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Abstract

We probe into the dynamics of interacting non-Markovian information systems. The stochastic dynam-

ics of information has two aspects: the self-evolution and interaction. We show that self-evolution of a

non-Markovian information system can be described by a Markov-type master equation with memory de-

pendence. We also reveal that the interaction between systems can be fully embodied into the information

dynamics of the composite information system. To characterize time-irreversibility of the self-evolution and

the interaction, we apply the landscape-flux theory to both stochastic and thermal information dynamics.

The driving force of the nonequilibrium information dynamics can be decomposed into time-reversible (de-

tailed balance preserving landscape part) and -irreversible (detailed balance breaking nonequilibrium flux

part) parts. The time-irreversible part of the driving force fully depicts the time-irreversibility behavior in

the stochastic dynamics. The time-irreversibility of the interactions between systems reflected in nonequi-

librium thermodynamics can be seen in the decomposition of the mutual information rate which corresponds

to decomposition of the driving force. In particularly, the time-irreversible part of mutual information rate

reveals the underlying relationship among the entropy production rates of the information systems. We pro-

pose the finite memory approximation method and demonstrate that the above mentioned features can be

found in a wide class of non-Markovian nonequilibrium information systems. Finally, we derive the lower

and upper bounds for informational entities under concern with clearly meanings.
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I. INTRODUCTION

Studies on the nonequilibrium behaviors of two interacting systems with finite states have

shown their importance in meso- and microscopic information dynamics[1–6]. Usually, the dy-

namics of interacting systems in random environments with time-invariant parameters (tempera-

tures, chemical potentials, etc.) and infinite degrees of freedom is always considered to be non-

Markovian with finite memories[7]. Although the usual analytical and numerical methods for

Markov processes can be also applied for getting the pictures of both stochastic dynamics and

thermodynamics of a composite Markov system, it has been proven to be difficult that we can de-

pict the behaviours of the subsystems with the same ingredient. This is because the two subsystems

may also be random environments with time-variant parameters for each other due to the compa-

rable sizes and state-switching rates of the subsystems. This indicates that none of the subsystems

needs to be Markovian. Because of the existence of the interactions, every subsystem has to adjust

itself to adapt to the time-variant environment (the other subsystem) and then the corresponding

process shows a remarkable path-dependence by summing away the degree of freedom of the other

subsystem, which means it has a memory. The Information of the past states in a memory are al-

ways embedded into the parameters of the dynamics of the system to determine the present state,

where the parameters are therefore time-variant. This memory is also always finite because his-

torical information of the systems is dissipated into the random environments. This always leads

to complicated noncommutative matrices multiplications in mathematical treatments[8]. Due to

the difficulties on dealing with noncommutative matrices multiplications[9], there is no analyti-

cal method to reveal the underlying physical mechanisms which give rise to some peculiar time-

irreversible or nonequilibrium behaviors of such interacting systems.

A recent progress in study of bivariate Markov chains by Zeng and Wang[10] has shown that if

both the subsystems behave as Markov chains the stochastic forces behind the two subsystems can

be divided into two parts. One part can be regarded as a gradient-like force that attracts a subsystem

down to each state and due to potential landscape according to the steady state distribution of the

states. The other part is a curling force that drives the subsystem to rotate among states with steady

probability fluxes. By restricting the subsystems to be Markov systems, this decomposition of the

forces which is the so-called “landscape-flux” decomposition[11–13] is embodied in decomposing

the transition matrices of the subsystems into its time-reversible and -irreversible parts. Although

this model is restrictive, the landscape-flux decomposition sets up a formal theory to deal with
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more general cases where the subsystems and the composite system could be non-Markovian.

In this paper, we probe into stochastic dynamics and thermodynamics of non-Markovian inter-

acting information systems where for no loss of generality we assume that the two information

systems and the composite system have a unified memory length ofm. In stochastic dynamics, we

slice sequences of a system into time-successive memories of length m. By regarding all possible

memories as generalized states, we construct the Markov-type master equation which characterizes

the evolution of distribution of memories. The force behind the information dynamics is consid-

ered to be the transition probability that a memory “jumps” to another time-successive memory.

Based on this, we define the probability flux of a non-Markovian information system which fully

characterizes the time-irreversibility in stochastic dynamics. Geometrically, this probability flux

can be interpreted as an tensor of order m + 1 in a linear tensor space. It carries informational

observables corresponding to the memories and flows from the system to the nonequilibrium en-

vironments. On the other hand, the negative logarithmic distribution of the memories in steady

state is the so-called potential landscape which preserves some informational observables against

the nonequilibrium behaviors i.e., the probability flux. Correspondingly, we divide the driving

force (transition probability) into the time-reversible and -irreversible parts to uncover the under-

lying landscape-flux decomposition of the non-Markovian dynamics. The interactions between

the two systems are fully embodied into the dynamics of the composite system which may also

be non-Markovian with memory. The probability fluxes of the subsystems can be regarded as the

coarse-grained version of that of the composite system. This builds up the bridge between the

time-irreversibility of the subsystems and the composite system.

To characterize the interactions of the information systems, we focus on the Mutual Informa-

tion Rate (MIR)[14, 15] which depicts the information of interaction between subsystems. The

explicit form of MIR can be obtained from the master equations of systems. It is the average

over the detailed interactions with respect to successive memory transitions. Characterization

of time-irreversibility in thermodynamics follows the spirit of landscape-flux decomposition in

stochastic dynamics. The MIR can be divided into time-reversible and -irreversible parts explic-

itly corresponding to the decomposition of stochastic forces. It can be seen from the stochastic

thermodynamics[16] that the time-irreversible part of the MIR which is driven by the probability

flux is the increasing or decreasing rate of the interactions between subsystems in nonequilibrium

environments. On the other hand, the time-irreversible part of the MIR can be viewed as the

preserved correlations between subsystems.
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In thermodynamics, the time-irreversibility or nonequilibriumness of a system is measured by

the Entropy Production Rate (EPR) which can be used to quantify the rate of information dissipa-

tion from a system into the nonequilibrium environments. Influences on the EPR of one subsystem

through the environments and the other subsystem can be seen from the time-irreversible part of

MIR. Then it can be concluded that the time-irreversible part of MIR quantifies the rate of inter-

acting information dissipation of systems under nonequilibrium condition.

The explicit forms of the physical entities in both stochastic dynamics and thermodynamics

presented in this paper allow us to evaluate these entities easily in numerical analysis. With these

explicit expressions for non-Markovian cases, we can even analyze the dynamical behavior of

the interacting information systems with unknown memory lengths, provided the dynamics of the

composite system. This is the so-called “Finite Memory Approximation” (FMA) which is based

on the martingale convergence theorem[17] for stationary and ergodic processes. Theoretically,

FMA can approximate these physical entities of a non-Markov system in thermodynamics with

arbitrary precisions.

In some situations, we may not obtain adequate information of the systems. It then becomes un-

worthy (or even impossible) to evaluate the exact values of the system observables under concern.

Then it would be meaningful to check whether the designed systems have the desired properties

of entities within certain bounds rather than to evaluate the exact values for practical applications.

For this reason, we derive the upper and lower bounds of the EPRs and the time-irreversible MIR

by using the log-sum inequality.

To demonstrate the power of the analysis (explicit expressions and FMA) for non-Markovian

cases in this paper, we construct an example of two interacting non-Markovian information sys-

tems, which involves the information dissipation and (feedback) control. Since this model can

be solved analytically, we clarify the meanings of the above non-Markovian and nonequilibrium

entities by detailed discussions on the dynamical observables of the systems – the optimal code

lengths of the system states.
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II. STOCHASTIC DYNAMICS OF INTERACTING NON-MARKOVIAN SYSTEMS

A. Formulation of Self-Evolution, Time-Irreversibility Characterization, and Landscape-Flux

Decomposition

Consider an open system X coupled to random environments and generates a finite-state,

discrete-time, and irreducible chain with state space X = {1, 2, ..., l}, we say that it has memories

with lengthm because the conditional probability qx(xt|x1, x2, ..., xt−1) = qx(xt|xt−m, xt−m+1, ..., xt−1)

for arbitrary state x ∈ X and t > m. This means the state xt only depends on the sequence

[xt−m, xt−m+1, ..., xt−1] with length up to m. This sequence is the so-called memory of X . Here,

subscripts of states x represent occurrence orders of x in time. Since historical information of an

open system is dissipated into environments with infinite degrees of freedom, we mainly focus on

the dynamics of X to be non-Markovian with finite m (m > 1).

We note that the Markov chains can be be regarded as a special case in this paper while the

memory lengthm equals to 1. Then the corresponding conditional probability qx(xt|xt−m, xt−m+1, ..., xt−1)

reduces to qx(xt|xt−1) which is the so-called transition probability of the Markov chain. The tran-

sition probability qx(xt|xt1) quantifies the probability of the transition between state xt−1 and state

xt representing the underlying stochastic dynamics of a Markov chain. When the system is non-

Markovian i.e., the memory lengthm > 1, the conditional probability qx(xt|xt−m, xt−m+1, ..., xt−1)

quantifies the probability of the transition between a state sequence with the memory length m

χt−1 = [xt−m, xt−m+1, ..., xt−1] and another time-successive state sequence with the memory

length m χt = [xt−m+1, xt−m+2, ..., xt] representing the underlying stochastic non-Markovian

dynamics. Here, “time-successive” means that the two sequences χt−1 and χt intersect with each

other in time such that χt ∩ χt−1 = [xt−m+1, xt−m+2, ..., xt−1] (see Fig.1). Then it is reasonable to

rewrite qx as qx(χt|χt−1) ≡ qx(xt|xt−m, xt−m+1, ..., xt−1). This qx can be regarded as the transition

probability between time-successive sequences of length m of a non-Markovian system, which is

similar to the Markovian case where we can find that χt−1 = xt−1 and χt = xt. Due to the de-

scription of the transition probability qx, the characterization of the dynamics of a non-Markovian

system should be based on the transitions between state sequences with memory length (they are

considered as the memories of the future) rather than transitions between states. A Markov-type

(like) master equation for the underlying non-Markovian evolution of distribution with memories
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χ can come out based on this reasoning. It can be expressed as

Pr(χt) =
∑

χt−1
qx(χt|χt−1)Pr(χt−1), (1)

where the operator [qx(χt|χt−1)] is the stochastic propagator of the X process. The solution of

this equation can be given by Pr(χt) =
∑

χ1,...,χt−1

∏t

i=m+1 qx(χi|χi−1)Pr(χm), provided the ini-

tial distribution Pr(χm). Due to the complexity of eigen space of the propagator [qx(χt|χt−1)]

[18], we simply assume that there exists a unique stationary distribution πx such that π(χt) =
∑

χt−1
qx(χt|χt−1)π(χt−1). When given arbitrary initial distribution, evolution of memories fi-

nally goes to πx exponentially fast. Our conclusions are mainly drawn based on this stationary

distribution – the Steady State.

To characterize time-irreversibility of X in steady state, we dene the steady state probability

flux as the difference of the joint probabilities forward and backward in time,

Jx(χt|χt−1) = πx(χt−1)qx(χt|χt−1)− πx(χ̃t)qx(χ̃t−1|χ̃t), (2)

where χ̃ denotes the time-reversal of χ, for example, χ̃t = [xt, xt−1, ..., xt−m+1] (see Fig.1).

Here, “time-reverse memories” has to be emphasized because the time-reversibility or time-

irreversibility of the system has memory dependence and the memories have to be flipped re-

versely when the process turns back in time. We can prove that X is time-irreversible if and

only if Jx = 0 for all possible time-successive memories χt−1 and χt (see Appendix A). The

geometrical interpretation for Jx that it is a tensor of order (m+ 1) can be found in Appendix B.

It is noteworthy that for a Markovian system where the memory length m = 1, since

χt = χ̃t = xt and χt−1 = χ̃t−1 = xt−1, Jx reduces to the well-known form Jx(xt|xt−1) =

πx(xt−1)qx(xt|xt−1) − πx(xt)qx(xt−1|xt). The detailed balance equation Jx = 0 means that the

Markovian system is in equilibrium steady state where all the system sequences can be flipped

reversely along the time arrow with no costs. When Jx = 0 in a non-Markovian system, i.e.,

πx(χt−1)qx(χt|χt−1) = πx(χ̃t)qx(χ̃t−1|χ̃t), the system is time-symmetrical between χt−1 and the

time-reverse memory χ̃t. for the description of the time-reversibility is equivalent to the equilib-

rium condition of a non-Markovian system, analogous to a Markov system. Consequentially, πx

becomes the equilibrium stationary distribution of the memories in this equilibrium case.

In the framework of landscape-flux theory [11–13], the transition probability works as the driv-

ing force of a Markov system and the stationary distribution π quantifies the landscape of the

potential field in the probabilistic dynamics. The driving force (transition probability) q can be
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decomposed into the landscape gradient and local flux velocity which correspond to the time-

reversible and -irreversible parts of the dynamics respectively. This quantitative picture fully de-

picts the underlying mechanics behind time-irreversible or nonequilibrium behavior of a Markov

system. Here, we show that this quantitative characteristic also works when a non-Markovian

system has (finite length) memory dependence.

We decompose the transition probabilities qx into two parts correspondingly as

qx(χt|χt−1) = Dx(χt|χt−1) +Bx(χt|χt−1), (3)

with

Dx(χt|χt−1) =
1

2πx(χt−1)

(
πx(χt−1)qx(χt|χt−1) + πx(χ̃t)qx(χ̃t−1|χ̃t)

)
,

and

Bx(χt|χt−1) =
1

2πx(χt−1)
Jx(χt|χt−1).

Here Dx satisfies Dx(χt|χt−1) ≥ 0 and
∑

χt
Dx(χt|χt−1) = 1, i.e., Dx(χt|χt−1) can be re-

garded as a series of transition probabilities (or driving force) from memory χt−1 to memory χt.

We can see that
∑

χt−1
πx(χt−1)Dx(χt|χt−1) = πx(χt), which means πx is the steady distribution

corresponding to the transition probabilities Dx. Also, it can be verified that the detailed balance

equation πx(χt−1)Dx(χt|χt−1) = πx(χ̃t)Dx(χ̃t−1|χ̃t) holds for Dx and πx. This means that the X

process behaves in a time-reversible way under the driving forceDx. Thus,Dx can be expressed as

Dx(χt|χt−1) = Dx(χ̃t−1|χ̃t) exp{log πx(χ̃t)−log πx(χt−1)}, where exp{log πx(χ̃t) can be viewed

as the exponential of the difference between the potential − log πx(χt−1) and − log πx(χ̃t) . Then

Dx can be identified as a gradient-like force corresponding to the landscape πx and the detailed

balance (time-reversible) part of the stochastic information dynamics.

Bx is the time-irreversible part (local flux velocity) of the stochastic information dynamics.

This is because Bx is not preserved time-reversal transformation. On the other hand, Bx can be

obtained directly from the probability flux Jx. A non-zeroBx can be viewed as the force that drives

the system to rotate among states with steady probability fluxes and to depart from detailed balance

(or equilibrium state). The detailed balance breaking is indicated by πx(χt−1)Bx(χt|χt−1) =

−πx(χ̃t)Bx(χ̃t−1|χ̃t).
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B. Interaction between Two Non-Markovian Systems

When X is interacting with another system S, we assume that S generates a a finite-state,

discrete-time, and irreducible chain with state space S = {1, 2, ..., n}. We also assume that S has

m-dimensional memories ςt = [st−m+1, st−m+2, ..., st] and transition probabilities qs(ςt|ςt−1) =

qs(st|st−m, st−m+1, ..., st−1) for two successive memories ςt−1 and ςt. The evolution of distribution

of its memories can be expressed by a Markov-type master equation,

Pr(ςt) =
∑

ςt−1

qs(ςt|ςt−1)Pr(ςt−1), (4)

with unique solution of stationary distributionπs which satisfies πs(ςt) =
∑

ςt−1
qs(ςt|ςt−1)πs(ςt−1).

As we will show in Sec.5, the memories (and dynamics) of X and S are actually deter-

mined by the interactions which are fully embodied in the dynamics of the composite system

(X,S). Dynamics of (X,S) can be obtained from the observations of the composite process.

For the simplicity of discussion, we let X , S, and the composite system (X,S) have the same

memory length. And this is also helpful to build up a unified framework for interacting non-

Markovian systems with an explicit and computable structure. Here, we let the m-dimensional

memories and transition probabilities of (X,S) be (χt, ςt) = [(xt−m+1, st−m+1), ..., (xt, st)] and

q(χt, ςt|χt−1, ςt−1) = q(xt, st|(xt−m, st−m), ..., (st−1, st−1)) respectively. Also, a Markov-type

master equation for the composite system (X,S) can be given by

Pr(χt, ςt) =
∑

(χt−1,ςt−1)

q(χt, ςt|χt−1, ςt−1)Pr(χt−1, ςt−1), (5)

with unique solution of stationary distribution π.

For no loss of generality, we let (X,S) be in its steady state with stationary distribution π with

both X and S achieve their own steady states with stationary distributions πx and πs respectively

(jointly stationary assumption). This means the stationary distributions πx and πs corresponds

to master equations (1) and (4) are the marginal distributions of π corresponds to Eq. (5), i.e.,

both πs(ςt) =
∑

χt
π(χt, ςt) and πx(χt) =

∑
ςt
π(χt, ςt) hold in the steady state of the composite

system. Similar to Jx in Eq. (2), we define probability fluxes Js and J for systems S and (X,S)

respectively for characterizing time-irreversibility of corresponding processes. The landscape-flux

decomposition can be also applied for transition probabilities of S and (X,S) respectively in the

form of Eq. (3): qs = Ds +Bs and q = D +B.

Due to jointly stationary assumption, relations between Jx, Js, and J can be shown as

Jx(χt|χt−1) =
∑

ςt−1

∑
ςt
J(χt, ςt|χt−1, ςt−1) and Js(ςt|ςt−1) =

∑
χt−1

∑
χt
J(χt, ςt|χt−1, ςt−1).
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These relations indicate that Jx and Js can be regarded as two coarse-grained versions of J with

respect to subsystems X and S respectively. Also from these relations, we see that if (X,S) is

time-reversible (J = 0) then both X and S are time-reversible (Jx = 0 and Js = 0). Conversely,

if X or S is time-irreversible (Jx 6= 0 or Js 6= 0), then (X,S) must be time-irreversible (J 6= 0).

III. NONEQUILIBRIUM THERMODYNAMICS OF INTERACTING NON-MARKOVIAN SYS-

TEMS

A. Decomposition of Mutual Information Rate into Time-Reversible and -Irreversible Parts and

Interactions between Non-Markovian Systems

As a fundamental concept in information theory, Mutual Information Rate (MIR)[19] depicts

the amount of information that two systems share. Here, we use MIR to quantify interaction

between the non-Markovian systems X and S. The MIR is defined by

I(X,S) = lim
T→∞

1

T

∑

Γx(T ),Γs(T )

Pr(Γx(T ),Γs(T )) log
Pr(Γx(T ),Γs(T ))

Pr(Γx(T ))Pr(Γs(T ))
,

where time sequences Γx(T ) = [x1, x2, ..., xT ], Γs(T ) = [s1, s2, ..., sT ], and (Γx(T ),Γs(T )) are

generated by X , S, and (X,S), respectively. the MIR is always nonnegative and it vanishes if and

only if X and S do not interact with each other efficiently.

Due to the Markov-type master equations (1), (4), and (5), and given the initial distributions

of memories to be stationary distributions, probabilities of Γx(T ), Γs(T ),and (Γx(T ),Γs(T )) can

be given by Pr(Γx(T )) = πx(χm)
∏T−1

i=m qx(χi+1|χi), Pr(Γs(T )) = πs(ςm)
∏T−1

i=m qs(ςi+1|ςi), and

Pr(Γx(T ),Γs(T )) = π(χm, ςm)
∏T−1

i=m q(χi+1, ςi+1|χi, ςi),respectively.

We then have the explicit form of I(X,S) which reads (see the Appendix C),

I(X,S) =
∑

(χt,ςt)

∑

(χt−1,ςt−1)

π(χt−1, ςt−1)q(χt, ςt|χt−1, ςt−1)i(χt, ςt|χt−1, ςt−1), (6)

where

i(χt, ςt|χt−1, ςt−1) = log
q(χt, ςt|χt−1, ςt−1)

qx(χt|χt−1)qs(ςt|ςt−1)
.

Here, i can be considered as the detailed interactions between X and S when a transition

(χt−1, ςt−1) → (χt, ςt) occurs. And I(X,S) is the average of i all over the transitions of memories.
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Corresponding to the landscape-flux decomposition of the driving forces, I(X,S) can be de-

composed into two parts:

I(X,S) = ID(X,S) + IB(X,S), (7)

where

ID(X,S) =
∑

(χt,ςt)

∑

(χt−1,ςt−1)

π(χt−1, ςt−1)D(χt, ςt|χt−1, ςt−1)i(χt, ςt|χt−1, ςt−1),

IB(X,S) =
∑

(χt,ςt)

∑

(χt−1,ςt−1)

π(χt−1, ςt−1)B(χt, ςt|χt−1, ςt−1)i(χt, ςt|χt−1, ςt−1)

=
1

2

∑

(χt,ςt)

∑

(χt−1,ςt−1)

J(χt, ςt|χt−1, ςt−1)i(χt, ςt|χt−1, ςt−1),

are the time-reversible (detailed balance preserving) and -irreversible (detailed balance breaking)

parts of the MIR respectively.

We give the physical interpretations to ID(X,S) and IB(X,S).

We define the stochastic interactions between two possible time sequences of X and S in time

T as

k (Γx(T ),Γs(T )) = log
Pr(Γx(T ),Γs(T ))

Pr(Γx(T ))P (Γs(T ))

=
∑

(χt,ςt)

∑

(χt−1,ςt−1)

N(χt, ςt|χt−1, ςt−1)i(χt, ςt|χt−1, ςt−1),

where N(χt, ςt|χt−1, ςt−1) counts the number of transitions of (χt−1, ςt−1) → (χt, ςt) along the

sequence (Γx(T ),Γs(T )),

and limT→∞
1
T

〈
N(χt, ςt|χt−1, ςt−1)

〉
(Γx(T ),Γs(T ))

= π(χt−1, ςt−1)q(χt, ςt|χt−1, ςt−1). Clearly, the

averaged interactions in sequence space of X and S and in long time limit is the MIR: limT→∞

1
T

〈
k (Γx(T ),Γs(T ))

〉
(Γx(T ),Γs(T ))

= I(X,S). We also define the stochastic interactions between

two time-reversals of the sequences of X and S as

k
(
Γ̃x(T ), Γ̃s(T )

)
= log

Pr(Γ̃x(T ), Γ̃s(T ))

Pr(Γ̃x(T ))Pr(Γ̃s(T ))

=
∑

(χ̃t,ς̃t)

∑

(χ̃t−1,ς̃t−1)

N(χ̃t−1, ς̃t−1|χ̃t, ς̃t)i(χ̃t−1, ς̃t−1|χ̃t, ς̃t),

whereN(χ̃t−1, ς̃t−1|χ̃t, ς̃t) counts the number of time-reversal transitions of (χ̃t, ς̃t) → (χ̃t−1, ς̃t−1)

along (Γ̃x(T ), Γ̃s(T )),

and limT→∞
1
T

〈
N(χ̃t−1, ς̃t−1|χ̃t, ς̃t)

〉
(Γx(T ),Γs(T ))

= limT→∞
1
T

〈
N(χt, ςt|χt−1, ςt−1)

〉
(Γx(T ),Γs(T ))

.
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The change of stochastic interaction between the two subsystems when the time sequences turn

back in time is quantified by the time-irreversible part of the stochastic interactions k
(
Γ̃x(T ), Γ̃s(T )

)

kB (Γx(T ),Γs(T )) =
1

2

(
k(Γx(T ),Γs(T ))− k(Γ̃x(T ), Γ̃s(T ))

)
.

Clearly, kB measures the increasing (kB < 0) or decreasing (kB > 0) interactions between X and

S along the time-reversal (Γ̃x(T ), Γ̃s(T )) compared to that of (Γx(T ),Γs(T )). The time-reversible

part of the k
(
Γ̃x(T ), Γ̃s(T )

)
shows the remaining amount of interactions in both (Γx(T ),Γs(T ))

and (Γ̃x(T ), Γ̃s(T )),

kD(Γx(T ),Γs(T )) =
1

2

(
k(Γx(T ),Γs(T )) + k(Γ̃x(T ), Γ̃s(T ))

)
.

Thus, we have

I(X,S) = lim
T→∞

1

T

〈
k (Γx(T ),Γs(T ))

〉
Γz(T )

= lim
T→∞

1

T

〈
kD(Γx(T ),Γs(T ))

〉
Γz(T )

+ lim
T→∞

1

T

〈
kB(Γx(T ),Γs(T ))

〉
Γz(T )

= ID(X,S) + IB(X,S),

where ID(X,S) = limT→∞
1
T

〈
kD(Γx(T ),Γs(T ))

〉
Γz(T )

,

and IB(X,S) = limT→∞
1
T

〈
kB(Γx(T ),Γs(T ))

〉
Γz(T )

with explicit forms being shown in Eq. (7).

Intuitively, if the two subsystems do not interact with each other efficiently (I(X,S) = 0) then

we must have both IB(X,S) = 0 and ID(X,S) = 0. However, IB(X,S) = 0 does not imply

that I(X,S) = 0, because it related to not only the interactions but also time-irreversibility of the

(composite and sub) systems.

B. Nonequilibrium Thermodynamics of Interacting Non-Markovian Systems: Relations be-

tween Entropy Production Rates and Mutual Information Rate

It is interesting to study the nonequilibrium thermodynamics of two interacting non-Markovian

systems. To do so, we explore the relation between the the mutual information rate and the entropy

production rates of interacting systems. Entropy Production Rate (EPR) [20] of an information

system characterizes the degree of the time-irreversible thermal information flows from the system

to the nonequilibrium environments, or say, the rate of thermal information dissipation of the

system under nonequilibrium conditions. It is defined by

R = lim
T→∞

1

T

∑

Γ(T )

Pr(Γ(T )) log
Pr(Γ(T ))

Pr(Γ̃(T ))
≥ 0,
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for a stochastic system in steady state. The system is time-reversible if and only if R = 0 or the

system process is time-irreversible, or we always have R > 0. Needless to say, the nonnegativity

of the EPR is not only a mathematical result but also a key element of the second law of ther-

modynamics for open information systems: information (carried by energy and matter) is always

dissipated irreversibly from the system with small degree of freedom to the environments with

large degrees of freedom.

By noting master equations (1), (4), and (5), we realize that systems X , S, and (X,S) should

have Markov-type EPRs[21] with explicit form taking into account of the memory dependence

although they may be non-Markovian systems. The corresponding EPRs can be given by (see

Appendix C)

R(X) =
1

2

∑

χt

∑

χt−1

Jx(χt|χt−1) log
qx(χt|χt−1)

qx(χ̃t−1|χ̃t)
,

R(S) =
1

2

∑

ςt

∑

ςt−1

Js(ςt|ςt−1) log
qs(ςt|ςt−1)

qs(ς̃t−1|ς̃t)
, (8)

R(X,S) =
1

2

∑

(χt,ςt)

∑

(χt−1,ςt−1)

J(χt, ςt|χt−1, ςt−1) log
q(χt, ςt|χt−1, ςt−1)

q(χ̃t−1, ς̃t−1|χ̃t, ς̃t)
.

Due to interactions between X and S, the relation between R(X), R(S), and R(X,S) can be

revealed naturally by the time-irreversible part of MIR, IB(X,S), which gives

IB(X,S) =
1

2

∑

(χt,ςt)

∑

(χt−1,ςt−1)

J(χt, ςt|χt−1, ςt−1)i(χt, ςt|χt−1, ςt−1)

=
1

4

∑

(χt,ςt)

∑

(χt−1,ςt−1)

J(χt, ςt|χt−1, ςt−1){i(χt, ςt|χt−1, ςt−1)− i(χ̃t−1, ς̃t−1|χ̃t, ς̃t)}

=
1

2
(R(X,S)−R(X)− R(S)) . (9)

This equality provides another interpretation of the time-irreversible MIR. To see this, we focus

on the differences

R(X|S) ≡ R(X,S)−R(S), R(S|X) ≡ R(X,S)− R(X). (10)

These differences can be viewed as the EPR (information dissipation) of one subsystem controlled

by (or conditioning on) the time-irreversible behaviour of the other subsystem. This is because, as

12



shown in the definition of the EPR,

R(X|S) = R(X,S)− R(S)

= lim
T→∞

1

T

∑

Γx(T ),Γs(T )

Pr(Γx(T ),Γs(T ))

{
log

Pr(Γx(T ),Γs(T ))

Pr(Γ̃x(T ), Γ̃s(T ))
− log

Pr(Γs(T ))

Pr(Γ̃s(T ))

}

= lim
T→∞

1

T

∑

Γs(T )

Pr(Γs(T ))
∑

Γx(T )

Pr(Γx(T )|Γs(T )) log
Pr(Γx(T )|Γs(T ))

Pr(Γ̃x(T )|Γ̃s(T ))
,

where (Γx,Γs) Γx and Γs denote the possible time sequences of the composite system and subsys-

tems respectively; Γ̃ denotes the corresponding time-reverse time sequence. Here the conditional

probabilities Pr(Γx(T )|Γs(T )) = Pr(Γx(T ),Γs(T ))
Pr(Γs(T ))

and Pr(Γ̃x(T )|Γ̃s(T )) = Pr(Γ̃x(T ),Γ̃s(T ))

Pr(Γ̃s(T ))
reveal the

time-forward and backward behaviours of X which are controlled by the the time-forward and

backward behaviours of S correspondingly. Similarly, we can derive the expression of R(S|X) as

follows

R(S|X) = R(X,S)− R(X)

= lim
T→∞

1

T

∑

Γx(T )

Pr(Γx(T ))
∑

Γs(T )

Pr(Γs(T )|Γx(T )) log
Pr(Γs(T )|Γx(T ))

Pr(Γ̃s(T )|Γ̃x(T ))
.

Then the equality with respect to the time-irreversible MIR IB(X,S) and the EPRs in Eq. (9)

can be rearranged as follows,

R(X|S) = 2IB(X,S) +R(X), R(S|X) = 2IB(X,S) +R(S). (11)

Thus, the information dissipation of one subsystem (R(X|S) or R(S|X)) controlled by the time-

irreversible behaviour of the other subsystem (or a time-variant environment) is constituted by the

“self” information dissipation of the subsystem (R(X) or R(S)) and the information dissipation

associating with the interaction, IB(X,S). Here, “information dissipation associating with the

interaction” does not mean that IB(X,S) has to be nonnegative. In fact, if R(X|S) > R(X) or

R(S|X) > R(S), then we obtain a positive IB(X,S) which means the information of interac-

tion is dissipated from the systems into the environments time-irreversibly. Otherwise, a negative

IB(X,S) (R(X|S) < R(X) or R(S|X) < R(S)) means that the information of interaction is dis-

sipated from the the environments into the systems to maintain the self information dissipation of

the systems. This fully provides an understanding of the intrinsic property of the time-irreversible

MIR.
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IV. NON-MARKOV SYSTEMS WITH UNKNOWN MEMORY LENGTHS

A. Finite Memory Approximation

Quite often, we do not always know the memory lengths of most non-Markovian systems even

they are elaborately constructed. Besides, there are two disadvantages on analyzing systems with

unknown memory lengths: 1, The two interacting systems may have different memory lengths;

2, anyone of the subsystems may have a really large memory length. However, by using the

method of Finite Memory Approximation (FMA), we may easily include more general class of

non-Markovian cases into the framework of landscape-flux theory for information dynamics.

Non-Markovian system often emerges when it is interacting with another system with compa-

rable size and state-switching rate. While the interaction is identified, memories of both interacting

systems are determined. This interaction can be fully embodied in the dynamics of composite sys-

tem. This means we can obtain complete dynamics of non-Makrov subsystems from composite

system. Thus, we consider a composite system Z = (X,S) with Markov-type master equation

shown in Eq. (5) and the memory lengths of the subsystems being unknown. Here, we use mz

to denote the exact memory length of Z = (X,S) in Eq. (5). From FMA, by choosing a unified

memory length for the two subsystems we can approximate the processes of the subsystems in

both stochastic dynamics and thermodynamics with arbitrary precision. This is the direct result of

the martingale convergence theorem [17].

We assume that the subsystems X and S satisfy the jointly stationary assumption. We then let

X
(m) and S

(m) be the approximating systems ofX and S respectively. Here m ≥ mz is the unified

memory length of both X and S. Then the transition probabilities of successive memories of X(m)

and S
(m) can be evaluated by

qx(χ
(m)
t |χ

(m)
t−1) =

∑
ς
(m)
t

Pr(χ
(m)
t , ς

(m)
t )

∑
ς
(m+1)
t

Pr(χ
(m+1)
t , ς

(m+1)
t )

,

qs(ς
(m)
t |ς

(m)
t−1 ) =

∑
χ
(m)
t

Pr(χ
(m)
t , ς

(m)
t )

∑
χ
(m+1)
t

Pr(χ
(m+1)
t , ς

(m+1)
t )

,

where χ
(m)
t = [xt−m+1, ..., xt] is a sequence with superscript (m) denoting its length and subscript

denoting its end-time. Similar settings are given to the sequences (or memories) appearing in this

section. The joint probabilities Pr(χ
(m)
t , ς

(m)
t ) and Pr(χ

(m+1)
t , ς

(m+1)
t ) are given by dynamics of Z
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in steady state,

Pr(χ
(m)
t , ς

(m)
t ) = π(χ

(mz)
t−m+mz

, ς
(mz)
t−m+mz

)

t∏

i=t−m+mz+1

q(χ
(mz)
i , ς

(mz)
i |χ

(mz)
i−1 , ς

(mz)
i−1 ),

Pr(χ
(m+1)
t , ς

(m+1)
t ) = π(χ

(mz)
t−m+mz−1, ς

(mz)
t−m+mz−1)

t∏

i=t−m+mz

q(χ
(mz)
i , ς

(mz)
i |χ

(mz)
i−1 , ς

(mz)
i−1 ).

Then, we can formulate Markov-type master equations for X(m) and S
(m) respectively and have

Pr(χ
(m)
t ) =

∑

χ
(m)
t−1

qx(χ
(m)
t |χ

(m)
t−1)Pr(χ

(m)
t−1),

Pr(ς
(m)
t ) =

∑

ς
(m)
t−1

qs(ς
(m)
t |ς

(m)
t−1 )Pr(ς

(m)
t−1 ).

Thus, X(m) and S
(m) form stationary and ergodic processes when initial distributions are πx(χ

(m)
t ) =

∑
ς
(m)
t

Pr(χ
(m)
t , ς

(m)
t ) and πs(ς

(m)
t ) =

∑
χ
(m)
t

Pr(χ
(m)
t , ς

(m)
t ) respectively. For calculations of FMA,

we need to increase the memory length of Z from mz to m, and construct a pseudo dynamics of

Z in SS,

Pr(χ
(m)
t , ς

(m)
t ) =

∑

(χ
(m)
t−1,ς

(m)
t−1 )

q(χ
(m)
t , ς

(m)
t |χ

(m)
t−1, ς

(m)
t−1 )Pr(χ

(m)
t−1, ς

(m)
t−1 ),

where q(χ
(m)
t , ς

(m)
t |χ

(m)
t−1, ς

(m)
t−1 ) = q(χ

(mz)
t , ς

(mz)
t |χ

(mz)
t−1 , ς

(mz)
t−1 ).

Now we have a complete construction of dynamics with memory length m similar to Eq. (1),

(4), and (5). We then evaluate the probability fluxes Jx, Js, and J for the approximating sys-

tems according to Eq. (2). Landscape-flux decomposition can be made for the driving forces of

the approximating systems according to Eq. (3) with the steady state distributions quantifying

the information landscapes while the steady state probability fluxes measuring the degree of the

nonequilibriumness. In thermodynamics, entities become functions of m, they are denoted by

I(X(m),S(m)) (the MIR), IB(X
(m),S(m)) (the time-irreversible part of MIR), R(X(m)) (the EPR

of X), and R(S(m)) (the EPR of S), etc. These entities can be evaluated by using Eq. (6),(7),and

(8)respectively.

If X and S have different but finite memory lengths mx and ms respectively, we let the unified
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memory length m ≥ max{mx, ms, mz} and have




qx(χ
(m)
t |χ

(m)
t−1) = qx(xt|xt−m, ..., xt−1) = qx(xt|xt−mx

, ..., xt−1) = qx(χ
(mx)
t |χ

(mx)
t−1 ),

qs(ς
(m)
t |ς

(m)
t−1 ) = qs(st|st−m, ..., st−1) = qs(st|st−ms

, ..., st−1) = qs(ς
(ms)
t |ς

(ms)
t−1 ),

q(χ
(m)
t , ς

(m)
t |χ

(m)
t−1, ς

(m)
t−1 ) = q(χ

(mz)
t , ς

(mz)
t |χ

(mz)
t−1 , ς

(mz)
t−1 ),

∑
xt−m,...,xt−mx−1

Jx(χ
(m)
t |χ

(m)
t−1) = Jx(χ

(mx)
t |χ

(mx)
t−1 ),

∑
st−m,...,st−ms−1

Js(ς
(m)
t |ς

(m)
t−1 ) = Js(ς

(ms)
t |ς

(ms)
t−1 ),

∑
(xt−m,st−m),...,(xt−mx−1,st−ms−1)

J(χ
(m)
t , ς

(m)
t |χ

(m)
t−1, ς

(m)
t−1 ) = J(χ

(mz)
t , ς

(mz)
t |χ

(mz)
t−1 , ς

(mz)
t−1 ).

Hence, for m ≥ max{mx, ms, mz} we have




I(X(m),S(m)) = I(X,S),

R(X(m)) = R(X),

R(S(m)) = R(S),

IB(X
(m),S(m)) = IB(X,S).

If X and S have unknown and large (and also different) memory lengths, according to the martin-

gale convergence theorem as the memory length m→ ∞ the conditional entities




qx(xt|xt−m, ..., xt−1) → qx(xt|x−∞, ..., xt−1),

qs(st|st−m, ..., st−1) → qs(st|s−∞, ..., st−1),

I(X(m),S(m)) → I(X,S),

R(X(m)) → R(X),

R(S(m)) → R(S),

IB(X
(m),S(m)) → IB(X,S),

almost surely. This means we can use the FMA method to evaluate these entities with arbitrary

precision.

For numerical calculations, for example, to evaluate R(X) and IB(X,S) we can use the fol-

lowing sequences

R(X(mz)), R(X(mz+1)), R(X(mz+2))...,

and

IB(X
(mz),S(mz)), IB(X

(mz+1),S(mz+1)), IB(X
(mz+2),S(mz+2))...
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The numerical calculations will continue until




∣∣R(X(M1+1))−R(X(M1))

R(X(M1))

∣∣ ≤ δ1,
∣∣ IB(X(M2+1),S(M2+1))−IB(X(M2),S(M2))

IB(X(M2),S(M2))

∣∣ ≤ δ2,

for given small enough thresholds of the relative errors δ1 and δ2 at M1 and M2, respectively. Then

we take R(X(M1)) and IB(X
(M2),S(M2)) as the true values of R(X) and IB(X,S) respectively.

Here M1 needs not to be equal to M2, because M1 approximates to the true value of mx and M2

measures the true value of m = max{mx, ms, mz}. Similar algorithm can be designed for other

entities.

V. BOUNDS OF NONEQUILIBRIUM ENTITIES

Although the FMA method provides the chance that we can obtain observables of a non-

Markovian system with arbitrary precision, we should note that we may not obtain adequate infor-

mation of the stochastic dynamics of the (composite or sub) systems in finite time especially when

only the dynamics of the composite system could be observed. On the other hand, when the state

spaces or the memory lengths are quite large, the complexity of calculations of the FMA method

increases intolerably. It then becomes unworthy (or even impossible) to evaluate the exact values

of the system observables under concern. In these situations, it would be meaningful to check

whether the designed systems have the desired properties of entities within certain bounds rather

than to evaluate the exact values for practical applications. Here, the desired properties refer to the

characterization of system information dissipation – the EPRs, and characterization of interaction

information dissipation– the time-irreversible MIR. These bounds involve the log-sum inequality

which is useful to derive the bounds of entities related to the Kulback−Leibler divergence (See

Appendix D).

A. Upper Bounds of Entropy Production Rates of Subsystems and Lower Bound of Time-

Irreversible Mutual Information Rate

For the EPRs of the subsystems, R(X) and R(S) in Eq. (8), the log-sum inequality suggests

that

R(X,S) ≥ R(X), R(X,S) ≥ R(S), (12)
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where R(X,S) = R(X) holds for that G = π(χt−1,ςt−1)q(χt,ςt|χt−1,ςt−1)
π(χ̃t,ς̃t)q(χ̃t−1,ς̃t−1|χ̃t,σ̃t)

is not a function of ςt and

ςt−1; and R(X,S) = R(S) holds for that G is not a function of χt and χt−1. Here χ and ς refer

to the memories of X and S respectively. π and q refer to the stationary distribution and transition

probability of the composite system respectively. The equalities mean that the information dissi-

pation of the composite system only depends on the information dissipation of one subsystem. For

example, if X is independent of S and R(S) = 0, then we have R(X,S) = R(X).

The inequalities of EPRs follow the intuition that the information dissipation of any subsystems

cannot exceed that of the composite system. They also imply that the EPRs under control,R(X|S)

and R(S|X) are always nonnegative,

R(X|S) = R(Z)− R(S) ≥ 0, R(S|X) = R(Z)−R(X) ≥ 0. (13)

By combing these inequalities with Eq. (9), we have a lower bound of time-irreversible MIR

IB(X,S) which reads,

IB(X,S) ≥
1

2
max{−R(X),−R(S)}. (14)

This provides a vital constraint on the information dissipation of the interaction. This inequality

makes sure that the information dissipation of any subsystems cannot exceed the total information

dissipation R(X,S).

B. Lower Bounds of Entropy Production Rates and Upper Bound of Time-Irreversible Mutual

Information Rate

The FMA allows us to obtain series of the lower bounds of EPRs and upper bounds of the

time-irreversible MIR easily from the approximating systems.

If, for example, we use the FMA to approximate a non-Markovian system X in steady state

via two memory lengths m1 and m2 (m1 ≥ m2) and the corresponding approximating systems are

denoted by X
(m1) and X

(m2), then the log-sum inequality suggests an inequality relation between

the EPRs of the two approximations R(X(m1)) ≥ R(X(m2)) (See Appendix D). Generally, this

relation can be extended to

R(X) ≥ ... ≥ R(X(m1)) ≥ R(X(m2)) ≥ ... ≥ R(X(1)) ≥ 0, (15)

where 1 ≤ ... ≤ m2 ≤ m1 ≤ ... ≤ m with m being the exact memory length of X . Here,

R(X(1)) refers to the Markovian approximation of X . This inequality provides the series of lower
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bounds of the EPR of a non-Markovian system. These lower bounds indicate that decreasing

memory length causes decreasing rate of information dissipation. In other words, the memories

with certain length can be viewed as the “time” environments of a non-Markovian information

system. Larger memory length implies an environment with larger degree of freedom and larger

information dissipation.

Although 0 is the natural lower bound of the EPR, we should note that a non-zero lower bound

R(X(M)) > 0 (M ≤ m) can be more informative than the trivial 0. To say the least, if we are only

interested in the time-irreversibility of X , then we can choose a smaller memory length, such as

M = 1 < m, and confirm that R(X(M)) > 0. Then X is time-irreversible.

By noting Eq. (9) and (10), provided the exact memory length of the composite system mz and

the corresponding EPR R(Z), we have the upper bounds of IB(X,S) as

IB(X,S) ≤ ... ≤
1

2
(R(Z)− R(X(m2))− R(S(m2))) ≤

1

2
(R(Z)− R(X(m1))− R(S(m1))) ≤ ... ≤

1

2
(R(Z)− R(X(1))−R(S(1))) ≤

1

2
R(Z). (16)

These inequalities imply that increasing memory lengths of subsystems (with the EPR of the

composite system being fixed) decreases the time-irreversible MIR IB . Since self information

dissipation of subsystems decreases with decreasing memory, the dissipation of the interactions

(time-irreversible MIR) increases. Moreover, smaller memory length (for instance, the Markovian

approximation) can be quite effective to bound the time-irreversible MIR.

We should note that inequalities in Eq. (12,13,14) provide the general constraints on the EPRs

of the subsystems and time-irreversible MIR.

VI. AN EXAMPLE OF TWO INTERACTING INFORMATION SYSTEMS

To clarify the meaning of the information-theoretical formulations in above, we construct a

comprehensive example of two interacting information systems, which involves the information

dissipation and (feedback) control. Related examples can be found in [10, 23, 24].
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A. Description of Stochastic Dynamics, Analytical Solutions of Transition Probabilities by Using

Finite Memory Length Method

In this example, two finite-state information systems denoted byX and S respectively are inter-

acting with each other. Their states are labelled by X = {x = 1, 2, ..., l} and S = {s = 1, 2, ..., n}

respectively. both systems are driven by several random information environments individually so

that their behaviours become randomized. The interaction between them is considered to be purely

informational without physical contact. Their stochastic dynamics can be described as follows (see

FIG.2):

The state of anyone of the systems at t is controlled by the state of the other system at t − 1.

Since the systems are driven by random environments, then the controls become randomized which

are characterized by the conditional probabilities ǫ(xt|st−1) and d(st|xt−1). Here, ǫ indicates the

probability of state of X (xt) controlled by state of S (st−1). d represents the probability of

state of S (st) controlled by X (xt−1). These conditional probabilities satisfy {ǫ(x|s) : ǫ(x|s) ≥

0,
∑

x∈X ǫ(x|s) = 1} and {d(s|x) : d(s|x) ≥ 0,
∑

s∈S d(s|x) = 1}. The controls from the

two systems are considered to be independent of each other at t. This means for the compos-

ite system Z = (X,S), the transition probability from state at t − 1 to state at t satisfies that

q(xt, st|xt−1, st−1) = ǫ(xt|st−1)d(st|xt−1). Since the state of Z at t only depends on the state at

t− 1, then Z follows a Markovian dynamics.

Due to the description of the stochastic dynamics of S and X , the probabilistic master equation

with respect to Z arises from the transition probabilities which reads

Pr(xt, st) =
∑

xt−1,st−1

q(xt, st|xt−1, st−1)Pr(xt−1, st−1).

We assume that there is a unique stationary distribution of z denoted by π. We also assume that

the X and S satisfy the joint stationary assumption. It can be seen from the description of the

dynamics of X and S that the system states xt and st are independent of each other. Thus, it

is clear that the stationary marginal probabilities πx(x) =
∑

s π(x, s) and πs(s) =
∑

x π(x, s)

satisfy π(x, s) = πx(x)πs(s) (A proof of this can be found in Appendix E). This indicates that the

time-sliced interaction (mutual information) I(X,S) =
〈
log π(x,s)

πx(x)πs(s)

〉
= 0. However, this does

not mean the systems are independent of each other, since xt and st are controlled by st−1 and

xt−1 respectively.

In spite of specific conditional probabilities ǫ and d for Markovian cases, X and S are both non-
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Markovian with unknown memory lengths in general. However, by applying the FMA method

analytically, we have, when the approximating memory length m ≥ 2 (see Appendix E),

qx(χ
(m)
t |χ

(m)
t−1) = qx(χ

(2)
t |χ

(2)
t−1) =

∑

st−1

d(st−1|xt−2)ǫ(xt|st−1) = qx(xt|xt−2),

qs(ς
(m)
t |ς

(m)
t−1 ) = qs(ς

(2)
t |ς

(2)
t−1) =

∑

xt−1

ǫ(xt−1|st−2)d(st|xt−1) = qs(st|st−2).

These transition probabilities indicate that both X and S have memory length of 2. However, they

can still be regarded as “sampled Markovian” systems since qx and qs have no correlation with

the states at t − 1. For example, xt−2 exerts influence on xt via st−1 but not via xt−1 directly.

Thus they can be rewritten as qx(xt|xt−2) and qs(st|st−2) respectively. But neither system can

be taken as Markovian systems, because the knowledge of states at t − 2 and t − 1 must be

known for generating the processes of both systems. The stationary distribution of X and S are

recognized as πx(x) and πs(s), because the equalities πx(xt) =
∑

xt−2
qx(xt|xt−2)πx(xt−2) and

πs(st) =
∑

st−2
qs(st|st−2)πs(st−2) both hold in steady state.

It is noteworthy that the transition probabilities qx and qs can be written into the sums of the

series of transition probabilities via different “channels” respectively,

qx(xt|xt−2) =
∑

s

qx(xt, s|xt−2), qs(st|st−2) =
∑

x

qs(st, x|st−2),

where qx(xt, s|xt−2) = d(s|xt−2)ǫ(xt|s) (s = st−1 for short); qs(st, x|st−2) = ǫ(x|st−2)d(st|x)

(x = xt−1 for short); the notation forms of qx(xt, s|xt−2) and qs(st, x|st−2) are given by the chain

rule of probabilities. By the description of dynamics the systems, s is determined by xt−2 via

d(s|xt−2) then xt is determined by s via ǫ(xt−2|s). Thus qx(xt, s|xt−2) is the transition probability

that X jumps from xt−2 to xt trough the channel s. Analogously, qs(st, x|st−2) is the transition

probability that S jumps from st−2 to st trough the channel x. These two series of transition prob-

abilities would be helpful for clarifying the meaning of the time-irreversible MIR in this model.

In this model, − log πx(x) and − log πs(s) can be taken as the potential landscapes of the sub-

system X and S respectively. These two landscapes measure the self-information of the systems

states in bits which is independent of the time and the other system. The information fluxes of X

and S can be taken as

Jx(xt|xt−2) = πx(xt−2)qx(xt|xt−2)− πx(xt)qx(xt−2|xt),

Js(st|st−2) = πs(st−2)qs(st|st−2)− πs(st)qs(st−2|st).
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B. Dynamical Observables of Stochastic Dynamics

Since the stochastic dynamics of the systems in this case is identified in above, we can evaluate

the nonequilibrium entities: the EPRs R(Z), R(X), and R(S) by using Eq. (8); and the time-

irreversible MIR IB(X,S) by using Eq. (7) analytically. In this model, we can give the nonequi-

librium entities an intuitive picture by connecting them to the dynamical observables. According

to the argument by Shannon[14], the systems states can be encoded into series of codewords (se-

quences of 0 and 1) by using the optimal coding methods such as Shannon−Fano coding[15] or

Huffman coding[26]. The (optimal) code lengths equal to the negative logarithmic (conditional)

probabilities corresponding to the system dynamics. These lengths measure the bits of information

that the events with respect to system states (such as transitions) are observed by outer observers.

These lengths can be observed stochastically and can be summed up or averaged along with the

time sequences. Thus they can be taken as the dynamical observables of systems. These dynamical

observables (optimal lengths of codewords) can be classified into two groups: one group associ-

ating with the controls between systems and one group associating with the transitions between

system states.

1. The conditional probabilities d and ǫ contain the detailed information of the (feedback) con-

trols between systems. According to the argument by Shannon, we can assign a codeword

for every state of X with respect to a fixed control condition s and assign a codeword for

every state of S with respect to a fixed control condition x. An example can be found

in TABLE I. The optimal code lengths lx and ls are equal to the bits of information of

the (feedback) controls between systems (negative logarithmic control probabilities) corre-

spondingly, which reads,

lx(xt|st−1) ≡ − log ǫ(xt|st−1),

ls(st|xt−1) ≡ − log d(st|xt−1),

where we use the convention log = log2. The optimal code lengths quantify the detailed

control information with bits. They can be taken as the dynamical observables associating

with the controls.

2. The transition probabilities with respect to the composite and sub- systems, q, qx, and qs,

contain the detailed information of the detailed system dynamics. We can assign a codeword
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for every state transition corresponding to the transition probabilities. The optimal code

lengths are equal to the bits of information of the transitions between system states (negative

logarithmic transition probabilities) correspondingly, which reads,

hz(xt, st|xt−1, st−1) ≡ − log q(xt, st|xt−1, st−1),

hx(xt|xt−2) ≡ − log qx(xt|xt−2),

hs(st|st−2) ≡ − log qs(st|st−2),

h(s)x (xt|xt−2) ≡ − log qx(xt, s|xt−2),

h(x)s (st|st−2) ≡ − log qs(st, x|st−2),

where hz, hx, and hs correspond to transition probabilities of Z, X , and S respectively;

h
(s)
x and h

(x)
s correspond to the transition probabilities of X and S via detailed channels

respectively. These optimal code lengths quantify the transition information with respect

to Z, X , and S respectively with bits. They can be taken as the dynamical observables

associating with the system transitions.

According to the expressions of the transition probabilities q, qx, and qs, we note that the

observables of the transitions (h) can be constructed from the observables of the controls (l). This

is due to the interactions between the subsystems. More explicitly, we have

hz(xt, st|xt−1, st−1) = lx(xt|st−1) + ls(st|xt−1),

hx(xt|xt−2) = log
∑

s

2h
(s)
x (xt|xt−2) = log

∑

s

2lx(xt|s)+ls(s|xt−2),

hs(st|st−2) = log
∑

x

2h
(x)
s (st|st−2) = log

∑

x

2ls(st|x)+lx(x|st−2),

h(s)x (xt|xt−2) = lx(xt|s) + ls(s|xt−2),

h(x)s (st|st−2) = ls(st|x) + lx(x|st−2).

Thus, hz contains the detailed information of interaction that S controls X (lx(xt|st−1)) and X

controls S (ls(st|xt−1)) at a transition from t − 1 to t. h
(s)
x provides the detailed information that

X controls S (ls(s|xt−2)) at t− 2 and S feeds back to X at t (lx(xt|s)). h
(x)
s measures the detailed

information that S controls X (lx(x|st−2)) at t − 2 and X feeds back to S at t (ls(st|x)). hx

and hs average the detailed information carried by h
(s)
x and h

(x)
s respectively by taking all possible

channels into account. Then it would be appropriate to measure the information that one subsystem
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gains at specified state when it controls a state transition of the other subsystem from t− 2 to t by

using the differences,

h(s)x (xt|xt−2)− hx(xt|xt−2) = − log
qx(xt, s|xt−2)

qx(xt|xt−2)
= − log qx(s|xt−2, xt),

h(x)s (st|st−2)− hs(st|st−2) = − log
qs(st, x|st−2)

qs(st|st−2)
= − log qs(x|st−2, st).

Here, the qx(s|xt−2, xt) =
qx(xt,s|xt−2)
qx(xt|xt−2)

and qs(x|st−2, st) =
qs(st,x|st−2)
qs(st|st−2)

represent the probabilities

that the specified states s and x conditioning on the transitions xt−2 → xt and st−2 → st re-

spectively. This can be seen directly from the chain rule of probabilities. Then h
(s)
x (xt|xt−2) −

hx(xt|xt−2) measures the information gain of S at s when it controls the transition xt−2 → xt;

h
(x)
s (st|st−2)− hs(st|st−2) measures the information gain of X at x when it controls the transition

st−2 → st.

C. Associate Dynamical Observables with Entropy Production Rates and Time-Irreversible Mu-

tual Information Rate

By noting the meaning of the dynamical observables of transitions, we use the differences

between these observables of backward and forward transitions to define the net bits of information

gain or loss of the systems at every transition respectively as follows

dhz(xt, st|xt−1, st−1) ≡ hz(xt−1, st−1|xt, st)− hz(xt, st|xt−1, st−1)

= log
q(xt, st|xt−1, st−1)

q(xt−1, st−1|xt, st)
,

dhx(xt|xt−2) ≡ hx(xt−2|xt)− hx(xt|xt−2) = log
qx(xt|xt−2)

qx(xt−2|xt)
,

dhs(st|st−2) ≡ hs(st−2|st)− hs(st|st−2) = log
qs(st|st−2)

qs(st−2|st)
.

Here the corresponding system (X , S, or Z) loses net bits of information (dh > 0) or gains net

bits of information (dh < 0) via the interactions with the environments at transition from t − m

to t (m is exact memory length of the system). By taking the averages of dh over all the possible

transitions of the corresponding systems, we have

〈
dhz
〉
= R(Z) ≥ 0,

〈
dhx
〉
= R(X) ≥ 0, and

〈
dhs
〉
= R(S) ≥ 0.
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This means the information of the system under concern is always dissipated into the environments

irreversibly with the rate of bits measured by the EPR.

We should emphasize that the meanings of the EPRs of interacting (non-Markovian) infor-

mation systems are quite different from those of the systems which are driven by time-invariant

environments, because one system always behaves as the time-variant environment of the other

system. This can be seen from the relations among the EPRs R(Z), R(X), and R(S) directly in

this model. The observables with respect to transitions of subsystems via channels h
(s)
x and h

(x)
s

build the bridge among the EPRs. We use the differences between these observables of backward

and forward transitions via the same channel to define the net bits of information gain or loss of

the systems at every transition as follows

dh(s)x (xt|xt−2) ≡ h(s)x (xt−2|xt)− h(s)x (xt|xt−2) = log
qx(xt, s|xt−2)

qx(xt−2, s|xt)
,

dh(x)s (st|st−2) ≡ h(x)s (st−2|st)− h(x)s (st|st−2) = log
qs(st, x|st−2)

qs(st−2, x|st)
.

dh
(s)
x is recognized as the net bits of information gain (dh

(s)
x < 0) or loss (dh

(s)
x > 0) of system X

at transitions xt−2 → xt via the “channel” s; and dh
(x)
s is recognized as the net bits of information

gain or loss of system S at transitions st−2 → st via the “channel” x. By averaging dh
(s)
x and

dh
(x)
s over all the possible transitions of the corresponding channels, we have the sub-EPRs of

subsystems corresponding to channels,

R(s)(X) ≡
〈
dh(s)x

〉
, R(x)(S) ≡

〈
dh(x)s

〉
.

Clearly, the EPR of the composite system Z can be recast by series of these sub-EPRs,

R(Z) =
∑

s

R(s)(X) =
∑

x

R(x)(S).

As it is shown in Sec.V.B., the differences

dh(s)x (xt|xt−2)− dhx(xt|xt−2) = log
qx(s|xt−2, xt)

qx(s|xt, xt−2)
,

dh(x)s (st|st−2)− dhs(st|st−2) = log
qs(x|st−2, st)

qs(x|st, st−2)
,

measure the net bits of information that one system gains or loses when it controls the other

system. By taking the averages of these differences over all the possible transitions and channels

of the corresponding systems, we have,

〈
dh(s)x − dhx

〉
= R(S|X),

〈
dh(x)s − dhs

〉
= R(X|S).
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In this model, the explanation of R(S|X) is that it measures the information dissipation rate of

system S when it works as the time-variant environment of X . R(X|S) measures the information

dissipation rate of system X when it works as the time-variant environment of S.

Eq. (11) (R(X|S) = 2IB(X,S) + R(X), and R(S|X) = 2IB(X,S) + R(S)) indicates that

one part of R(S|X) (or R(X|S)) supplies the self information dissipation R(S) (or R(X)), the

other part maintains the time-irreversible MIR IB(X,S) between systems in this model.

D. Bounds of Time-Irreversible Part of Mutual Information Rate

By using the FMA method, the EPRs R(X) and R(S) have lower bounds R(X(1)) and R(S(1))

respectively, where X
(1) and S

(1) refer to the Markov approximations of X and S respectively.

The corresponding transition probabilities can be given by

fx(xt|xt−1) =
∑

st−1

π(st−1|xt−1)ǫ(xt|st−1) = πx(xt),

fs(st|st−1) =
∑

xt−1

π(xt−1|st−1)d(st|xt−1) = πs(st),

where π(st−1|xt−1) = π(xt−1,st−1)
πx(xt−1)

and π(xt−1|st−1) = π(xt−1,st−1)
πs(st−1)

are the stationary conditional

probabilities with respect to S and X respectively. These two conditional probabilities work in the

Markov approximations like d(st−1|xt−2) and ǫ(xt−1|st−2) in the exact dynamics (qx(xt|xt−2) and

qs(st|st−2)) respectively. However, the transition information at time-transitions t − 2 → t − 1

and t − 1 → t are totally lost both in fx and fs. The stationary distributions of the Markov

approximations are thus πx and πs respectively. The corresponding approximations of the EPRs

R(X) and R(S) can be given by

R(X(1)) = 0, R(S(1)) = 0.

Consequentially, we have the approximated time-irreversible MIR

IB(X
(1),S(1)) =

1

2
R(Z).

By noting Eq. (14), we then have the lower and upper bounds of the time-irreversible MIR

IB(X,S) that

1

2
max{R(S), R(X)} ≤ IB(X,S) ≤

1

2
R(Z).
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VII. CONCLUSION

In this work, we quantify the nonequilibrium information dynamics of the two interacting non-

Markovian systems: the Markov-type master equation with memory dependence depicts the self-

evolution; the nonequilibrium non-Markovian information dynamics of the composite system and

mutual information rate depict the interactions. We characterize the time-irreversibility of non-

Markovian information dynamics by applying landscape-flux theory. The key point of this theory

is the decomposition of the driving force in a Markov-type master equation into time-reversible

part (detailed balance preserving landscape part) and time-irreversible part (detailed balance break-

ing nonequilibrium flux part). Correspondingly, the time-irreversible part of mutual information

rate turns to be closely related to the entropy production rates of subsystems and composite system.

Based on our study, we propose the finite memory approximation method which can be used to

analyze the time-irreversibility or the nonequilibriumness of non-Markovian processes explicitly.

The proposed example and the corresponding analysis show the validity of our method.
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APPENDIX A

Let C be a finite-state, discrete-time, irreducible, ergodic, and stationary system with memory

length of m. Let C be its state space. Let π be its stationary joint distribution of state sequences ν

with length of m. Let q(νt|νt−1) be the transition probability. Then C is time-irreversible beyond

m if and only if the stationary flux J(νt|νt−1) is vanishing. That is to say, the probabilities

Pr(c1, c2, ..., cT ) = Pr(cT , cT−1, ..., c1),

holds for T > m iff. J(νt|νt−1) = 0.

To prove this, we just need to show that the conclusion holds for T = m+ 2. We have

Pr(c1, ..., cm+2)− Pr(cm+2, ..., c1)

= π(νm)q(νm+1|νm)q(νm+2|νm+1)− π(ν̃m+2)q(ν̃m+1|ν̃m+2)q(ν̃m|ν̃m+1). (A.1)
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By noting Eq. (3), we proceed with (A.1) and have

Pr(c1, ..., cm+2)− Pr(cm+2, ..., c1)

= π(νm) (D1 +B1) (D2 +B2)− π(ν̃m+2)
(
D̃2 + B̃2

)(
D̃1 + B̃1

)
, (A.2)

where




D1 = D(νm+1|νm),

B1 = B(νm+1|νm),

D2 = D(νm+2|νm+1),

B2 = B(νm+2|νm+1),

D̃2 = D(ν̃m+1|ν̃m+2),

B̃2 = B(ν̃m+1|ν̃m+2),

D̃1 = D(ν̃m|ν̃m+1),

B̃1 = B(ν̃m|ν̃m+1).

By noting that



π(νt−1)D(νt|νt−1) = π(ν̃t)D(ν̃t−1|ν̃t),

π(νt−1)B(νt|νt−1) = −π(ν̃t)B(ν̃t−1|ν̃t).

we have Pr(c1, ..., cm+2)− Pr(cm+2, ..., c1) = 0 iff. B1 = B2 = 0. We can complete the proof for

arbitrary T > m by using mathematical induction.

APPENDIX B

Here is a geometrical interpretation for Jx.

If X is Markovian (m = 1), the stationary joint distribution of its two-state sequences

Pr(xt−1, xt) forms a matrix [Pr(xt−1, xt)]. Then its probability flux Jx(xt|xt−1) is the anti-

symmetrical part of Pr(xt−1, xt) which also forms a matrix (a 2nd-order tensor), namely, [Jx(xt|xt−1)]

= [Pr(xt−1, xt)] − [Pr(xt−1, xt)]
† = [Pr(xt−1, xt)] − [Pr(xt, xt−1)]. Here the dagger symbol rep-

resents the matrix transpose. If X is non-Markovian and it has a memory length of m > 1, then

the joint stationary distribution of (m+ 1) sequences Pr(χt−1, χt) = πx(χt−1)qx(χt|χt−1) (where

(χt−1, χt) ≡ [xt−m, ..., xt]) forms a tensor of order m+ 1, denoted by [Pr(χt−1, χt)], defined on a

coordinates system [xt−m, ..., xt].
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To obtain its “tensor”-transpose [Pr(χt−1, χt)]
†, we fix all other coordinates except xt−m+k

and xt−k (k = 0, ..., (m − 1)/2) and obtain a series of matrices of (xt−m+k, xt−k) at all fixed

coordinates, namely, the series of matrices [Pr(..., xt−m+k, ..., xt−k, ...)]. We then transpose these

matrices and obtain [Pr(..., xt−m+k, ..., xt−k, ...)]
† = [Pr(..., xt−k, ..., xt−m+k, ...)]. We do these

transpose operations from k = 0 to k = (m − 1)/2 to guarantee that all the matrices of the

coordinates (xt−m+k, xt−k) have been transposed.

Then we obtain the “tensor”-transpose [Pr(χt−1, χt)]
† = [Pr(χ̃t, χ̃t−1)] where Pr(χ̃t, χ̃t−1) =

πx(χ̃t)qx(χ̃t−1|χ̃t). Similar to Markovian case, we have [Jx(χt|χt−1)] = [Pr(χt−1, χt)]−[Pr(χ̃t, χ̃t−1)]

to be the the anti-symmetrical part of tensor [Pr(χt−1, χt)].

A case where X has memory length of 2 has been shown in FIG. 3. It then can be easily

verified that [Jx(χt|χt−1)] is an anti-symmetrical tensor of order m+1 such that [Jx(χt|χt−1)]
† =

[Jx(χ̃t−1|χ̃t)] = −[Jx(χt|χt−1)].

APPENDIX C

Here, we derive the exact form of Mutual Information Rate (MIR, Eq.(6)) and the Entropy

production Rate (EPR, Eq.(8)) in steady state.

At first, we introduce two related quantities: The “forward” entropy rateH(C) and “backward”

entropy rate H̃(C) of process C, where the description of C has been given in Appendix A. These

two quantities are defined by

H(C) = lim
T→∞

1

T

〈
− log Pr(Γ(T ))

〉
Γ(T )

, (B.1)

where Γ(T ) is arbitrary possible time sequence of C in time T . And

H̃(C) = lim
T→∞

1

T

〈
− log Pr(Γ̃(T ))

〉
Γ(T )

, (B.2)

where Γ̃(T ) is the time-reversal of Γ(T ).

The MIR (Eq. (14)) can be rewritten into the combination of forward entropy rates as

I(X,S) = H(X) +H(S)−H(X,S). (B.3)

And the EPR (Eq. (27)) can be rewritten into the difference between the backward entropy rate

and forward entropy rate as

R(C) = H̃(C)−H(C), for C = X,S ,or (X,S). (B.4)
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Thus, we can obtain the MIR and EPR by evaluating H(C) and H̃(C). In information theory,

these two entropy rate can be obtained from a typical sequence of C, where “typical” means in

Γ(T ):

1. the number of the occurrences of a state sequence ν in Γ(T ) is

π(ν)T + o(T ), for large T ; (B.5)

2. the number of the transitions from a memory νt to νt+1 in Γ(T ) is

π(νt−1)q(νt|νt−1)T + o(T ), for large T . (B.6)

Then according to the law of large numbers, we have

H(C) = − lim
T→∞

1

T
log Pr(Γ(T ))

= − lim
T→∞

1

T





∑
νt
π(νt) log π(νt)+

T
∑

νt−1

∑
νt
π(νt−1)q(νt|νt−1) log q(νt|νt−1) + o(T )





= −
∑

νt

∑

νt−1

π(νt−1)q(νt|νt−1) log q(νt|νt−1). (B.7)

Similarly, we have

H̃(C) = −
∑

νt

∑

νt−1

π(νt−1)q(νt|νt−1) log q(ν̃t−1|ν̃t). (B.8)

By substitute (B.7) and (B.8) into (B.3) and (B.4) respectively, we then have Eq.(6) and Eq. (8).

APPENDIX D

The log-sum inequality shows that two positive functions f and g with respect to two variables

η and ψ satisfy the following inequality:

∑

η,ψ

f(η, ψ) log
f(η, ψ)

g(η, ψ)
≥
∑

η

(
∑

ψ

f(η, ψ)

)
log

∑
ψ f(η, ψ)∑
ψ g(η, ψ)

.

where the equality holds if and only if f(η, ψ)
/
g(η, ψ) is not a function of ψ.
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The definition of the EPR suggests that

R(X,S) = lim
T→∞

∑

Γs(T ),Γx(T )

Pr(Γx(T ),Γs(T )) log
Pr(Γx(T ),Γs(T ))

Pr(Γ̃x(T ), Γ̃s(T ))

≥ lim
T→∞

∑

Γx(T )


∑

Γs(T )

Pr(Γx(T ),Γs(T ))


 log

∑
Γs(T )

Pr(Γx(T ),Γs(T ))∑
Γs(T )

Pr(Γx(T ),Γs(T ))

= R(X).

Also, the EPRs of two approximations with two memory lengthsm1 andm2 (m1 > m2) satisfy,

R(X, m1) =
∑

x1,...,xm1+1

Pr(x1, ..., xm1+1) log
Pr(x1, ..., xm1+1)

Pr(xm1+1, ..., x1)

≥
∑

x1,...,xm2+1


 ∑

xm1+1,...,xm2+1

Pr(x1, ..., xm1+1)


 log

∑
xm1+1,...,xm2+1

Pr(x1, ..., xm1+1)∑
xm1+1,...,xm2+1

Pr(xm1+1, ..., x1)

= R(X, m2).

where we use the substitutions of variables η = [x1, ..., xm2+1] and ψ = [xm1+1, ..., xm2+1] for

applying the log-sum inequality.

APPENDIX E

Assume that π is the unique stationary distribution of the composite system Z. This means that

the transition matrix [q(zt|zt−1)] has a unique eigen value of 1 and π is the corresponding eigen

vector which is a probability distribution. Thus, π satisfies that

π(xt, st) =
∑

xt−1,st−1

π(xt−1, st−1)q(xt, st|xt−1, st−1)

Let πx(x) =
∑

s π(x, s) and πs(s) =
∑

x π(x, s) be the two marginal stationary distributions. We

can easily verify that

∑

st−1

πs(st−1)ǫ(xt|st−1) =
∑

xt

∑

xt−1,st−1

π(xt−1, st−1)q(xt, st|xt−1, st−1) = πx(xt),

∑

xt−1

πx(xt−1)d(st|xt−1) =
∑

st

∑

xt−1,st−1

π(xt−1, st−1)q(xt, st|xt−1, st−1) = πs(st).
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Let ρ(x, s) = πx(x)πs(s) be the direct product distribution. We then have

∑

xt−1,st−1

ρ(xt−1, st−1)q(xt, st|xt−1, st−1)

=
∑

xt−1,st−1

ρ(xt−1, st−1)ǫ(st−1|xt)d(st|xt−1)

=

(
∑

st−1

πs(st−1)ǫ(xt−1|st)

)(
∑

xt−1

πx(xt−1)d(st|xt−1)

)

= ρ(xt, st).

Thus, ρ is a stationary distribution of Z. Since π is the unique stationary distribution of Z, then

we must have π = ρ.

The FMA method shows that for m ≥ 2,

qx(χ
(m)
t |χ

(m)
t−1)

=

∑
s1,...,st

Pr(x1, s1)ǫ(x2|s1)d(s2|x1)...ǫ(xt|st−1)d(st|xt−1)∑
s1,...,st−1

Pr(x1, s1)ǫ(x2|s1)d(s2|x1)...ǫ(xt−1|st−2)d(st−1|xt−2)

=

(∑
s1
Pr(x1, s1)ǫ(x2|s1)

) (∑
s2
d(s2|x1)ǫ(x3|s2)

)
...
(∑

st−1
d(st−1|xt−2)ǫ(xt|st−1)

)

(∑
s1
Pr(x1, s1)ǫ(x2|s1)

) (∑
s2
d(s2|x1)ǫ(x3|s2)

)
...
(∑

st−2
d(st−2|xt−3)ǫ(xt−1|st−2)

)

=
∑

st−1

d(st−1|xt−2)ǫ(xt|st−1)

= qx(χ
(2)
t |χ

(2)
t−1)

= qx(xt|xt−2).

Similarly, we have qs(ς
(m)
t |ς

(m)
t−1 ) =

∑
xt−1

ǫ(xt−1|st−2)d(st|xt−1) for m ≥ 2.

To justify the numerical results of FMA, we can use a conventional method which evaluates

R(X), R(S), I(X,S),and IB(X,S) directly from a typical sequence of Z (see [15]). For large

time T , the corresponding results can be given by




R(X) ≈ 1
T
log Pr(Γx(T ))

Pr(Γ̃x(T ))
,

R(S) ≈ 1
T
log Pr(Γs(T ))

Pr(Γ̃s(T ))
,

I(X,S) ≈ 1
T
log Pr(Γz(T ))

Pr(Pr(Γx(T ))Pr(Γs(T ))
,

IB(X,S) ≈
1
2T

(
log Pr(Γz(T ))

Pr(Γ̃z(T ))
− log Pr(Γx(T ))

Pr(Γ̃x(T ))
− log Pr(Γs(T ))

Pr(Γ̃s(T ))

)
,

where Γz(T ) = (Γx(T ),Γs(T )) is a typical sequence of Z (hence Γx(T ) and Γs(T ) are typical

sequences of X and S respectively) in time T ; Γ̃z(T ), Γ̃x(T ), and Γ̃s(T ) are the corresponding

time-reversal sequences. The convergence of this method can be observed as T increases.
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For numerical simulations, we simply let the state space of the system X be X = {x : x =

1, 2, 3, 4} and the state space of the system S be S = {s : s = 1, 2, 3} . The conditional probabil-

ities ǫ read

ǫ =




0.1168 0.5300 0.0591

0.2437 0.0093 0.3049

0.3219 0.3808 0.4136

0.3175 0.0799 0.2224



.

The conditional probabilities d read,

d =




0.4525 0.4445 0.4231 0.3962

0.4539 0.2110 0.1870 0.1812

0.0935 0.3446 0.3899 0.4226


 .

Here values of ǫ and d are arranged into the matrices of [ǫ(xt|st−1)] (with rows being labelled by

x and columns being labelled by s) and [d(st|xt−1)] (with rows being labelled by s and columns

being labelled by x) respectively. Consequentially, the exact transition probabilities of X and S

read

qx =




0.2990 0.1841 0.1716 0.1673

0.1430 0.2153 0.2237 0.2271

0.3572 0.3659 0.3687 0.3713

0.2008 0.2346 0.2360 0.2343



, qs =




0.4232 0.4367 0.4254

0.2222 0.3283 0.2088

0.3546 0.2350 0.3658


 .

Here values of qx and qs are arranged into the matrices of [qx(xt|xt−2)] and [qs(st|st−2)] with rows

being labelled by states at t and columns being labelled by states at t − 2 respectively. The exact

stationary probabilities of X and S read

πx = [πx(1), πx(2), πx(3), πx(4)] = [0.1985, 0.2067, 0.3665, 0.2283]

πs = [πs(1), πs(2), πs(3)] = [0.4272, 0.2436, 0.3292]

We evaluate R(X(m)), R(S(m)), I(X(m),S(m)), and IB(X
(m),S(m)) by using FMA. We select

the thresholds of relative error δ = 10−5 for both entities. All the calculations are terminated at

M = 2. This demonstrates the conclusion that the processes of the subsystems are both non-

Markovian chains with memory lengths of 2. In fact, we have evaluated the model with unified
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memory lengths fromm = 1 tom = 6 to check whether there exists any exception (see FIG.4). We

also calculate the lower and upper bounds of IB(X,S), I
L
B(X,S) = max{−1

2
R(X),−1

2
R(S)},

and IUB (X,S) =
1
2
R(Z) respectively. The values of numerical results are listed in TABLE II.

We also plot the curves of R(X), R(S), I(X,S), and IB(X,S) with increasing T (1 ≤ T ≤

106) by using the conventional method as the comparison to the FMA method (see FIG.5).
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TABLE I: An example of encoding the states xt−1 and xt (X = {1, 2, 3, 4}) by the Huffman

coding. xt−1 and xt are controlled by st−1 = 1 and st−2 = 2 respectively. The optimal code

lengths lx are also shown in the table.

xt−1 = 1 xt−1 = 2 xt−1 = 3 xt−1 = 4

ǫ(xt−1|st−2) 1/4 1/4 1/4 1/4

lx(xt−1|st−2) 2 2 2 2

Codewords 01 00 11 10

xt = 1 xt = 2 xt = 3 xt = 4

ǫ(xt|st−1) 1/2 1/4 1/8 1/8

lx(xt|st−1) 1 2 3 3

Codewords 0 10 111 110

TABLE II: Numerical Results of R(Z), R(X), R(S), I(X,S), IB(X,S), I
L
B(X,S), and

IUB (X,S)

R(Z) R(X) R(S) I(X,S) IB(X,S) ILB(X,S) IUB (X,S)

0.3208 0.0067 0.0062 0.2603 0.1540 −0.0031 0.1604
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FIG. 1. Locations of two time-successive memories in a sequence of non-Markovian system X .

(a) Locations of (χt−1, χt) along the forward time arrow. (b) Locations of the time-reversals

(χ̃t, χ̃t−1) along the backward time arrow.

FIG. 2. Diagram of the two interacting information systems X and S in the example.
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FIG. 3. Geometrical interpretation for the probability flux of a non-Markovian system X with

memory. X has memory length of 2 with state space X = {0, 1, 2}. The joint probabilities

Pr(χt−1, χt) = Pr(xt−2, xt−1, xt) are arranged into a tensor space of order 3, i.e., into the lattices

of a cube. By fixing xt−1 = 0, 1, 2, we obtain a series of matrices [Pr(xt−2, 0, xt)] (red),

[Pr(xt−2, 1, xt)] (green), and [Pr(xt−2, 2, xt)] (blue), with different colors corresponding to the

planes shown in the cube. The probability flux which is also a 3rd-order tensor is obtained by

calculating the anti-symmetrical part of each matrix. i.e.,

[Jx] = [Pr(χt−1, χt)]− [Pr(χt−1, χt)]
† = [Pr(χt−1, χt)]− [Pr(χ̃t, χ̃t−1)].
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FIG. 4. The values of (a) R(X(m)), (b) R(S(m)), (c) I(X(m),S(m)), and (d) IB(X
(m),S(m)) from

m = 1 to m = 6.
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FIG. 5. Comparisons of (a) R(X), (b) R(S), (c) I(X,S), and (d) IB(X,S) by using conventional

method and exact values. Curved lines, conventional method. Horizontal lines, exact values with

m = 2.
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