effects in stronger interaction regimes.
A decrease in configurational entropy due to molecular
interactions should be expected, and not only in the case
of weak association [34]. The numerical results presented
here show a compensation effect occurring even in the
case of curved Arrhenius plots, at stronger interaction
regimes. Nevertheless, the linear fit in this case becomes
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inadequate. It should also be noted that the implication
of a complete mutual offsetting is that the effects of inter-
actions are not perceivable, and this would exclude the
curved Arrhenius plots.

IV. CONCLUSIONS

Our results support the existence of a behavior that
yields a compensation effect between Ea and ν. How-
ever, the observed changes in the preexponential factor
are not large enough to completely offset the significant
variations in the activation energy, Ea, which arise due
to strong coverage dependence. This produces a net par-
tial compensation between Ea and ln ν for all regimes
of interaction strength presented in this study. This is
true even in the case where a strong linear correlation,
which satisfied Eq. 2 for constant α and β, was observed
(regime of weak interactions). Therefore it is reasonable
to conclude that Eq. 2 represents the functional depen-
dence of the apparent (and fixed) Arrhenius parameters
for systems which exhibit an Arrhenius type behavior as
Ea is varied through an external experimental parame-
ter. However, it does not predict their transient varia-
tions. Not only do the parameters not completely com-
pensate each other, but this prediction precludes the con-
sideration of these effects in systems which deviate from
straight Arrhenius plots. This is counterintuitive, since
a stronger binding strength should be associated with a
more pronounced decrease in the configurational entropy,
and therefore with an increased level of compensation

between Ea and ln ν, compared to the regime of weak
interactions. Partial compensation has been previously
considered [2, 4], but this notion is not as widespread as
that of a complete KCE.

We observed an IKR in the regime of weak interac-
tions. At Tc the rates became similar due to the system
transitioning to a regime where the effects of lateral in-
teractions become negligible, thus the rates become in-
dependent of external perturbations. A single crossing
temperature was not observed for the other stronger in-
teraction regimes presented in this study, this is likely
due to the 10% difference between them. However, those
interacting curves approached the non-interacting one at
different temperatures. This also occurred in the region
of low coverage and high T . The numerically calculated
values of Ea and ν at those temperatures indicate that
this is also due to the transition to the non-interacting
regime.

The behavior we observed may help clarify compen-
sation effects and isokinetic relations observed in other
systems. A better understanding of this phenomenon
can help achieve controlled activated events and provide a
means to accurately parameterize many biological, chem-
ical, and physical processes that share common features
in their compensation effects.
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[27] N. Koga and J. Šesták, Thermochim. Acta 182, 201

(1991).
[28] I. Banik, R. Banik, J. Lukoviova and G. Pavlendova,

Chalcogenide Lett. 10, 455 (2013).
[29] J. C. Dyre, J. Phys. C: Solid State Phys. 19, 5655 (1986).
[30] D. S. Rawat , T. Furuhashi and A. D. Migone, Langmuir

25, 973 (2009).
[31] V. Krungleviciute, C. A. Ziegler, S. R. Banjara, M. Yu-



12

dasaka, S. Iijima and A. D. Migone, Langmuir 29, 9388
(2013).

[32] Y. C. Kim and J. Mittal, Phys. Rev. Lett. 110, 208102
(2013).

[33] C. Piguet, Dalton Trans. 5, 8059 (2014).
[34] D. M. Ford, J. Am. Chem. Soc. 127, 16167 (2005).
[35] A. F. Voter, in Radiation Effects in Solids, edited

by K. E. Sickafus, E. A. Kotomin, and B. Uberuaga
(Springer, Dordrecht. The Netherlands, 2007), vol. 235
of NATO Science Series, chap. Introduction to the Ki-
netic Monte Carlo Method, pp. 1–23.

[36] A. M. Hansen and J. O. Leckie, Advances in Water Re-
sources 21, 523 (1998).

[37] P. Coufalik, O. Zverina and J. Komarek, Chemical Pa-
pers 68, 427 (2014).

[38] M. T. Smith, F. Berruti, and A. K. Mehrotra, Ind. Eng.
Chem. Res. 40, 5421 (2001).

[39] R. P. Redhead, Vacuum 12, 203 (1962).
[40] J. T. Burde, N. Zuniga-Hansen, C. L. Park and M. M.

Calbi, J. Phys. Chem. C 113, 16945 (2009).

[41] N. Zuniga-Hansen and M. M. Calbi, J. Phys. Chem. C
116, 5025 (2012).

[42] J. Burde and M. M. Calbi, J. Phys. Chem. Letters 1, 808
(2010).

[43] V. H.C. Silva, V. Aquilanti, H. C. B. de Oliveira and K.
C. Mundim, Chem. Phys. Lett. 590, 201 (2013).

[44] S.H. Payne, A. Wierzbicki and H.J. Kreuzer, Surf. Sci.
242, 291 (1993).

[45] K. Sharp, Protein Science 10, 661 (2001).
[46] H. Erying, J. Chem. Phys. 3, 107 (1935).
[47] H. Erying, Chemical Reviews 17, 65 (1935).
[48] S. Gunther, T.O. Mentes, M.A. Niño, A. Locatelli, S.

Bocklein and J. Wintterlin, Nat. Commun. 5, 3853
(2014).

[49] H. Ulbricht, J. Kriebel, G. Moos and T. Hertel, Chem.
Phys. Lett. 363, 252 (2002).

[50] E.G. Seebauer, A.C.F. Kong and L.D. Schmidt, Surf. Sci.
193, 417 (1988).

[51] H. E. H. Pfnur, P. Feulner and D. Menzel, Chem. Phys.
Lett. 59, 481 (1978).


