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“Communication” through the frustrated ground state of a classical triangular Ising antiferromag-
net wrapped on a cylinder is studied via reformulation as imaginary time evolution of a system of
fermions on a ring, detailing a breakdown of the ordinary Perron-Frobenius scenario for disordered
one-dimensional systems. For instance, constraint of the configuration at one cylinder end allows
infinite-range, albeit partial, control of the state. Mutual information between end configurations
under open boundary conditions, which measures strength of the correlations, has an asymptotic
decay with a complex dependence on cylinder circumference and spin (anti)periodicity. In some
cases, the decay is not even exponential in length, but inverse square.

PACS numbers: 75.10.Hk,05.20.-y

Introduction. Frustration [1] is the presence of in-
teractions that are incompatible in the sense that they
cannot simultaneously be brought to lowest energy con-
figurations (“satisfied”). The phenomenon was first rec-
ognized in water ice [2, 3] and subsequently in spin sys-
tems [4–9], but recent years have witnessed the discovery
of many new examples of frustration across an extremely
diverse range of physical systems including artificial spin
ice [10–12], colloidal assemblies [13, 14], Coulomb liq-
uids [15], lattice gases [16], ferroelectrics [17], coupled
lasers [18], and self-assembled lattices of microscopic
chemical reactors [19]. The triangular Ising antiferro-
magnet (TIAFM, see Fig. 1) has a special status as pos-
sibly the archetype of frustration. In the TIAFM, every
elementary triangle must contain at least one unsatis-
fied bond, hence it is in a disordered state with extensive
entropy even at zero temperature. The infinite planar
TIAFM is not quite as disordered as it superficially ap-
pears, however: zero temperature is a critical point, in-
sofar as the spin correlation length is infinite [20, 21].
At the same time, it is well-known that ordering is sup-
pressed by reducing dimensionality. These observations,
plus the rapid recent increase in the number of physi-
cal systems that exhibit frustration and have good con-
trol of boundary conditions, motivates a study of a zero-
temperature TIAFM wrapped on a long cylinder to an-
swer the question: does the state of the cylindrical system
resemble an ordinary thermally disordered state where
the influence of one end on the other decays exponen-
tially fast with cylinder length, or does hidden structure
allow communication through this sea of disorder?

This Rapid Communication is devoted to a detailed
negative answer to that question. Reducing the dimen-
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sion of the zero-temperature TIAFM by one via wrapping
onto a cylinder actually accentuates the order, insofar as
communicating end-to-end through the disordered state
is concerned. We can exert an infinite-range influence by
constraining the configuration at one end. And, under
unconstrained boundary conditions the average informa-
tion carried about the configuration at one end by that at
the other (the mutual information) displays unexpected
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FIG. 1. (a) When each bond belongs to a unique down-
pointing triangle (5), a ground microstate has exactly one
unsatisfied bond in each 5, but may have three in a 4. Rel-
ative to the ground reference microstate, all spins up/down
on even/odd rows, any microstate is represented up to global
spin flip by the boundaries (purple “strings” here) between
regions matching the reference microstate and its global spin
flip. Strings cannot terminate inside the system. (b) Cylindri-
cal geometry. (c) Motifs allowed in string representations of
ground microstates. The left-most motif corresponds to pair
annihilation when strings are interpreted as particle world-
lines.
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sensitivity to the cylinder circumference — whether it is
a multiple of 3 — as well as to whether spin periodic-
ity or antiperiodicity is imposed around the circumfer-
ence. These features, of the zero-temperature cylindrical
TIAFM, which seem bizarre when the system is viewed
in its native guise of a spin system, will be addressed here
using a simple, exact, mapping to a basic model of solid-
state physics, namely fermions hopping on a ring, which
will render them transparent. It remains to be seen to
what degree results of the sort discussed here carry over
to frustrated systems other than cylindrical TIAFM, but
one general lesson is that frustration-induced disorder
might not effectively screen boundary conditions.

In a little more detail, the cylindrical TIAFM systems
we study are formed by identifying the left and right
edges of a planar system such as shown in Fig. 1(a). A
zero temperature state of the system is equally weighted
on all the lowest energy microstates (spin configurations),
or some subset picked out by boundary conditions. We
consider only boundary conditions, such as specification
of all the spins at one end, that actually do this rather
than forcing a higher energy.

We intend to view the cylindrical TIAFM as a one-
dimensional statistical mechanical lattice model:

The lattice sites of this chain are occupied not by simple
spins, but by entire rings of spins. The elementary de-
grees of freedom of the model are configurations on entire
rings, and each such interacts with its nearest neighbors.

Now, before delving into a detailed investigation of the
ways the zero-temperature cylindrical TIAFM deviates
from normality, it helps to know what “normal” is. For
the generic one-dimensional model, we refer to the de-
grees of freedom residing at the lattice sites as finite-
state units (FSUs). For instance, an FSU for an ordinary
Ising chain is just a single spin, and for the cylindri-
cal TIAFM, a rings of spins (more accurately, the set of
configurations of that ring). The statistical mechanics
of a chain of FSUs with nearest-neighbor interactions is
conveniently treated by means of a transfer matrix [22–
24], entries of which are indexed by values of neighboring
FSUs. In the normal situation, a sufficiently large power
of the transfer matrix has all entries nonzero. This does
not preclude the possibility that certain local configu-
rations are forbidden. That is a relevant consideration
here since at zero temperature, there are constraints on
the elementary triangles of the TIAFM. Now, in this nor-
mal situation, the Perron-Frobenius theorem [25, 26] as-
serts that the transfer matrix eigenvalue λ0 of largest
modulus is positive and nondegenerate. Consequences
of this Perron-Frobenius scenario, as we might call it,
include (i) a unique macrostate (“phase”) in the infinite-
length limit, and (ii) correlation functions of the form
〈f(Xs)g(Xs+τ )〉−〈f(Xs)〉〈g(Xs+τ )〉, between FSUs sep-
arated by τ axial lattice spacings are asymptotically of
order |λ1/λ0|τ , where |λ1| is the second-largest transfer
matrix eigenvalue modulus. That behavior of correlation

functions holds whether the system is infinite or finite.
In particular, the FSUs in question could be at the ends
of the system.

Ordinary correlation functions are an awkward tool
for probing correlations between the FSUs (rings) of the
cylindrical TIAFM. Much more convenient is mutual in-
formation [27–30], a tool which is finding increasing use
in classical statistical mechanics [31–33] and quantum in-
formation theory [34]. The mutual information I(X :Y )
between discrete random variables X and Y may be de-
fined as

I(X :Y ) = H(Y )−H(Y |X), (1)

where H(Y ) is the (unconditional) entropy of Y , and
H(Y |X) = −

∑
x PX(x)

∑
y PY |X(y|x) lnPY |X(y|x) is

the conditional entropy of Y given X. Thus, I(X : Y )
measures the average reduction in uncertainty about Y
resulting from learning the value of X. In the Perron-
Frobenius scenario, mutual information between FSUs
decays asymptotically as I(X0 : Xτ ) ∼ |λ1/λ0|2τ . The
difference from ordinary correlation functions is that the
decay rate is doubled.

For the zero-temperature TIAFM on a cylinder, the
Perron-Frobenius scenario breaks down spectacularly. A
representation of bond configurations in terms of strings,
to be explained shortly (Fig. 1), makes clear the ex-
istence of multiple distinct infinite-volume macrostates
(pure phases, in a weak sense), labelled by number of
satisfied bonds around a circumferential ring. Infinite
range communication is possible through this disordered
system. The end-to-end mutual information with open
boundary conditions does not always decay exponentially
in the length. When the circumference C is a multiple
of 3, and spin antiperiodicity is imposed around the cir-
cumference, the decay is only as the inverse square of the
length. In other cases, when the mutual information does
decay exponentially, the dependence on circumference is
not monotonic, but sensitive to the residue class mod 3
of C (Fig. 3). While not strictly contrary to the Perron-
Frobenius scenario, this is highly unexpected behavior.

A unified explanation of these phenomena emerges
through a reformulation in terms of non-relativistic
fermions hopping on a ring [35–37], a problem amenable
to elementary and intuitively appealing techniques
widely familiar to physicists. In this picture (see Fig. 1),
the circumferential and axial directions on the cylinder
correspond to space and imaginary time, respectively;
configurational change from one ring to the one imme-
diately below corresponds to evolution through one unit
of imaginary time; and satisfied circumferential bonds
correspond to the presence of fermions. Although the
fermions are noninteracting, neighboring pairs can an-
nihilate. In the limit of infinite length, this semi-
conservation is effectively promoted to full conservation
away from the ends, but the possibility of pair annihila-
tion is crucially important to finite-size effects for systems
which are not genuinely infinite. Knowledge of the ener-
gies (Fig. 2) and excitation gaps of the fermionic states
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corresponding to the pure phases elucidates the competi-
tion between the pure phases at finite length and explains
major features of the decay rate of end-to-end mutual in-
formation: sensitivity to the residue class mod three of
the circumference, vanishing in some cases, and having
the “wrong” dependence on the energy gap.

Fermionic formulation. Two-dimensional Ising mod-
els can be reformulated as theories of fermions in one
space dimension with imaginary time, by interpreting
graphical expansions as depicting worldlines. For fer-
romagnetic models, these representations originate from
high-temperature expansions and feature spontaneous
creation and annihilation of fermion pairs [38–41]. For
the zero-temperature TIAFM, one needs to proceed in
a different way, which leads to semi-conserved parti-
cle number; in the thermodynamic limit or with peri-
odic boundary conditions, the slight nonconservation is
irrelevant and has therefore usually been implicitly ig-
nored [35–37, 42, 43]. To reach the fermionic formulation,
we start from string diagram representations of bond con-
figurations, interpret the strings as fermion worldlines,
and deduce a transfer matrix or Hamiltonian in terms
of creation and annihilation operators. This fermionic
formulation essentially replaces entropy with energy and
greatly facilitates calculations.

Only systems which decompose completely into down-
pointing triangles (5’s) with no left over bonds, such
as that at top of Fig. 1, are considered, because then
ground microstates are precisely those with two satisfied
bonds in each 5. There is no additional restriction re-
lated to up-pointing triangles (4’s). Some of them may
have no satisfied bonds in a ground microstate. Any
bond microstate can be represented by a string diagram
as in Fig. 1. A bond crossed by a string is satisfied if
it is horizontal and unsatisfied if it is diagonal. Notice
that the strings separate regions where the considered
microstate matches the reference ground microstate with
all spins up, down, up, etc. on successive rings, from
regions where it matches the spin flip of the reference.
That implies that strings cannot end inside the system.

The motif occurs in triangles with no satisfied
bonds. With strings interpreted as particle worldlines, it
represents annihilation of a pair of neighboring particles.

One such event is shown in Fig. 1 (a). would also
indicate three unsatisfied bonds. But, a down-pointing
triangle with three unsatisfied bonds incurs an energy
cost, hence this motif does not occur at T = 0. In a
planar system, particle number N changes by pair anni-
hilation (decreasing by 2), or by particle entrance or exit
at the spatial boundary. On a cylinder, as obtained by
identifying left and right edges in Fig. 1 (left), the spa-
tial boundary is eliminated, resulting in a local and global
semi-conservation law for particle number. Henceforth,
only cylindrical geometries are considered. Generally, we
think in terms of classes of systems of differing lengths L,
but the same circumference C and with either spin peri-
odicity or spin antiperiodicity around the circumference.

1
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FIG. 2. Entropy density versus fraction of satisfied circum-
ferential bonds (equivalently, the fermion density n) for the
zero-temperature TIAFM on a cylinder of circumference C.
The solid curve is from Eq. (8). Symbols: exact numerical re-
sults, with solid (open) symbols denoting periodic (antiperi-
odic) boundary conditions, and for circumference C equal to
3 (�), 4 (♦) and 8 (O). The infinite-C limit is nearly attained
already for C = 8, except at n = 1, for which entropy density
is exactly (ln 2)/C.

Spin antiperiodicity can be implemented by means of a
seam of ferromagnetic bonds along the cylinder length.
This sort of modification, called a gauge transformation
by some, preserves the frustration of every individual tri-
angle.

While the string representation provides much quali-
tative insight, a fermionic representation allows quanti-
tative calculations. A crossing of a horizontal bond by
a string is interpreted as presence of a particle, so satis-
fied circumferential bonds correspond to particles. We
take the particles to be fermions so that the prohibi-
tion of two occupying the same site is implemented via
fermionic statistics rather than an explicit interaction.
Now, the possibilities of string movement from time τ
to τ + 1 show that the transfer matrix T0 with the pair

annihilation motif held in abeyance satisfies

T0c
†
x = (c†x−1 + c†x)T0, T0|∅〉 = |∅〉, (2)

where c†x creates a fermion at site x ∈ {1, · · · , C} (mod
C), and |∅〉 is the state with no particles present. In
momentum space, one deduces the form

T0 = e−H0+iP/2, (3)

where

H0 =
∑
q∈BZ

ε(q)n(q), P =
∑
q∈BZ

q n(q), (4)

can be considered a Hamiltonian and total momentum
operator, respectively, with mode occupation operators
n(k) = c(k)†c(k), effective mode energies

ε(q) = − ln
(

2 cos
q

2

)
, (5)
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and allowed fermion modes depending on the parity of
the number of particles N according to

BZ =

{
2π
C Z ∩ (−π, π], N odd
2π
C

(
Z + 1

2

)
∩ (−π, π], N even.

(6)

Since the number of particles is the number of spin re-
versals around the circumference, even (odd) N is the
same thing as circumferential spin periodicity (antiperi-
odicity). These being synonymous, we speak henceforth
in terms of N parity rather than circumferential bound-
ary condition, for simplicity.

The transfer matrix (3) is a quantum imaginary-time
evolution operator (ignoring P in the exponent, which
vanishes for physical states anyway), so this is an ex-
ample of the ubiquitous [44, 45] correspondence between
imaginary-time quantum evolution and classical statisti-
cal systems.

Entropy. Imposing periodic boundary conditions end-
to-end, but with particle number density fixed at n =
N/C, the partition function of a length L cylinder is
expressed in terms of entropy density s as

eCLs = TrNTL0 =
∑

E∈ specH0

e−EL ∼ e−E0(n)L. (7)

The final expression is the L → ∞ asymptote, with
E0(n) the energy of a Fermi sea. For large C and Fermi
wavevector kF = πn,

s = −E0

C
= −

∫ kF

0

ε(q)
dq

π
. (8)

This entropy density is plotted in Fig. 2, along with ex-
act calculations for small circumferences. The limit is
reached very quickly with C.

Although it is not particularly difficult to write a com-
plete transfer matrix which formally incorporates pair
annihilation, we find it just as effective, and more in-
tuitive, to simply consider pair annihilation as a sup-
plementary process to the number-conserving evolution
(3). If boundary conditions are imposed to fix the par-
ticle number at the top and bottom ends of a very long
cylinder to ntop and nbot, with ntop ≥ nbot, the particle
density n in the bulk will be such as to maximize s(n).
For most combinations of circumference C and N par-
ity, there is a unique n maximizing s(n). The exceptions
are the systems with zero modes (C ∈ 3Z and odd N ).
In those cases, the two values of n closest to 2/3 have
equal entropies; the case C = 3 can be seen on Fig. 2.
Considering the exact (discrete) counterpart of Eq. (8)
for entropy, it is clear that this situation is atributable
to single-particle modes at exactly zero energy.

In the limit C → ∞, semi-conservation of particle
number is effectively promoted to a full conservation law
as far as the bulk is concerned. Depending upon what
N one wishes to stabilize, it can be done by controlling
the configuration at one end or the other. These dif-
ferent bulk macrostates are in a sense, zero-temperature

pure phases. They are, however, delicate insofar as only
those maximizing s(N/C) are accessible if the infinite-
length limit precedes the zero-temperature limit. As
noted above, there is a unique such N , except in the
anomalous cases with zero modes.

Mutual information on infinite cylinders. Turning
now to mutual information, we consider first the mutual
information between configurations X0 and Xτ on rings
0 and τ in the bulk of a cylinder in the zero-temperature
pure phase labelled by particle number N . Asymptoti-
cally in τ , the mutual information is

I∞,N (X0 :Xτ ) ∼
∣∣∣∣λN ,1λN ,0

∣∣∣∣2τ = e−2∆εN τ , (9)

where λN ,0 and λN ,1 are the leading and subleading
eigenvalue of T0 in the N -particle subspace, respectively.
∆εN , the excitation gap in the fermionic N -particle sub-
space, corresponds to a minimum energy particle-hole ex-
citation. Actually, λN ,1 is not unique, but its modulus
is. Remarkably, the coefficient is exactly one, but with N
fixed, this formula does conform to the Perron-Frobenius
scenario. The variation of the decay rate with circumfer-
ence is smooth and monotonic.

End-to-end mutual information. Mutual informa-
tion between the ends of a finite cylinder with free bound-
ary conditions has a much richer structure. The relevant
spectral gap is that above the minimum energy state
(n ≈ 2/3, see Fig. 2) in the full fermionic configuration
space. These never correspond to particle-hole excita-
tions, but rather particle-particle (pp) or hole-hole (hh),
as tabulated in Table I. Not listed are the anomalous
cases of odd N and C ∈ Z, which have zero spectral gap.
Putting those cases aside, asymptotically in the length
L of the cylinder the end-to-end mutual information be-
haves as

IL(X0 :XL) ∼ A(C)

(
λ1

λ0

)L
= A(C)e−∆εL, (10)

where the amplitudes A(C) for small values of C are
plotted in Fig. 3. Here, λ0 and λ1 are the nondegenerate,
real, leading and subleading eigenvalues of T for the given
N parity and circumference C.

N parity even odd

C mod 3 0 1 2 0 1 2

excitation type hh pp hh hh hh pp

∆ε · C/(π
√

3) 1 1/3 1/3 0 2/3 2/3

TABLE I. Linearized fundamental energy gaps ∆ε of T0 and
corresponding excitation types. ‘hh’ and ‘pp’ indicate exci-
tations involving removal (addition) of two particles. Using
a linearization of ε(q) around q = q0 = 2π/3, energies are
effectively reported in units of v(q0)(∆q) = (

√
3/2)(2π/C) =

π
√

3/C. Due to the strict convexity of ε(q), energies reported
for hh (pp) excitations are overestimates (underestimates),
though the relative error goes to zero as C →∞.
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FIG. 3. Amplitudes of the asymptotic decay of end-to-end
mutual information break into families labelled by N parity
and mod 3 residue class of C (3k + m, m = 0,±1). Within
each family, A(C) decays approximately exponentially in C.

The plot of A(C) in Fig. 3 makes evident that there
are distinct families labelled by N parity and the residue
class of C mod 3. That is expected. A very nearly expo-
nential dependence on C within each family, however, is
unexplained. The ratio of the exact mutual information
(from numerical calculations) to the asymptotic formula
in plotted in Fig. 4. It appears that the asymptotic for-
mula is good for L at least a few times C.

Not only does the end-to-end mutual information de-
pend on different spectral gaps than ring-to-ring mutual
information in the bulk, but the decay rate is precisely
the energy gap, rather than twice it. These features are
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FIG. 4. Ratio of the numerically computed end-to-end mutual
information IL(X0 :XL) to the leading behavior A(C)e−∆εL

from Eq. (10), for cases without zero-energy modes and
3 ≤ C ≤ 11. The approach is always from above because
the leading behavior correctly accounts for information trans-
mission only via the two largest eigenvectors of the transfer
matrix. The numerical results are found by directly comput-
ing powers of the exact transfer matrix in a fermionic basis.
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FIG. 5. End-to-end mutual information IL(X0 :XL) multi-
plied by L2 for the anomalous systems with zero modes (odd
N and C ∈ 3N).

related. Fluctuations in an infinite cylinder are typical of
the zero-temperature phase it is in, and their correlations
decay with distance. In contrast, the fluctuations which
dominate the end-to-end mutual information are fluctu-
ations of the entire system between phases. As a result,
the expansion in powers of the deviations described above
is invalid because the relevant deviations are comparable
to the unconditioned probabilities.

Now we turn to consideration of the systems with zero-
energy fermion modes, those with odd N and C ∈ 3Z.
Since the energy gap is zero in these cases, subexponen-
tial decay of end-to-end mutual information, possibly a
power law, is to be expected. Precisely, the dependence
is inverse square:

IL(X0 :XL) ∼ a(C)L−2, (11)

for some a(C), as demonstrated by the plot of L2IL(X0 :
XL) in Fig. 5 for C = 3, 6, 9. Semi-conservation of par-
ticle number is critical to the explanation of this result.
For a cylinder without zero modes, the dominant con-
tribution to the partition function has rings away from
the cylinder ends in a Fermi sea with all non-positive
energy modes occupied. In the presence of zero modes,
the Fermi sea may include or exclude them. Due to par-
ticle semi-conservation, there can be only one “domain
wall” between the regions including and excluding them.
In the statistical mechanical language, it is entropically
neutral whether the domain wall occurs in one place, or
another, or not at all. The degree of freedom represented
by the presence and placement of the domain wall is the
only significant freedom in the bulk state, and it alone
accounts for the L−2 dependence in (11).

Conclusion. Although the zero-temperature TIAFM on
a cylinder appears to casual inspection much like an or-
dinary (e.g., thermally) disordered one-dimensional sys-
tem, that appearance is deceptive. The system actually
embodies a complete breakdown of the Perron-Frobenius
scenario, including dependence of the decay rate of end-
to-end mutual information on the circumference which is
very puzzling in the native formulation as a spin model.
A well-known string representation elucidates some of
this, and the representation in terms of fermions on a
ring evolving in imaginary time matters quantitatively
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transparent. The pure frustration-induced disorder in
this model is significantly different from thermal disor-
der. Thus, while the TIAFM is an archetype of frustra-
tion, it is certainly not entirely representative. Deter-
mining which frustrated systems are like the TIAFM in
this respect and which are not is an important task.
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