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Photoacoustic effect in a stratified atmosphere

Wenyu Bai* and Gerald J. Diebold
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The photoacoustic effect is usually studied in an isotropic medium on a laboratory scale. However,
it is possible to use optical sources to launch pressure perturbations in the atmosphere consisting of
both acoustic and gravity waves. Here, photoacoustic theory is extended to incorporate the effects
of a stratified atmosphere and a gravitational field on launching and propagation of pressure waves
in the atmosphere. Properties of pressure waves corresponding to several optical excitation schemes
are investigated. The acoustic component of the optically launched pressure waves is explored
separately to delineate its properties from those found without the effects of a gravitational field.
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I. INTRODUCTION

The photoacoustic effect refers to the generation of
sound by absorption of optical radiation, which was first
reported by Alexander Graham Bell in 1880 in his in-
vention of the photophone [1]. However, it was not until
1970’s, after the invention of the laser, that the photoa-
coustic effect received considerable research interest in
the fields of spectroscopy and trace gas detection [2–4].
The last decade has witnessed additional interest in the
photoacoustic effect owing mainly to its unique advan-
tages in noninvasive biomedical imaging [5, 6].
Apart from laboratory applications, the photoacoustic

effect has been shown to be manifest in natural phenom-
ena. For example, the mysterious ”hissing” sound occur-
ring concurrently with the flash of meteors has been as-
cribed to a photoacoustic mechanism [7, 8]. Notably, the
source term of the photoacoustic wave equation indicates
that a moving source with constant intensity can also
broadcast acoustic waves [9, 10]. Such moving sources
are associated with the widely-observed pressure distur-
bance induced by the motion of moon shadow during a
solar eclipse [11] and the rotation of the earth terminator
[12]. Other events such as the volcanic eruption [13] and
nuclear detonation [14] also bear a striking resemblance
to the pulsed-mode photoacoustic excitation.
The photoacoustic theory in a fluid is described by an

inhomogeneous wave equation for pressure with a source
term proportional to the time derivative of the rate of
heat deposition per unit volume [15–17]. However, the
photoacoustic theory formulated in isotropic media can-
not be directly applied to atmospheric pressure waves
since the atmosphere is stratified and the length scale
of the pressure waves is often comparable to or larger
than the characteristic length of the stratification [18].
As well, the presence of the gravitational field compli-
cates the propagation of the pressure disturbance. Apart
from acoustic waves, there also exist low frequency grav-
ity waves supported by the buoyant force [19]. The so-
called acoustic-gravity wave has been explored before by
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geologists and is of primary interest in its effects on atmo-
spheric circulation and local surface turbulence [14, 20].
However, the wave’s behavior unique to optical excita-
tion and its connection with the photoacoustic effect have
not been systematically studied to our best knowledge.
Furthermore, photoacoustic remote sensing of the ma-
rine environment and the possible photoacoustic air-to-
submarine communication can be expected to require an
airborne laser which as it traverses the atmosphere can
introduce pressure perturbations [21]. The interpreta-
tion of such pressure waves requires the incorporation
of atmospheric stratification into the equations of linear
acoustics.
The aim of this paper is to extend the photoacoustic

theory to the stratified atmosphere, investigate how the
medium anisotropy will affect the generation of pressure
disturbances, and examine the atmosphere’s response to
several typical methods of optical excitation. In particu-
lar, the acoustic component of the pressure disturbances
is studied as a direct comparison with the ordinary pho-
toacoustic effect. Section II uses the equations of lin-
ear acoustics to give the governing equation for pressure
disturbances induced by optical excitation in the atmo-
sphere. A Green’s function is derived and the effect of a
boundary is discussed. Section III gives examples of opti-
cally launched atmospheric waves including the cases for
pulsed and low frequency monopole radiator. In Section
IV, the high frequency approximation to the governing
equation is derived and applied to the cases of a verti-
cally directed light beam and a monopole source. Section
V gives a summary of the results.

II. GOVERNING EQUATION AND GREEN’S

FUNCTION

A. Derivation of the governing equation

Consider a flat earth, taken to be a hard surface,
and an isothermal, windless atmosphere as illustrated in
Fig. 1. The influence of earth rotation is neglected here
since the Rossby waves generated by the Coriolis forces
are characterized by extremely low frequencies and long
wavelengths. The excitation of such waves with signifi-
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FIG. 1. (Color online) Geometry of the theoretical model
with the gravitational force antiparallel to the z axis and the
earth taken to be a flat, perfect reflector.

cant amplitudes is thus not expected. [22]. Suppose the
optically excited pressure disturbance is small enough so
that the linearized conservation equations are given by

ρ0
∂u1

∂t
= −∇p1 − ρ1g,

∂p1
∂t

+ u1z
∂p0
∂z

= c2
(

∂ρ1
∂t

+ u1z
∂ρ0
∂z

)

+
βc2

CP
H,

∂ρ1
∂t

= −u1z
∂ρ0
∂z

− ρ0∇u1, (1)

where subscript 0 indicates a hydrostatic variable and the
subscript 1 refers to small disturbance, ρ is the density,
u = (ux, uy, uz) is the particle velocity, p is the pressure,
g = (0, 0, g) is the gravitational field, β is the isothermal
expansion coefficient, CP is the specific heat capacity at
constant pressure, and H , the heating function, is the op-
tical power absorbed per unit volume. The first of Eqs.
1 is a vector differential equation that describes the con-
servation of momentum along the x, y, z directions. The
second and third equations are the conservation equa-
tions for energy and mass, respectively.
The distributions of hydrostatic pressure p0 and den-

sity ρ0 obey the following relations,

∂p0
∂z

= −gρ0, (2a)

∂ρ0
∂z

= −γg

c2
ρ0, (2b)

where γ is the ratio of specific heat capacities at constant
pressure and volume. Note that p0 and ρ0 are related via
the adiabatic sound speed c =

√

γp0/ρ0, which, together
with Eqs. 2a and 2b, gives

p0 = Pse
−z/h and ρ0 = ̺se

−z/h, (3)

where h is a characteristic height defined as h = c2/(γg),
which in the earth atmosphere is roughly 8 km. Here Ps

and ̺s are the hydrostatic pressure and density at the
sea level.
Equations 3 can be used to eliminate the variables p0

and ρ0 from Eqs. 1, leaving five unknowns u1x, u1y, u1z,
p1, and ρ1, which can then be decoupled by manipulation
of the five conservation equations. A partial differential
equation for the pressure perturbation p1 is accordingly
obtained as
[

∂4

∂t4
− c2

∂2

∂t2
∇2 − γg∂3

∂t2∂z
− (γ − 1)g2

(

∂2

∂x2
+

∂2

∂y2

)]

p1

=
βc2

CP

(

∂3H

∂t3
− g

∂2H

∂t∂z

)

. (4)

Compared with the source term of the ordinary photoa-
coustic wave equation for non-stratified fluids [15], Eq. 4
includes an additional source term dependent on both the
gravitational acceleration and the vertical dependence of
the heating function. It is easy to verify that Eq. 4 re-
duces to the well-known photoacoustic wave equation for
fluids [15] as g vanishes.
If a new variable Π is defined as Π = exp [z/(2h)] p1,

Eq. 4 can be reduced to
[

1

c2
∂4

∂t4
− ∂2

∂t2
∇2 +

ω2
2

c2
∂2

∂t2
− ω2

1

(

∂2

∂x2
+

∂2

∂y2

)]

Π

=
βez/(2h)

CP

(

∂3H

∂t3
− g

∂2H

∂t∂z

)

, (5)

where ω1 =
√

(γ − 1)g/(γh) is the so-called Brunt-

Väisälä frequency [23] and ω2 = 1/2
√

γg/h. Their val-
ues in an isothermal atmosphere are roughly 0.018 rad/ s
and 0.02 rad/ s corresponding to oscillations with peri-
ods around 5.8min and 5.2min, respectively. It is noted
that the substitution of p1 with Π has some physical sig-
nificance. Since the potential energy associated with the
fluid compression is proportional to Π2 with the prefac-
tor 1/(2c2̺s) being a constant, Π is thus required to be
a squared integrable function and is a physically more
preferable variable to work with than p1.
Fourier transformation of Eq. 5 with the convention

f̃ω = 1/
√
2π
∫

f(t) exp(iωt)dt results in
(

∂2

∂x2
+

∂2

∂y2
+

ω2

ω2 − ω2
1

∂2

∂z2
+

ω2 − ω2
2

ω2 − ω2
1

ω2

c2

)

Π̃

=
iβωez/(2h)

CP (ω2 − ω2
1)

(

ω2H̃ + g
∂H̃

∂z

)

, (6)

where Π̃ and H̃ are the Fourier transform of Π and H .
Equation 6 can be used to determine the frequency do-
main solutions for various forms of the heating function.
The result can then be Fourier transformed to give time
domain solutions to Eq. 5.

B. Free space Green’s function

In this section, the Green’s function for Eq. 6 is derived
for free space without the presence of a reflecting surface.
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The frequency domain Green’s function G̃ω(r; r0) for Eq.
5 satisfies the following equation

(

∂2

∂x2
+

∂2

∂y2
+

ω2

ω2 − ω2
1

∂2

∂z2
+

ω2 − ω2
2

ω2 − ω2
1

ω2

c2

)

G̃ω(r; r0)

= δ(r− r0), (7)

where r and r0 refer to the positions of the observation
point and the source point, respectively. By taking the
Fourier transform of the z variable with the convention
f̃kz = 1/

√
2π
∫

f(z) exp(ikzz)dz, we have

(

∂2

∂x2
+

∂2

∂y2
+ F 2

)

G̃ω,kz (x, y;x0, y0)

=
1√
2π

eikzz0δ(x− x0)δ(y − y0), (8)

where

F =

√

√

√

√α̂

(

β̂

α̂

ω2

c2
− k2z

)

,

α̂ =
ω2

ω2 − ω2
1

,

β̂ =
ω2 − ω2

2

ω2 − ω2
1

.

Note that Eq. 8 is a two-dimensional Helmholtz equa-
tion whose solution can be found as [24]

G̃ω,kz (x, y;x0, y0) = − i

4
√
2π

eikzz0H
(1)
0 (Fd), (9)

where d =
√

(x− x0)2 + (y − y0)2, and H1
0 (z) is the

Hankel function of the first kind. Under the convention of
the Fourier transform used in this paper, Eq. 9 describes
an outwardly expanding wave.
Inverse Fourier transformation of Eq. 9 with respect

to kz gives

G̃ω(r; r0) = − i

4π

∫ ∞

0

H
(1)
0





√

√

√

√α̂

(

β̂

α̂

ω2

c2
− k2z

)

d



×

cos [kz(z − z0)] dkz , (10)

where the parity symmetry of the F term with respect
to kz is used to write G̃ω as a Fourier cosine transform.
The integral in Eq. 10 can be found in standard integral
tables [25], yielding

G̃ω(r; r0) = − 1

4π

√

1

α̂

1

R
eiω

√
β̂R/c, (11)

where R(r; r0) =
√

(x− x0)2 + (y − y0)2 + (z − z0)2/α̂.
The appearance of 1/α̂ within R suggests an anisotropic
behavior along the z direction which is discussed later.

It is noted that when ω ≫ ω2 both α̂ and β̂ approach the

unity, making G̃ω converge to the Green’s function for a
three-dimensional wave equation.
One interesting finding is that when the observation

point is directly above or below the impulsive source
point, Eq. 11 becomes

G̃ω(z; z0) = − 1

4π

1

|z − z0|
ei
√

(ω/c)2−(ω2/c)2|z−z0|, (12)

which is similar to the Green’s function for the frequency
domain Klein-Gordon equation, a relativistic version of
the Schrödinger equation whose solution has been widely
studied. Inverse Fourier transformation of Eq. 12, ac-
cording to Ref. [24], yields

Ḡ(z, t; z0, t0) = − 1

4π

{

δ(τ − |z − z0| /c)
|z − z0|

−

ω2J1
[

ω2

√

τ2 − (|z − z0| /c)2
]

c

√

τ2 − (|z − z0| /c)2
×

u(τ − |z − z0| /c)
}

, (13)

where τ = t− t0, t0 is the time of initiation of the instan-
taneous point source, J1 is the first order Bessel function
of the first kind and u is the Heaviside function. The
above equation describes a delta pulse followed by a wake
which is a characteristic feature for the acoustic-gravity
wave.
Of particular note is that Eq. 13 cannot be simply

regarded as the atmosphere’s response to an impulsive
source since the source term in Eq. 5 is not proportional
to the heating function but involves its temporal and spa-
tial derivatives. This fact can be exemplified by the phe-
nomenon that the photoacoustic response to an impulsive
source in a three-dimensional geometry is a bipolar acous-
tic wave – a compression followed by rarefaction, while
the first term in Eq. 13 is merely a unipolar wave. Fur-
thermore, when calculating the Green’s function for the
time domain Eq. 5, the Green’s function in the frequency
domain should be divided by another factor ω2 − ω2

1 be-
fore conducting the inverse Fourier transformation, that
is,

G(r, t; r0, t0) =
1

2π

∫ ∞

−∞

G̃ω(r; r0)

ω2 − ω2
1

e−iωτdω

=
1

π
Re

[

∫ ∞

0

G̃ω(r; r0)

ω2 − ω2
1

e−iωτdω

]

, (14)

where the second equation is derived based on the fact
that G̃ω(r; r0) is a Hermitian function with respect to ω,

that is, it satisfies G̃ω(r; r0) = G̃∗
−ω(r; r0). The solution

to Eq. 4 can be obtained by convoluting Eq. 14 with
the source term in Eq. 5 with the result multiplied by
exp [−z/(2h)].
It is difficult to obtain a closed-form expression for the

integral in Eq. 14, but it is possible to determine some
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FIG. 2. (Color online) Phase (upper plot) and group (lower
plot) velocities as a function of ωx = ω sin θ and ωz = ω cos θ.
The phase velocity varies from zero to the infinity while its
color plot is truncated at vp/c = 3 to make clear the details
of the distribution. Within the blank areas at the left bottom
corners, the velocities become imaginary indicating evanes-
cent wave behavior.

properties of G(r, t; r0, t0) by investigating the behavior
of the integrand in the complex ω plane. First note that
there exist six singularities for the integrand which are at
±ω1,±ω2 and ±ω1 cos θ where θ is the polar angle of the
vector r−r0 as depicted in Fig. 1. Importantly, no poles
appear in the upper complex plane, making Eq. 14 sat-
isfy the causality principle since it is then possible to close
the integration contour in the upper plane when t < t0,
resulting in a value of zero for the integral [24]. Second,
in certain frequency bands (0, ω1 |cos θ|) and (ω1, ω2), the
integrand behaves as an exponentially decaying function
instead of being progressive. The second frequency band
results from the fact that for a pure gravity wave, or a

wave with the oscillation frequency so low that the rate
of change of ρ1 barely affects the continuity equation,
the maximum frequency that the atmosphere can sup-
port is the Brunt-Väisälä frequency ω1 [19]. The first
frequency band gives a hint of the radiation pattern for
a low-frequency point source. Suppose a point source
located at the origin oscillates in amplitude at an angu-
lar frequency ω0(< ω1). Its radiation will be excluded
from a head-to-head cone-shaped region as illustrated in
Fig. 4(b) with the cone angle being π− 2 arccos(ω0/ω1),
which is in striking contrast to that from a photoacoustic
monopole [15]. Third, it is also worthwhile investigating
the anisotropic dispersion of the phase and group veloc-
ities vp and vg along the direction of r − r0 [19, 26]. It
can be shown from the exponent of Eq. 11 that

vp =
ω

k
=

c
√

β̂ (1− ω2
1 cos

2 θ/ω2)
, and (15a)

vg =
∂ω

∂k
=

c

√

β̂ (1− ω2
1 cos

2 θ/ω2)
(

ω2 − ω2
1

)2

(ω2 − ω2
1)

2
+ ω2

1 (ω
2
2 − ω2

1) sin
2 θ

, (15b)

where k is the magnitude of the wave number vec-
tor. The anisotropic dispersion of vp and vg are plot-
ted in Fig. 2. It is clear that there exist two forbidden
bands in which the wave is evanescent. In the regime of
ω1 |cos θ| < ω < ω1, the phase velocity decreases mono-
tonically from infinity to zero, and the group velocity
exhibits some concave behavior with the maximum mag-
nitude still being subsonic. When ω > ω2, both velocities
asymptotically approach the sound speed, which is con-
sistent with the fact that when ω ≫ ω2, Eq. 4 converges
to a three-dimensional photoacoustic wave equation.

C. Inclusion of a reflecting surface

Reflection occurs when the pressure disturbance trav-
els to the earth surface where the vertical particle velocity
uz vanishes. From the first of Eqs. 1, together with the
relation for the adiabatic sound speed c2 = p1/ρ1, the
boundary condition for p1 at z = 0 can be formulated as

∂p1
∂z

+
g

c2
p1 = 0, (16)

whose corresponding form in terms of Π is given by

∂Π

∂z
+AΠ = 0, (17)

where A = (1/γ − 1/2)/h.
Of note is that a velocity potential cannot be defined

in this case as a result of the existence of the gravita-
tional field which results in a pressure disturbance that is
a combination of longitudinal (acoustic) and transverse
(gravity) wave: the velocity field is not purely irrota-
tional.
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To incorporate the effects of the boundary condition, a
generalized approach is to decompose the Green’s func-
tion into the weighted summation or integral of its eigen-
functions, and then apply the boundary condition to
each eigenfunction or their weighting coefficients to make
each eigenfunction or their linear combination satisfy
the boundary condition. Here, a more straightforward
method introduced in Ref. [27] is used. The idea is to

define a Robin-to-Dirichlet operator T̂ = ∂/∂z + (1/γ −
1/2)/h. Since Eq. 6 is a linear equation with all coeffi-

cients being constants, the function g = T̂ Π̃ will satisfy
Eq. 6 with T̂ acting on the source term together with
a Dirichlet boundary condition. If the inverse operator
T̂−1 and the function g can be found, the solution for Π̃
can then be derived as Π̃ = T̂−1g, a process called the
Dirichlet-to-Robin transform.
Following the above procedure, it is found that the

Green’s function for Eq. 6 with a reflecting earth ground
can be written as

G̃ω,R = G̃ω(z− z0)+ G̃ω(z+ z0)+ T̂−1
z G̃ω(z+ z0), (18)

where only the z coordinate is written out for simplicity
and the last term is

T−1
z G̃ω(z + z0) =

∫ z

0

e−AεG̃ [z + (z0 − ε)] dε

− e−2Az

∫ ∞

−z

e−AεG̃ [z + (z0 + ε)] dε.

The first two terms in Eq. 18 constitute a Green’s
function for the Neumann boundary condition in which
the second term corresponds to a ”echo-type” reflected
wave from a hard surface. The third term, which results
from the presence of a gravitational field, represents a
”ringing-type” reflected wave. It corresponds to the in-
terference of waves emanating from a series of ”ghost”
sources lying along (−z0, z − z0) and (−∞, z − z0). It is
interesting to see that such ”ringing” wave will disappear
in a medium with γ = 2. Given Eq. 18, numerical in-
tegration can then be carried out to obtain the Green’s
function and its convolution with specific source terms.

III. RESPONSE TO VARIOUS OPTICAL

SOURCES

It is of interest to investigate how the atmosphere will
respond to the pulsed or amplitude modulated, contin-
uous optical radiation. In this section, pressure waves
resulting from several methods of optical excitation are
determined and compared with the laboratory-scale pho-
toacoustic waves. In all calculations, the Green’s func-
tion for free space is used. Pressure waves generated with
the presence of the ground surface can be obtained nu-
merically by means of the Dirichlet-to-Robin transform
introduced above.
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FIG. 3. Pressure versus time for a Gaussian point source as-
sociated with the two source terms in Eq. 4. The source
is positioned at (0, 0, 100 m) with ts = 100 s, σ = 1 s, and
E0 = 1 kJ. The observation point is located 100 m below
the source. Other physical parameters are taken as g = 9.8
m/s2, γ = 1.4, β = 0.0034 K−1, c = 340 m/s, Cp = 1005
J/kg/K. It is noted that the first source term gives rise to
an acoustically dominant wave with the waveform resembling
the three-dimensional photoacoustic wave for a pulsed Gaus-
sian point source [10], while the second source term results in
a long-tailed, low-frequency wave that is gravity wave domi-
nant.

A. Gaussian point source

For a point source with a Gaussian time profile po-
sitioned at rs = (0, 0, zs), the heating function can be
written as

H(r, t) =
E0√
πσ

δ(x)δ(y)δ(z − zs)e
−(t−ts)

2/σ2

, (19)

where E0 is the deposited optical energy at the source
position, σ is the characteristic duration of the impul-
sive source, and ts is the time when the source intensity
reaches its maximum. The method of Green’s function
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yields

p(r, t) =
βe−z/(2h)

CP

∫ t

0

∫

G(r, t; r0, t0)e
z0/(2h)×

(

∂3

∂t30
− g

∂2

∂t0∂z0

)

H(r0, t0)dr0dt0

= e−z/(2h)Re [p̂a(r, t) + p̂b(r, t)] , (20)

where

p̂a(r, t) = ezs/(2h)Γ

∫ ∞

0

∫ t

0

G̃ω(r; r0)

ω2 − ω2
1

× ∂3e−(t0−ts)
2/σ2

∂t30
e−iω(t−t0)dt0dω,

p̂b(r, t) = Γ

∫ ∞

0

∫ t

0

g

ω2 − ω2
1

∂

∂z0

[

G̃ω(r; r0)e
z0/(2h)

]

z0=zs

× ∂e−(t0−ts)
2/σ2

∂t0
e−iω(t−t0)dt0dω,

where Γ = βE0/(π
√
πσCP ). The t0 integration yields

a function of ω that is compactly supported along the
real axis which enables a rapidly convergent numerical
integration for the ensuing ω integral.
Pressure waveforms corresponding to p̂a and p̂b are

plotted in Fig. 3. It can be seen that the pressure associ-
ated with the first source term is dominant by an acous-
tic wave, which results from the fact that the third order
time derivative corresponds to a weighting factor ω3 in
the frequency domain, which amplifies the contribution of
high frequency components and weakens the contribution
of the low frequency components of the wave. The second
source term, on the other hand, is related to the grav-
ity wave which features a long tail and a slowly-varying
waveform.

B. Low frequency monochromatic monopole

radiator

Consider a point source at rs = (0, 0, zs) whose inten-
sity varies at an angular frequency ω0; its heating func-
tion can be written as

H(r, t) = P0 [1 + cos (ω0t)] δ(x)δ(y)δ(z − zs), (21)

where P0 is the absorbed energy per unit time. Since only
the time-varying part of the heating function contributes
to the pressure, it is preferable to write the heating func-
tion as

H(r, t) = P0e
−iω0tδ(x)δ(y)δ(z− zs) = e−iω0tH̃s(r) (22)

with the pressure corresponding to the real part of the
solution.
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FIG. 4. (Color online) (a) Pressure distribution on the yz
plane with x = 20 km and (b) the radiation pattern for a low-
frequency monochromatic monopole radiator placed at the
origin. Plot (a) corresponds to the pressure distribution from
a point source with its intensity oscillating at f0 = 2.6 mHz
Other parameters are the same as Fig. 3 except that P0 = 1
MW and t = 100 s. Plot (b) shows that for point sources with
ω0 < ω1 the excited pressure wave will be evanescent within
the cones.

Owing to the assumed linearity of the system, the so-
lution to Eq. 5 can be written as Π = Π̃e−iω0t where Π̃
satisfies Eq. 6 with the source term being

sω0(r) =
iβω0

CP
ez/(2h)

(

ω2
0H̃s + g

∂H̃s

∂z

)

. (23)

Convolution of Eq. 11 with Eq. 23 with the result
multiplied by exp [−z/ (2h)] and its temporal part yields

p =
βe−z/(2h)

4πCP
Re

[

− ie−iω0t

√

ω2
0 − ω2

1

(p̂a + p̂b)

]

, (24)

where

p̂a = ω2
0

∫

eiω0

√
β̂R/c+z0/(2h)

R
H̃sdr0,

p̂b = g

∫

eiω0

√
β̂R/c+z0/(2h)

R

∂H̃s

∂z
dr0.
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The above two integrals can be evaluated analytically as

p̂a(r, zs) = ω2
0P0e

zs/(2h) e
iω0

√
βR(x,y,z;0,0,zs)/c

R(x, y, z; 0, 0, zs)
,

p̂b(r, zs) = − g

ω2
0

∂p̂a(r, zs)

∂zs
.

Equation 24 along with the radiation pattern for a
monochromatic monopole radiator is plotted in Fig. 4.
When the intensity of the source oscillates at a frequency
lower than ω1, as can be seen in Fig. 4(a), there ex-
ists a region separated by the curved line on the left of
which the wave is evanescent. Outside the region the
wave is progressive and its amplitude decreases along the
y direction due to the spherical divergence and decreases
exponentially along the z direction due to the density
stratification. The curved line is part of the intersection
line between the observation plane (xobs = 20 km) and
the evanescent cone surface, and it can be described by
z =

√

−α̂(y2 + x2
obs).

IV. HIGH FREQUENCY APPROXIMATION

The high frequency approximation can be carried out
to separate the acoustic wave component from the gravity
wave. The acoustic wave equation can then be written
as

(

∇2 − 1

c2
∂2

∂t2

)

Π = −βez/(2h)

CP

∂H(r, t)

∂t
, (25)

where Π = exp [z/(2h)] p1. Note that since the wave
equation operator commutes with ∂/∂t, it is advanta-
geous to evaluate first the source term without the time
differentiation obtaining the variable ϕ, and then Π can
be found by Π = −∂ϕ/∂t.

A. cw laser beam directed along the z axis

Suppose a laser beam whose intensity is modulated at
an angular frequency ω0, located at x = y = 0 is directed
along the z axis. The heating function for this source can
be taken as

H(r, t) =
P0

2h
e−iω0tδ(x)δ(y)e−z/h. (26)

The heating function is taken to decay exponentially
along the z axis following the distribution of the hydro-
static density ρ0.
By using the Green’s function for the three dimensional

wave equation in free space GWE(r, t; r0, t0), ϕ is found
as

ϕ =
β

CP

∫ t

0

dt0

∫ ∞

−∞
ez0/(2h)GWE(r, t; r0, t0)H(r0, t0)dr0

= − βP0

8πCPh
e−z/(2h)Λω0(t), (27)

x (m)
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FIG. 5. (Color online) Distribution of the photoacoustic pres-
sure (a) on the xy plane at z = 0 and (b) along the z axis
for a modulated cw laser beam pointing upwardly. The laser
intensity is modulated at f0 = 10 Hz with P0 = 1 kW and
t = 1 s. Other parameters are the same as Fig. 3.

where

Λω0(t) = e−iω0t

∫

√
(ct)2−d2

−
√

(ct)2−d2

eiω0

√
d2+q20/c

√

d2 + q20
e−q0/(2h)dq0,

(28)

and d =
√

x2 + y2. The pressure can then be calculated
via p = − exp [−z/(2h)]∂ϕ/∂t, which gives

p =
βP0e

−z/h

8πCPh
Re

{

− iω0Λω0(t)+

c
(

e−
√

(ct)2−d2/(2h) − e
√

(ct)2−d2/(2h)
)

√

(ct)2 − d2

}

. (29)

As shown in Fig. 5(a), the wave described by Equa-
tion 29 resembles a two-dimensional cylindrical wave. It
is well known that two-dimensional waves exhibit anoma-
lous dispersion, that is, the wave changes its shape
and forms a tail even if the wave speed is frequency-
independent [28]. The geometric explanation for this
behavior is that the wave received at a certain ob-
servation point can be regarded as the summation of
three-dimensional spherical waves coming from succes-
sively more distant point sources along the vertical source
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FIG. 6. (Color online) (a) Distribution of the photoacoustic
pressure on the xy plane and (b) pressure magnitude along
the z axis at t = 10 s for a point source oscillating at f0 = 1
Hz. The point source is placed at (0, 0, 50 km) with P0 = 1
kW, and the observation plane is 0.2ct lower than the source.
Other parameters are the same as given in Fig. 3. Plot (b)
shows that there exist both a local maximum and minimum
for pressure in the case of d = 0.5h, which evolve into a single
saddle point for d = h.

line. Equation 28 describes such a consecutive summa-
tion with the difference being that the spherical wave
is weighted by a factor exp [−q0/(2h)] arising from den-
sity stratification. After the time differentiation, this ex-
tra factor results in a non-oscillatory term appearing in
Eq. 29. It is noted that when the boundary condition
is added, the magnitude of the weighting factor will be
limited by exp [zs/(2h)] and an controlled exponential
growth is expected.

B. High frequency monochromatic monopole

radiator

Consider the same heating function as Eq. 22 but with
ω0 ≫ ω2; its convolution with the Green’s function GWE

yields

ϕ =
β

CP

∫ t

0

∫ ∞

−∞
ez0/(2h)GWE(r, t; r0, t0)H(r0, t0)dr0dt0

= −βP0e
zs/(2h)

4πCP

e−iω0(t−|r−rs|/c)

|r− rs|
. (30)

The pressure is thus obtained as

p = − iω0βP0e
(zs−z)/(2h)

4πCP

e−iω0(t−|r−rs|/c)

|r− rs|
. (31)

Equation 31 shows that the amplitude of the pho-
toacoustic pressure will increase exponentially as it ap-
proaches the ground as a result of density stratification
of the medium. On the other hand, the wave experiences
spherical divergence as it moves away from the source.
The competition between the stratification increase and
spherical divergence results in the appearance of local
pressure maximum and minimum when the observation
line is close to the vertical line where the source lies,

which can be seen in Fig. 6(b)̇. Specifically, the locations
of the local maximum and minimum can be determined
as

zmax = −h+ zs +
√

h2 − d2,

zmin = −h+ zs −
√

h2 − d2.

V. SUMMARY

This paper gives a general differential equation that
associates the generation and propagation of the atmo-
spheric pressure perturbation with an optical driving
force. Compared with the ordinary photoacoustic wave
equation, the optically launched pressure perturbation
in a stratified medium is related not only to the time
derivative of the heating function but also its distribu-
tion along the stratified direction. The Green’s functions
for the governing equation in the frequency and time do-
mains have been derived. Also, the reflection of the pres-
sure wave by the earth ground has been shown to result
in a ”ringing-type” wave in addition to the ”echo” wave
corresponding to the Neumann boundary condition. At-
mospheric response to pulsed and cw modulated radia-
tion has been investigated. In all cases reported, there is
invariably an exponential decrease in pressure upwardly
along the vertical direction in addition to the geometric
divergence. In contrast, the vertical velocity perturba-
tion u1z will grow exponentially as z increases to balance
the decrease in the density ρ0 and ensure that the verti-
cal flux of horizontal momentum remains constant [29].
It is expected that the calculations presented here will
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aid in the understanding of the photoacoustic process in
anisotropic medium, and bridge the fruitful photoacous-
tic applications with various atmospheric wave phenom-
ena.
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