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In developing coarse-grained (CG) polymer models it is important to reproduce both local and
molecule-scale structure. We develop a procedure for fast calculation of the bond-orientation corre-
lation and the internal squared distance 〈R2(M)〉 through evaluation of the probability distribution
functions that represent a CG model. Different CG models inherently contain or omit correlations
between CG variables. Here, we construct CG models that contain specific correlations between
CG variables. The importance of different correlations is tested on CG models of polyethylene,
polytetrafluoroethylene, and poly-L-lactic acid. The chain stiffness and 〈R2(M)〉 are calculated
using both analytic evaluation and Monte-Carlo sampling, and approximate model results are com-
pared with exact results from all-atom simulations. For polymers with an exponential correlation
decay, the bond-orientation correlation and 〈R2(M)〉 indicate which CG variable correlations are
most important to reproduce molecule-scale structure. Analysis of the bond-orientation correlation
and internal-squared distance indicates that for poly-L-lactic acid the bond-orientation correlation
requires qualitatively different additional terms in CG models, and quantifies the error in neglecting
this important behavior.

I. INTRODUCTION

Modeling polymers is an inherently multi-scale prob-
lem, with important properties arising from both short
and long length scales. Local structure, for example the
local bond and angle stiffness, is a function of specific
polymer chemistry, and small changes in structure can
have important effects on the transferability of polymer
models and important polymer properties, particularly
near phase boundaries [1–4]. At larger lengths, the stiff-
ness of a polymer is one of the most important prop-
erties of polymers in a melt or solution. Molecule-scale
structural properties like the internal squared distance
〈R2(M)〉, radius of gyration, and entanglement length
all depend on the polymer stiffness. It also governs me-
chanical response of systems as diverse as polymer melts,
polymer glasses, and biopolymers [5–9]. Given the funda-
mental importance of polymer stiffness it is critical that
coarse-grained (CG) polymer models reproduce this in-
trinsic property, otherwise the substantial (up to ×104)
speedup realized by CG polymer models [10–12] is not
useful.

Chemically specific CG models are often derived
from underlying all-atom (AA) simulations, using vari-
ous methods to determine effective interactions between
coarse-graining sites. Often, these chemically specific
CG models use either tabulated interaction potentials
or simple analytic potentials to approximately reproduce
the internal coordinates of the coarse-graining interaction
sites, i.e. bond lengths, angles and dihedrals within the
CG polymer chain. For tabulated potentials the local
structure of bond lengths, angles and dihedrals can be
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an exact (statistical-distribution) match. However, CG
polymer models often do not match molecule-scale struc-
tural properties of AA simulations, even when indepen-
dent CG variable distributions match exactly, and differ-
ent ad-hoc remedies have been used, including additional
bonds between 1-4 neighbors along the CG polymer or
phenomenological changes to the bond-angle or dihedral-
angle interaction [13–15]. Previous work has found that
for some CG polymer models, certain variables and the
correlations between them are important. For exam-
ple studies of polyethylene (PE) [15, 16] have found
dihedral-angles significant while studies of poly(vinyl al-
cohol) [1, 17] did not. Researchers have long noted how
some CG variables, for example the bond angle and dihe-
dral angle in Boltzmann inverted CG models of PE [18]
or polystyrene [14], can be correlated. Here we examine
correlations between the variables in CG polymer repre-
sentations and measure the influence of these correlations
on molecule-scale structural properties.

Since the central goal is to create CG polymer mod-
els that reproduce features and properties of an under-
lying AA simulation, it is important to make an explicit
distinction between a CG representation, by which we
mean the CG variables yielded from applying a CG map-
ping to simulated AA configurations, and an approximate
CG model, by which we mean approximations to the full
probability distribution function (PDF) of all the CG
variables in a CG representation [15]. Approximate mod-
els can be cast as either a PDF of CG variables or equiv-
alently as a set of CG interaction potentials. Quantities
can be calculated using the CG model through analytic
evaluation using CG variable PDFs, or through Monte-
Carlo (MC) sampling or molecular dynamics (MD) sim-
ulation of the equivalent set of CG interaction potentials.

As an example, a center-of-mass mapping scheme ap-
plied to AA simulation data produces CG site positions,
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and this CG representation contains all the CG site in-
ternal coordinates, i.e. all (3N − 6) bond-lengths, bond-
angles, and dihedral-angles, where N is the number of
CG bead sites in a single chain. From this representa-
tion an approximate CG model can be created, for exam-
ple, by assuming independent and identically distributed
bond lengths and bond angles and uniformly distributed
dihedral angles.

An ideal CG model meets two criteria, computational
feasibility and accuracy. The first, feasibility, requires
that the model be fast both to create and to simulate.
A CG model is constructed with explicit PDFs of CG
variables from the full CG representation. The number
of required samples increases exponentially with the di-
mensionality of a PDF, so to be fast requires that the
dimensionality of the sampled PDFs should be small.
For fast CG model simulations the CG interaction po-
tential, which is simply kBT times the log of the multi-
dimensional PDF, should have as short a range as pos-
sible while maintaining accuracy. For example, if there
are interactions between all the beads in a chain then the
cost will grow with the number of CG beads N as N2,
and simulating the model will be slow.

The second criterion, accuracy, requires that the CG
model at least match both the independent CG-variable
distributions and molecule-scale structure of the CG rep-
resentation. For CG models constructed using measured
distributions of the underlying CG variables the indepen-
dent distribution of each CG variable is matched by con-
struction. In order to match the molecule-scale structure
we aim to match the bond-orientation correlation Cbb(m)
for all bond-separations m. The full bond-orientation cor-
relation decay determines the internal squared distance
〈R2(M)〉, and, given an exponential correlation decay,
the definition of a persistence length.

Analytic evaluation of Cbb(m) for small m is orders
of magnitude faster than MC sampling or MD simula-
tion, and we exploit this speed by evaluating Cbb(m) for
m = 1, 2, 3 and then extrapolating an exponential de-
cay curve to calculate 〈R2(M)〉. As will be discussed in
detail below, evaluating Cbb(3) requires constructing a
(3× 5− 6) = 9 dimensional PDF from the CG variables
and correlations that define the CG model.

An alternative is to use MC to sample from the poten-
tial equivalent to the (3N − 6) dimensional PDF for an
N -bead chain. Several benefits of the method are that N
is restricted only by computational limits, Cbb(m) can be
computed for any m < N − 1, and 〈R2(M)〉 can be com-
puted for arbitrary separation M. We use these features
of the MC sampling to check the analytic model calcula-
tions and to check the large m values and extrapolation
of Cbb(m).

We expect that there may be some polymers for which
approximate CG models with local interactions will suc-
cessfully match the local and molecule-scale structure,
and others for which the models will not. For ex-
ample, polymers with significant charge could have a
more complicated form for the bond-orientation corre-
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FIG. 1. (top) A diagram of the CG angle (θ) and dihedral
(ϕ) variables studied in this work. (bottom) A diagram of the
atoms included in the PLLA-A3 and A6 CG representation.

lation decay that cannot be reproduced by local inter-
actions. We construct seven different approximate mod-
els that include different correlations between CG vari-
ables and test which models reproduce molecule-scale
structure for three different polymers, PE, polytetraflu-
oroethylene (PTFE) and poly-L-lactic acid (PLLA). For
CG models of PE and PTFE analytic evaluation of the
bond-orientation correlation and extrapolation to calcu-
late 〈R2(M)〉 gives a clear, effective metric for the CG
models, and indicates which CG variable correlations
are most important for reproducing long-range structure.
For approximate models of PLLA, analytic evaluation of
the bond-orientation correlation and 〈R2(M)〉 indicates
that our simple approximate models neglect important
long-range interactions, which we confirm by results from
MC simulations.

II. METHODS

A. All-atom simulation

All-atom (AA) simulations were performed to gener-
ate reference PE, PTFE and PLLA AA position data.
Details of the PE and PTFE AA simulations have been
presented previously [12, 15]. Like the PE and PTFE
simulations, the reference AA PLLA simulations used pa-
rameters from the OPLS-AA force field. The AA PLLA
simulation contained 1152 chains of 48 repeat units. The
simulation temperature was 550 K, significantly above
the glass transition and near the maximum of experi-
mental temperatures [19]. The density was chosen to be
1.03 g/cm3 based on a 1 ns NPT simulation with a tar-
get pressure of 30 atm and barostat damping constant
τP = 0.1 ps. A production simulation was run in the
NVT ensemble for over 80 ns, with atom configurations
sampled every 100 ps after 35 ns. An integration time
step of 1 fs was used and a Langevin thermostat with time
constant τT = 1 ps was applied. A real-space cutoff of
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1.0 nm was used. The precision for the reciprocal-space
electrostatic interactions was 10−4. All simulations were
performed using LAMMPS [20]. Simulation times are of
order 50-100 ns, representing greater than 500 times the
longest decorrelation time for CG variables of 100-150 ps.
Information about these CG variable decorrelation times
is given in the Appendix.

B. Coarse-Grained Mapping/Reps

CG representations were created from AA simulations
of PE, PTFE and PLLA. For PE and PTFE, the CG
representations were constructed from AA simulations
at 500K (PE) and 650K (PTFE) discussed in previous
work [12, 15, 21]. While each CG representation is only
exactly valid at single state point there has been work
to explore CG model transferability [13, 22], a subject
that is outside the scope of this work. The techniques
and analysis that follow can be applied to a CG model
developed at any temperature or pressure, provided that
good sampling of the all-atom configurations may be ob-
tained at that temperature. The CG representations
used here were constructed by grouping λ CX2 groups
per CG bead, using either an averaging (Aλ) or decima-
tion (Dλ) technique to determine the CG bead locations.
In the averaging method the CG bead position is based
on an average of atom positions, while the decimation
technique places a CG bead at the location of every λth
backbone atom. For PLLA, four representations were
used. Two represent each C3O2H4 repeat unit as a CG
bead, while two representations group two repeat units in
a single CG bead. Figure 1 illustrates the two averaging
CG PLLA representations used in this paper. These rep-
resentations are labeled PLLA-Xλ, where X represents
averaging (A) or decimation (D) and the λ is the num-
ber of backbone atoms per bead.

C. Models

Evaluating observables using CG models requires con-
structing high-order PDFs from the product of low-order
PDFs, an approach that has a long history in the physics
literature [23–28]. We borrow from previous work both
in some aspects of notation, as well as ideas [24, 27, 28].
Particularly relevant to the current context is work mod-
eling small molecule conformations and estimating con-
figurational entropy with reduced-dimensional models
[27, 28].

Here we sample variables from CG representations of
AA simulations to form low-order PDFs that include cor-
relations between nearby CG variables. For example, the
adjacent angles θ1 and ϕ1 shown in Fig. 1 are likely to
contain non-trivial correlations. In this work we assume
that for an N -bead chain the (N − 1) CG bond-length
variables are independent of each other and of the other
CG angle variables, leaving a (2N − 5)-dimensional dis-

tribution of bond-angle and dihedral-angle variables. In-
cluding correlations between CG angles and bond-lengths
does not influence the “stiffness” of the CG polymer
model, which depends only on the bond-bond correla-
tion, but it can change 〈R2〉. For the models studied
here this effect is smaller than the error introduced in
the angle approximations except in the decimation mod-
els with small λ (D2), which are of comparable (1-2%)
size. (double check) Hence, we focus on the bond-angle
and dihedral-angle variables and refer to them through-
out the paper as the angle and dihedral respectively.

The number of histogram bins and the samples needed
to build a PDF increases exponentially with the PDF di-
mensionality. Thus the computational cost of creating
CG variable samples with AA MD simulations limits the
dimensionality of the PDFs we can use. Based on CG
variable decorrelation times discussed in the Appendix
we are limited to one-, two-, and three-dimensional dis-
tributions of CG variables. In fact, sampling CG vari-
ables is only feasible because, excluding chain ends, the
CG angle and dihedral variables are assumed to be inde-
pendent of location along a chain and PDF histograms
can be generated by averaging together CG variables at
different positions along every chain.

The correlations between CG variables that are in-
cluded in each different model are embodied in the
“Minimal Set of PDFs” listed in Table I. In Ta-
ble I the distributions use the shorthand notation
P (βj , βj+δ1 , βj+δ2 , ...) ≡ [βj , βj+δ1 , βj+δ2 , ...] adapted
from recent work on reduced-dimensional models [27, 28].
In this notation the CG variable β represents either the
CG angle (θ) or dihedral (ϕ) variable, and the PDF is
defined by the sequence of CG variables and their rela-
tive indices δ1, δ2, etc., rather than the absolute index
or location j along the chain. We also include the Jaco-
bian factor sin θ within the bracket definition [−] when
β represents the bond-angle θ. For example, the ΘΦΘ
model contains the PDF P (θj , ϕj , θj+1) sin θj sin θj+1 =
[θj , ϕj , θj+1], which is sampled over all chains and all val-
ues of j in the CG representation of the AA simulation.

As we combine the low-order PDFs to represent a
model polymer chain, we indicate that these CG angle
and dihedral variables represent a model chain by us-
ing numeric indices to specify an absolute location along
the chain. These variables are distinct random variables
drawn from a distribution that is defined by the relation-
ship between the variable subscripts or equivalently, their
relative configuration along the chain.

The high-dimensional PDFs needed to analytically
evaluate the bond-orientation correlation terms up to
m = 3 require modeling N = 5 beads or constructing
a (2N − 5) = 5-dimensional PDF for all the CG angle
and dihedral variables. For a MC simulation the value of
N is not fixed, but simply represents the chain length.

Generically, if a single bead is added to a polymer chain
the dimensionality of the distribution increases by two,
since an additional ϕ and θ variable are each added. The
approximate distribution for an (N + 1)-bead chain can
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TABLE I. The approximate CG models used in this work, the Minimal Set of PDFs that embody the correlations between
CG variables within each CG model, and the Minimal-Chain Distribution that can be used build a polymer chain of arbitrary
length using the approximate CG model.

Model Minimal Set of PDFs Minimal-Chain Distribution (MCD)

Θ [θ] [θ]

Θ-Φ [θ], [ϕ] [θ1][ϕ1][θ2]

ΘΦ-ΦΘ [θ1, ϕ1], [ϕ1, θ2]
[θ1, ϕ1][ϕ1, θ2]

[ϕ1]

ΘΦΘ [θ1, ϕ1, θ2] [θ1, ϕ1, θ2]

ΘΦ-ΦΘ-ΦΦ [θ1, ϕ1], [ϕ1, θ2], [ϕ1, ϕ2]
[θ1, ϕ1][ϕ1, θ2][ϕ1, ϕ2][θ2, ϕ2][ϕ2, θ3]

[ϕ1]2[θ2][ϕ2]2

ΘΦΘ-ΦΘΦ [θ1, ϕ1, θ2], [ϕ1, θ2, ϕ2]
[θ1, ϕ1, θ2][ϕ1, θ2, ϕ2][θ2, ϕ2, θ3]

[ϕ1, θ2][θ2, ϕ2]

ΘΦΘ-ΘΦΦ [θ1, ϕ1, θ2], [θ1, ϕ1, ϕ2]
[θ1, ϕ1, θ2][θ1, ϕ1, ϕ2][θ2, ϕ2, θ3]

[θ1, ϕ1][θ2][ϕ2]

be constructed by extending the distribution for an N -
bead chain. For this procedure it is useful to define a
Minimal-Chain Distribution (MCD) of dimension n, the
lowest dimensionality that includes all the PDFs in the
Minimal Set of PDFs for an approximate model and both
starts and ends with an angle θ [29]. This feature allows
the MCD to be used to construct an arbitrarily high-
dimensional PDF or equivalently an arbitrarily long poly-
mer chain.

In constructing the MCD, Bayes’ rule is used to elimi-
nate redundant variables. For example, the MCD for the
ΘΦΘ-ΦΘΦ model listed in Table I contains consecutive
triplets of angle and dihedral CG variables, [θ1, ϕ1, θ2]
and [ϕ1, θ2, ϕ2], and these PDFs both contain ϕi and
θi+1. The MCD is constructed by multiplying the full
[θ1, ϕ1, θ2] PDF by the distribution of the new vari-
able conditioned on the redundant variables [ϕ2|ϕ1, θ2].
Bayes’ rule is applied to replace the conditional distribu-
tion with the ratio of the three-dimensional distribution
and the PDF of the redundant variables, as in

[θ1, ϕ1, θ2][ϕ2|ϕ1, θ2] =
[θ1, ϕ1, θ2][ϕ1, θ2, ϕ2]

[ϕ1, θ2]
. (1)

For some models this process is repeated to build up the
PDF with more CG variables until the full MCD is con-
structed, for example

[θ1, ϕ1, θ2][ϕ1, θ2, ϕ2][θ3|θ2, ϕ2]

[ϕ1, θ2]

=
[θ1, ϕ1, θ2][ϕ1, θ2, ϕ2][θ2, ϕ2, θ3]

[ϕ1, θ2][θ2, ϕ2]
. (2)

The MCD for each of the models is listed in the right
column of Table I. The MCDs have dimensionality n,
which can be as small as n = 1 for the Θ model (top

section), is n = 3 for the middle section, and is n = 5
for the bottom section, growing with the spatial extent
of the CG variable correlations included in the model.

In order to evaluate observables for a CG model, the
MCD is used to construct the (2N−5)-dimensional (angle
and dihedral) distribution required to model an N -bead
chain. This construction has two steps: first, use the
MCD to represent the angle and dihedral distribution
for an N = (n + 5)/2-bead chain. Second, for arbitrary
N extend the chain by 1 bead to N + 1 by using the
MCD. For the Θ model the distribution is extended by
multiplying the N -bead approximate distribution by the
angle distribution

[θ1, ..., θN−2]A × [θN−1] (3)

For models with n = 3, the N -bead approximate distri-
bution is multiplied by the two-dimensional conditional
distribution constructed from the 3-dimensional MCD:

[θ1, ϕ1, ...ϕN−3, θN−2]A × [ϕN−2, θN−1|θN−2]A, (4)

while for n ≥ 5 the general form is

[θ1, ϕ1, ...ϕN−3, θN−2]A×
[ϕN−2, θN−1|θN−n, ϕN−n, ...ϕN−3, θN−2]A (5)

with the subscript [−]A on both the N -bead distribution
and the MCD signifying that they are distributions using
the approximate model rather than the full distribution.
Bayes’ rule is used to eliminate the conditional in Eq. 4
for n = 3

[θ1, ϕ1, ...ϕN−3, θN−2]A × [θN−2, ϕN−2, θN−1]A/[θN−2],
(6)
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with the redundant variable θN−2 or Eq. 5 for n ≥ 5

[θ1, ϕ1, ...ϕN−3, θN−2]A×
[θN−n, ϕN−n, ...ϕN−2, θN−1]A

/[θN−n, ϕN−n, ...ϕN−3, θN−2]A, (7)

using [θN−n, ϕN−n, ...ϕN−3, θN−2]A, the approximate
distribution that contains only the components of the
model needed to construct the (2n− 3) distribution, i.e.
the CG variables that are common between the first
two terms in Eq. 7. The final result is the (2N − 3)-
dimensional PDF that represents an (N + 1)-bead chain
with a CG model. This procedure ensures that any set of
variables βi, βi+δ1 , βi+δ2 , with relative indices δ1 and δ2
that match a PDF in the model’s Minimal Set will follow
that PDF.

For the CG models discussed in this paper we take
care to approximate the infinite-chain case by discarding

data from the bead nearest each chain end in the CG
representations. This limits all our CG-variable PDFs
to representing the interior chain beads, rather than the
chain ends. We apply this practice to the MC simulations
by simulating longer chains e.g. N = 50 beads, and mea-
suring properties such as CG-variable PDFs or distances
for the interior N = 48 beads. Throughout this paper
values of the number of bonds M or beads N represent
an internal segment of the chain and exclude chain ends.
This ensures that measurements of the internal-squared
distance 〈R2(M)〉 match predictions based on extrapola-
tions of the bond-orientation correlation.

D. Analytic Evaluation

It is straightforward to evaluate expectation values
from an approximate CG model PDF. For example, com-
puting the expectation value of a function is an integral
over the approximate PDF

〈f(θ1, ϕ1, θ2...)〉 =

∫ ∫ ∫
f(θ1, ϕ1, θ2...)[θ1, ϕ1, θ2, ...]Adθ1dϕ1dθ2... (8)

where the subscript [−]A signifies the approximate model
PDF. In principle, any explicit function f(·) can be eval-
uated.

E. Monte-Carlo Simulations

One simple and effective method for testing the struc-
tural properties for approximate CG models is to use MC
techniques to sample model bond, angle and dihedral in-
teraction potentials for a single polymer chain. From the
(3N − 6) dimensional PDF that represents an N -bead
chain the interaction potential is constructed in the usual
way as

U(X1, X2, ...) = −kbT log([X1, X2, ...]), (9)

where the 1, 2, or 3 variable PDFs become 1, 2, or 3
variable potential terms. The full-chain potential is sam-
pled by single particle-moves with a displacement ∆ and
using the Metropolis algorithm. The temperature for the
MC sampling is the same as that used for the AA simu-
lations, 550K for PLA, 500K for PE & 653K for PTFE.
The initial displacement ∆i is chosen to be 1, and for an
initial, pre-production period of 10,000-100,000 whole-
chain MC sweeps ∆ is increased or reduced by 10% if it
falls outside a 5-95% acceptance range over 100 sweeps.
A MC sweep is defined as N randomly chosen particle
displacements, where N is the chain length. An entire
production MC run is typically of order 107 MC sweeps,
and results quoted below use data from either the last
half or quarter of the MC run.

III. RESULTS AND DISCUSSION

A. Physically Motivated Correlations

Our approximate CG models explicitly include corre-
lations between the CG angle and dihedral variables. It
is not clear a priori which of these correlations may be
important, and here we visually compare the joint PDFs
and their independent approximations for an intuitive
sense of their importance. Below we compare the PLLA-
A3, PTFE-A2 and PTFE-A4 representation. The PTFE-
A2 and A4 representations are essentially similar to the
representations of PE and illustrate the trends with in-
creasing coarseness. The qualitatively different nature of
the correlations between the CG variables in PLLA is
also clear.

Figure 2 compares the full two-variable PDF [θ1, ϕ1]
(left) for different CG polymer representations with the
Θ − Φ model approximation (right) for the same repre-
sentation. The comparison for the PLLA model (top) is
particularly poor, with symmetry in the independent ap-
proximation that is clearly missing in the full PDF. For
the PTFE CG2 model (middle) the peak at θ = 160◦ is
localized at ϕ = 0◦, but is smeared out over a much wider
range of ϕ in the independent approximation. Similarly,
the peak at θ = 130◦ and ϕ = ±140◦ is spread over a
wide range of ϕ and is centered at the wrong location in
the independent approximation. Finally, for the PTFE
CG4 model (bottom) only a minor asymmetry in θ is ne-
glected in the independent model. These visual cues are
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FIG. 2. The joint PDF [ϕ1, θ1] for the (a) PLLA A3, (b)
PTFE A2, and (c) PTFE A4 CG representations. (d-f)
The corresponding independent approximation [ϕ1][θ1] for the
same CG representations.

good indicators that the independent angle approxima-
tions will become increasingly accurate for the models in
order from top to bottom.

Calculations of the absolute value of the difference be-
tween the full two-dimensional PDF and the indepen-
dent approximations confirm the visual evaluation of the
agreement between the two figures. We use the simple
measure

Σβi,βj
=

∫
dβi

∫
dβj |[βi, βj ]− [βi][βj ]| (10)

where βi and βj are two CG variables. For ex-
ample, the error introduced by assuming indepen-
dent adjacent dihedrals and angles is Σθ1,ϕ1

=∫
dθ1

∫
dϕ1 |[θ1, ϕ1]− [θ1][ϕ1]| . The numerical value of

the error Σθ1,ϕ1
= 0.422, 0.185, and 0.109 for the PLLA-

A3, PTFE-A2, and PTFE-A4 models, respectively, indi-
cates that the independent angle and dihedral approxi-
mation should improve from top to bottom in Fig. 2.

Figure 3 shows the joint PDF of adjacent angles θ1,
θ2 for PLLA-A3 (top), PTFE-A2 (middle), and PTFE-
A4 (bottom). As in Fig. 2 the left side represents the
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FIG. 3. The joint PDF [θ1, θ2] for the (a) PLLA A3, (b) PTFE
A2, and (c) PTFE A4 CG representations. (d-f) The corre-
sponding independent approximation [θ1][θ2] for the same CG
representations.

full joint PDF [θ1, θ2], while the right column shows the
product of two independent PDFs [θ1][θ2]. For PTFE,
the good match between the right and left PDFs indi-
cates that the θ1 − θ2 correlations may be less impor-
tant for CG models to capture. Hence, the ΘΦ-ΦΘ and
ΘΦ-ΦΘ-ΦΦ models, which omit the θ1 − θ2 correlations,
could be effective at modeling the full distribution. The
absolute value of the differences between the full two-
dimensional θ1−θ2 PDF and the independent approxima-
tion are Σθ1,θ2 = 0.122, 0.134, and 0.035 for the PLLA-
A3, PTFE-A2, and PTFE-A4 models, respectively, in-
dicating that the PTFE-A4 θ1 − θ2 angles contain the
least structure or correlation between adjacent angles,
with the value of Σθ1,θ2 3 times less than the other two
models shown.

Figure 4 shows the joint PDF of adjacent dihedrals ϕ1,
ϕ2 for PLLA-A3 (top), PTFE-A2 (middle), and PTFE-
A4 (bottom). As in Figs. 2 and 3 the left side represents
the full joint PDF [ϕ1, ϕ2], while the right column rep-
resents the independent-variable approximation. In all
cases there is substantial asymmetry in the joint distri-
bution that is not contained in the product PDFs shown
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FIG. 4. The joint PDF [ϕ1, ϕ2] for the (a) PLLA A3, (b)
PTFE A2, and (c) PTFE A4 CG representations. (d-f)
The corresponding independent approximation [ϕ1][ϕ2] for
the same CG representations.

at right. Given this asymmetry one would predict that
for all CG representations shown, an approximate model
that includes a [ϕ1, ϕ2] term would perform better than
a model that assumes independent dihedrals. Another
notable feature is the overall flatness of the PTFE-A2
representation (middle). The absolute value of the error
in the Θ-Φ approximation Σϕ1,ϕ2

= 0.179, 0.046, and
0.073, for PLLA-A3, PTFE-A2, and PTFE-A4, respec-
tively; 2-3 times smaller for the PTFE models than for
PLLA .

Above we have calculated a mismatch between pairwise
joint PDFs in the CG angle and dihedral variables and
their independent angle and dihedral approximations. It
is important to note that while a value of 0 for Σ indicates
a perfect match, the measure does not indicate how the
mismatch affects observables like the bond-orientation
correlation. That is, the quantity Σ says little or nothing
about the expectation value of any particular expression
evaluated using the PDFs. Instead it is something like
an upper bound on the error introduced by the approxi-
mation.

B. Bond-Orientation correlation

The bond-orientation correlation links the local CG
variables to large-scale structural properties. In this sec-
tion we discuss how it is computed analytically using an
approximate model PDF and numerically using MC sam-
pling of the equivalent potential. We evaluate the bond-
orientation correlation for the approximate models and
compare those values with results from CG representa-
tions of AA simulations.

The bond-orientation correlation

Cbb(m) ≡
〈

bi · bi+m
|bi||bi+m|

〉
(11)

between two bonds separated by m − 1 bonds along a
polymer chain is an important quantity, since a sum over
Cbb gives 〈R2(M)〉 and related quantities. It is straight-
forward to write the m = 1, 2, and 3 terms in terms of CG
angle variables θ1, ϕ1, θ2, etc. The explicit expressions
are

Cbb(1) = 〈cos θ1〉 (12)

for the m = 1 term,

Cbb(2) =〈cos θ1 cos θ2〉
− 〈sin θ1 sin θ2 cosϕ1〉 (13)

for the second, and we derive the expression

Cbb(3) =〈cos θ1 cos θ2 cos θ3〉
− 〈cos θ1 sin θ2 sin θ3 cosϕ2〉
− 〈sin θ1 sin θ2 cos θ3 cosϕ1〉
+ 〈sin θ1 sin θ3 sinϕ1 sinϕ2〉
− 〈sin θ1 cos θ2 sin θ3 cosϕ1 cosϕ2〉 (14)

for the third term. Given the expressions in Eqs. 11-14
it is possible to evaluate the bond-orientation correla-
tion for the approximate models proposed using both
analytic and MC methods. To analytically evaluate
Eqs. 12-14 one first constructs the 5−dimensional PDF
[θ1, ϕ1, θ2, ϕ2, θ3]A in the approximate model, and then
explicitly evaluates the expectation values. The values
of Cbb(m) for m = 1, 2, 3 can be evaluated via Eqs. 12-
14 using MC sampling of a single chain, however with
MC it is also possible to calculate the bond-orientation
correlation directly for all m using Eq. 11.

For polymers with only local interactions the bond-
orientation correlation at large separations m follows an
exponential decay,

Cbb(m) ≈ C0e
−m/Lp (15)

with a characteristic decay length Lp known as the persis-
tence length [30]. We previously showed that CG repre-
sentations of AA PE and PTFE simulation data followed
the predicted relationship, Lap = λLAλp , where Lap is the



8

backbone AA persistence length and λLAλp is the per-
sistence length of the corresponding CG representation
[15].

The bond-orientation correlation terms m = 1 − 3 for
the PE-A2 and PE-A4 representation are shown in the
upper two curves in Fig. 5 (a). Values from the full CG
representation are labeled as [θ1, ϕ1, θ2, ϕ2, θ3], and are
represented as ∗. The log-linear slope between terms 2
and 3, an estimate of the persistence length Lp, is cal-
culated from the full CG representation and is shown as
a dotted line. The bond-orientation correlation values
from the ΘΦ-ΦΘ (5) and ΘΦ-ΦΘ-ΦΦ (4) models are
also shown. For both PE representations these two mod-
els are significantly better than the Θ-Φ model. For both
PE-A2 and A4 the ΘΦ-ΦΘ-ΦΦ model best reproduces
the 4th and 5th terms in Eq. 14, which contain a product
of adjacent dihedrals. As we show below, the ΘΦΘ and
ΘΦΘ-ΦΘΦ models (not shown for PE) perform about as
well as the ΘΦ-ΦΘ and ΘΦ-ΦΘ-ΦΦ models, respectively.
This indicates that for PE the correlations in [ϕ1, ϕ2] are
more important than those in [θ1, θ2].

The corresponding values for PLLA are shown in the
lower curves in Fig. 5 (a). The different approximate
models show similar features to those for PE, with more
sophisticated models that take correlations into account
improving on the Θ-Φ models. Here it is interesting to
note that including the dihedral-dihedral correlation, for
example in the ΘΦΘ-ΦΘΦ model versus the ΘΦΘ model,
does not necessarily improve the model. The ΘΦΘ-ΘΦΦ
model, which was chosen for its ability to reproduce
Cbb(3), is also shown. As for PE, the log-linear slope be-
tween Cbb(2) and Cbb(3) is shown as a dashed line, and it
shows a striking mismatch with the value of Cbb(1). We
investigate the PLLA data in more detail below.

The bond-orientation correlation calculated from the
PE-A4 and PLLA-A3 CG representations using Eq. 11 is
shown as a function of separation in Fig. 5(b) to large sep-
aration on log-log scales. Values of the bond-orientation
correlation measured from CG representations are shown
as open symbols, while the exponential form given in
Eq. 15 is shown as a dotted (dashed-dot) line for PLLA-
A3 (PE-A4). Crossed symbols show results from MC
sampling of approximate CG models. The decay length
of the exponential form Lp and the prefactor C0 are es-
timated from a fit to the values of Cbb(2) and Cbb(3). It
is clear that the PLLA data deviate from a simple ex-
ponential form and may follow either a power-law or a
second exponential decay length for λm ≥ 15. Long-range
electrostatic interactions are known to modify the simple
exponential decay, introducing different correlations [31–
33], and in this context the relatively strong polarity of
PLLA monomers could modify the bond-orientation cor-
relation. The enhanced correalation at large separations
leads to errors of order 3% in sums (discussed below)
over the bond-orientation correlation out to separation
m = 45. In contrast, the exponential form with param-
eters fit from Cbb(2) and Cbb(3) is a good match for the
PE-A4 data, capturing the persistence length quite well.
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FIG. 5. (a) The bond-orientation correlation Cbb(m) for PE
and PLLA on log-linear scales. Symbols represent different
approximate CG models and dotted lines represent the per-
sistence length determined from the m = 2 and m = 3 terms
of Cbb(m) evaluated using the full five-dimensional distribu-
tion of CG variables [θ1, ϕ1, θ2, ϕ2, θ3]. Data for PLLA have
been shifted down by a factor of 2. (b) The bond-orientation
correlation of the PE-A4 (©) and PLLA-A3 (�) represen-
tations of AA simulation data plotted on log-log axes. The
dashed-dot (dotted) lines show the exponential form in Eq. 15
with the decay slope for PE-A4 (PLLA-A3) fit from Cbb(2)
and Cbb(3) as in (a). Data from MC sampling of the PE-A4
ΘΦ-ΦΘ-ΦΦ model (+) and PLLA-A3 ΘΦΘ model (×) are
also shown.

For a comparable sum over the PE-A4 representation val-
ues, the error is 0.5%.
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C. Internal-squared 〈R2(M)〉 Distance

The utility of the bond-orientation correlation is its
direct link, through summation, to the squared distance
between polymer backbone atoms or CG beads a distance
M bonds away 〈R2(M)〉. As shown above, the first three
terms of the bond-orientation correlation can be rapidly
and easily calculated for any CG approximate model or
in the full CG representation by analytic evaluation of
the CG variable distribution. Unfortunately, the inter-
nal squared distance 〈R2(M)〉 depends on M terms in
the bond-orientation correlation, which are not simple
to compute analytically. In order to rank the different
models using an analytically calculated internal squared
distance we must extrapolate the bond-orientation cor-
relation. It is clear from the bond-orientation correlation
shown above for PLLA that this process introduces some
systematic error. Here we examine the terms in the inter-
nal squared distance summation and estimate the error
from this extrapolation.

For polymers like PE and PTFE that exhibit purely
exponential bond-orientation correlation decay, the
molecule-scale structure is dictated by the bond length
and the correlation decay length Lp, known as the per-
sistence length. The squared distance between beads
separated by M bonds, a fundamental molecule-scale
structural measure, is related to a sum over the bond-
orientation correlation

〈R2(M)〉 =

M∑
i=1

M∑
j=1

〈bi · bj〉

≈ 〈b2〉

(
M + 2

M∑
m=1

(M −m)Cbb(m)

)
. (16)

However, since the m ≥ 4 values of the bond-orientation
correlation Cbb(m) become increasingly difficult to com-
pute analytically we would like to determine the impor-
tance of the m ≥ 4 terms in the sum, and to know
whether a persistence length extracted from terms m = 2
and m = 3 is a good approximation for the rest of the
curve. Here we evaluate quantitatively the assumption
exponential decay with a constant slope, which appears
reasonable based on a visual analysis of the PE-A4 rep-
resentation data and fit in Fig. 5(b).

Extrapolation of an exponential fit from the m = 2
and m = 3 values to the m ≥ 4 portion bond-orientation
correlation curve is equivalent to computing the internal-
squared distance as

〈R2(M)〉 ≈ 〈b2〉
(
M + 2(M − 1)Cbb(1)

+ 2

M∑
m=2

(M −m)C0e
−m/Lp

)
, (17)

where the value of Cbb(1) = 〈cos θ〉 is explicitly calcu-
lated. Values of C0 and Lp are determined from a fit to

the full CG representation values of Cbb(2) and Cbb(3).
For PE, the value of 〈R2(M)〉 predicted by Eq. 17 can be
compared with the measured 〈R2(M)〉 value computed
by summing all the Cbb(m) terms as in Eq. 16 for each
CG representation. The difference between the actual
value and the extrapolated value is less than 1%, except
for the A6, and D6 representations which have errors of
3.6%, and 1.6%, respectively. Similarly, for PTFE, the
difference between the actual and extrapolated 〈R2(M)〉
values is less than 1% except for the D2 and A6 represen-
tations which have error of 3% and 1.3%, respectively.

For PLLA, Fig. 5 (b) shows that the exponential form
for the bond-orientation correlation decay does not fit
the data. Instead a power-law decay or double exponen-
tial better describes the data for separation m ≥ 3. The
different form leads to an error of 2.5% between the pre-
dicted value in Eq. 17 and the actual squared distance,
for the A3 representation shown in Fig. 5 (b). If instead
〈R2(M)〉 is predicted using a power-law fit to the data
for m ≥ 4, the extrapolation prediction and full sum val-
ues agree to better than 0.1%. In what follows we do not
use this power-law fit since it cannot be reproduced by
the short-range models that are our focus.

For each of the CG models a similar comparison can be
made between the value of 〈R2(M)〉 predicted by extrap-
olating the bond-orientation correlation and that mea-
sured using a single-chain MC simulation. The value
〈R2(M)〉 measured from MC simulations differs from the
predicted values by less than 1% for each of the approx-
imate CG models. This discrepancy indicates the small
error in using the exponential fit from m = 2 and m = 3
and extending it to the entire chain length.

To confirm that the CG model probability distribu-
tions and interaction potentials are equivalent, as they
should be by construction, we compare the Cbb(m) m =
1, 2, 3 values explicitly. These predicted values vary by of
order 0.1%, indicating that the MC simulations and ana-
lytic calculations are in excellent agreement. For compu-
tational speed we use analytic evaluations of Cbb(m) and
report values of 〈R2(M)〉 from extrapolations of these
values below.

Overall, these tests indicate error introduced by ex-
trapolating the decay slope of the bond-orientation cor-
relation rather than computing and summing every value
is of order 1%. This is true both for CG representa-
tions of AA simulations and for approximate CG models
sampled with MC. Extrapolation of the bond-orientation
from analytic evaluation of the approximate CG models
or MC sampling are essentially equivalent. In the follow-
ing comparison of the different models we show the error
introduced by extrapolation as an approximate measure
of the systematic error.

D. Approximate Model Error

Our ultimate goal is to predict structural proper-
ties using CG polymer models. Since the CG mod-
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FIG. 6. The fractional error in the squared internal-squared
distance 〈R2(M)〉 for the different CG polymer approximate
models in Table I relative to the true value of 〈R2(M)〉. Both
the true and predicted values of 〈R2(M)〉 omit end effects.
Error bars represent the systematic error in the calculation
as described in Section IIIc, which are of order 1% for PE
and PTFE, and of order 3% for PLLA.

els are constructed from CG variable PDFs the short-
range structural properties are correct by construction,
but molecule-scale structural properties are only approx-
imately matched. Models can be evaluated on this large-
scale structure by comparing the internal-squared dis-
tance values predicted from each of the approximate CG
models with those measured from CG representations of

AA simulations. Results from this comparison clearly
identify which correlations are important to include in
approximate CG models of PE and PTFE, and indicate
the difficulties in modeling a polymer like PLLA that
contains long-range correlations using CG models that
do not include such interactions.

Figure 6 shows the fractional error between the extrap-
olated squared distance 〈R2(M)〉 computed from Eq. 17
using approximate CG models and the measured value
from CG representations of AA simulations. The top
panel shows the models created by averaging, while those
from decimation are shown in the bottom panel. For
PE and PTFE both the Aλ and Dλ approximate models
have similar features. The Θ models do not reproduce
the chain stiffness correctly, except at a representation-
dependent value of Aλ∗ = 2 and Dλ∗ = 3 as found pre-
viously [15]. The Θ-Φ model approximation is poor for
λ = 2 and λ = 3 for the Aλ models, becoming better
for coarser beads. This has an intuitive physical picture,
that angle-dihedral correlations become less important
for coarser models. For the Aλ approximate models it
is clear that including the dihedral-dihedral (ϕ1 − ϕ2)
correlation is important. The models that include this
correlation (4 and �) perform better than the models
which omit it (5 and � ). In contrast, it is not clear
that including the angle-angle correlations (θ1 − θ2) is
necessary. In contrast, for models based on decimation
representations the importance of the dihedral-dihedral
correlations appears diminished relative to averaging, ex-
cept for the PTFE D2 model.

The approximate CG PLLA models are less success-
ful than the PE and PTFE models. The CG variable
correlations are clearly very strong, as can be seen in
the [θ1, ϕ1] and [ϕ1, ϕ2] PDFs in Figs. 2 and 4. Not
only are these correlations important, but so are the cor-
relations included in the ΘΦΘ-ΘΦΦ model, which in-
cludes the term [θ1, ϕ1, ϕ2]. Unfortunately, all the ap-
proximate PLLA models perform poorly because they
are constructed with an assumption of exponential bond-
orientation correlation decay, which is not observed in
this polymer. At the coarser λ = 6 level it appears that
the models all match 〈R2(M)〉 better than λ = 3, which
is due to the long-range correlations being better repre-
sented by an exponential form with coarser beads.

IV. CONCLUSION

We have developed seven approximate CG models of
PE, PTFE, and PLLA from CG representations of AA
MD simulations. The models are implemented as either
high-dimensional PDFs of CG angle and dihedral vari-
ables or as an equivalent interaction potential. Approx-
imate CG models are constructed from low-dimensional
CG variable PDFs that contain correlations between dif-
ferent CG variables including dihedral-dihedral, dihedral-
angle, and angle-angle. We show that these CG-variable
combinations contain significant correlations.
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The m = 1, 2, 3 terms of the bond-orientation correla-
tion Cbb(m) are calculated with each approximate model
analytically from the unique 5-dimensional PDF of CG
angles and dihedrals. All (N − 2) terms of the bond-
orientation correlation are computed for an N -bead chain
using single-chain MC sampling for each model. Results
for the internal squared distance 〈R2(M)〉 from MC sam-
pling and from an exponential extrapolation of analyti-
cal bond-orientation correlation decay are in agreement,
confirming the accuracy of the analytical approximation.

The internal squared distance for the approximate
models is compared with the value from the CG rep-
resentation of the AA polymer simulations. For PE and
PTFE, models generated from an averaging procedure
that include dihedral-dihedral correlations perform best.
Angle-dihedral correlations also have considerable im-
portance, while angle-angle correlations have negligible
effect. For models generated from a decimation proce-
dure the angle-dihedral correlations are again important
and models with dihedral-dihedral correlations give only
a slight improvement. Evaluation of the model perfor-
mance based on 〈R2(M)〉 values from extrapolations of
the bond-orientation correlation gives a very clear rank-
ing of the relative importance of the different CG-variable
correlations.

For PLLA, extrapolation of the bond-orientation cor-
relation and comparison between the AA CG represen-
tation and CG model 〈R2(M)〉 values gives a different
type of insight. Unlike the case for PE and PTFE, for

PLLA there is a mismatch between model and represen-
tation 〈R2(M)〉 values even when the first three terms
are a good match because the electrostatic interactions
present for PLLA break the assumption of short-range
interactions in our approximate CG models. Physically,
these long-range interactions manifest as an enhancement
of the bond-orientation correlation, which is not repro-
duced by either CG PDFs or local interaction potentials
of CG variables.

Our overall goal was to use the bond-orientation corre-
lation to evaluate approximate CG models for three com-
mon, different polymers. This approach proved remark-
ably robust. From our analysis it is clear that PLLA’s
electrostatic interactions, which manifest in the bond-
orientation correlation, are not captured by the simple
approximate models proposed. Further work will be
needed to include long-range (electrostatic) interactions
in CG polymer models [34] and to understand how to
quickly evaluate the structural properties of polymers
within those models. In contrast, the analysis was very
successful for PE and PTFE. For these polymers the most
important CG variable correlations were easily identi-
fied and the error in the large-scale structure for each
CG model was quantified. We showed that more so-
phisticated CG models with dihedral-angle and dihedral-
dihedral correlations can reproduce the structure of PE
and PTFE with high fidelity. This success shows that for
a wide class of polymers approximate CG models can be
quickly evaluated for the ability to reproduce large-scale
structure accurately.
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Appendix A: Autocorrelation/Independence of
samples

Figure 7 shows the autocorrelation of individual CG
bond-length, bond-angle, and dihedral-angle variables
during an AA simulation. Our analysis indicates that
the longest decorrelation time for CG variables is ap-
proximately 100-150 ps for the dihedral-angle variables.

Constructing low-order PDFs of CG-variables means
generating histograms of the relevant variables, which re-
quires enough independent samples to construct a multi-
dimensional histogram. Simulation times are of order
50-100 ns, representing about 500 independent sampling
times. Typical all-atom simulation sizes are about 50,000
CG bonds, for a total of about 2.5 × 107 independent
CG variable samples. For a three-dimensional histogram
this number of samples produces hundreds to thousands
of counts per histogram bin, given bin widths that ad-
equately resolve the probability distribution. Unfortu-
nately, this is nearly the limit for resolution, since in-
creasing the dimensionality increases the number of bins
without increasing the number of samples, thereby de-
creasing the counts in each bin by more than one order
of magnitude. For the CG-variables of interest here four

FIG. 7. The autocorrelation of individual CG bond-length,
bond-angle and dihedral-angle variables over a 10 ns atomistic
simulation. Curves are values averaged over 20 different bonds
or angles in the middle of a chain.

and five-dimensional distributions may be possible with
considerable effort, but for practical considerations we
use one-, two-, and three-dimensional distributions as the
Minimal Set of PDFs for CG models.


