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Abstract

A phase-field model for microstructural evolution in a system with an arbitrary number of phases,
grains, and chemical components is derived from a grand-potential functional. Due to the grand-
potential formulation, the chemical energy does not contribute to the interfacial energy between
phases, simplifying parameterization and decoupling interface thickness from interfacial energy,
which can potentially allow increased interface thicknesses and therefore improved computational
efficiency. Two-phase interfaces are stable with respect to the formation of additional phases,
simplifying implementation and allowing the variational form of the evolution equations to be used.
Additionally, we show that grand potential-based phase-field models are capable of simulating phase

separation, and derive conditions under which this is possible.
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o I. INTRODUCTION

1w The phase-field method is an increasingly popular technique for simulating microstruc-
u tural evolution in materials. Because engineering materials are often both polycrystalline
12 and multi-component, phase-field models are required that are capable of tracking an arbi-
13 trary number of chemical components, phases, and grains of each phase. Several phase-field
12 models capable of simulating multi-phase, multi-grain materials have been developed in re-
15 cent years [1-8], and others have also been developed that add the capability to simulate
16 multiple chemical components [9-25]. Each of these models has various advantages and

17 disadvantages relative to desirable model characteristics.

18 One highly desirable characteristic of phase-field models of multi-component systems is
19 the decoupling of interfacial thickness and interfacial energy. In the seminal alloy solidifica-
20 tion model of Wheeler, Boettinger, and McFadden (WBM) [26], the interface between phases
a1 is considered to be a mixture of the two phases with an equal composition. However, in
2> this formulation, there is a non-zero contribution to the interfacial energy from the chemical
23 energy in the interfacial region. This contribution increases with interface thickness and thus
2 the interfacial energy is coupled to the interfacial thickness in this formulation. This sets
25 a practical upper limit on the interface thickness for a given materials system and requires
2 a simulation resolution fine enough to resolve that interface. Thus, the coupling between
27 interfacial energy and interfacial thickness in WBM-type models can present limitations in

2 simulating large systems.

2 To circumvent these limitations, several strategies have been pursued. Tiaden et al. [27]
30 first showed that in the WBM model, the coupling between solute concentration and order
a1 parameter influences the interface thickness. They developed a multi-phase model for binary
» alloys in which the concentration in the interfacial region is defined as a mixture of each
33 phase’s concentration, and showed that when the ratio of concentrations between phases is
1 given by a constant partition coefficient, the concentration is decoupled from the evolution
35 equation for the order parameter, removing the limit on interface thickness [27]. Building on
s this approach, Kim, Kim, and Suzuki (KKS) introduced a phase-field model for two-phase
;7 binary alloys in which the interfacial region is defined as a mixture of the two phases with
s different phase compositions, but constrained to have the same chemical potential [28]. In

30 this case, the chemical energy in the interface does not contribute to the interfacial energy,



» and the interfacial energy and interfacial thickness are decoupled, allowing interface thick-
a ness to be increased (subject to adequately resolving curvatures of microstructural features
2 of interest) and simulation resolution made coarser. However, this comes at a cost of in-
3 troducing the additional phase composition variables, resulting in additional complexities
w in solving the equations numerically. Kim et. al. also extended the model to three-phase
s systems [29]. Folch and Plapp developed a three-phase model that decouples the interfa-
s cial thickness from interfacial energy for parabolic phase free energies [30], and introduced
7 interpolation functions that prevented the spurious formation of the third phase at a two-
s phase interface, as discussed further later in the current section. Ohno et al. extended the
» KKS model to three phases [31] using the interpolation functions developed by Folch and
so Plapp. Moelans developed a multi-order parameter model that allows an arbitrary number
s1 of phases, grains, and chemical components to be represented, and uses the KKS approach
52 to exclude the chemical energy contribution to interfacial energy [13]. In this model, the
s3 interfacial thickness is decoupled from the interfacial energy in a multi-phase, multi-order
s« parameter model. However, as with the original KKS model, the phase concentration vari-
ss ables for each solute species must be solved for simultaneously with the evolution equations,

s6 increasing computational requirements.

s7 Recently, a phase-field model for alloy solidification based on a grand-potential functional
ss was introduced by Plapp [32] that retains the advantage of decoupling the interfacial energy
so from the interfacial thickness, while removing the need for phase concentration variables
s for certain chemical free energy forms. In this model, the evolution equations are derived
&1 from a functional of the grand potential density rather than the Helmholtz free energy
s2 density more typically used in phase-field models. An evolution equation for the chemical
s3 potential difference between species is used, rather than composition. Ref. [32] also showed
s that KKS-type models can be derived starting from the grand-potential functional. The
es grand-potential approach has been extended to multi-phase field models [16, 18-25]. (We
es refer to multi-phase field models as models that enforce the constraint that all phase field
o7 variables ¢; sum to 1 at each point, and refer to multi-order parameter models as models
¢ where this requirement is not enforced.) These models also decouple interfacial thickness
s from interfacial energy and evolve the chemical potential difference as a function of time,
70 and thus do not require solving for phase concentration variables. However, in these models,

7 a two-phase interface is not stable with respect to the formation of additional phases at the



72 interface [7].

7z The stability of two-phase interfaces with respect to the formation of additional phases
72 is another highly desirable characteristic of phase-field models of multi-phase, multi-grain
75 systems. The spurious formation of additional phases at two-phase interfaces can potentially
76 lead to nucleation of new phases in unphysical locations and causes the interfacial energy
77 to deviate from its value for the two-phase interface. The spurious formation of additional
7s phases has been a commonly encountered problem in multi-phase field models that has been
79 addressed in different ways. The models of Steinbach et al. [1] and Steinbach and Pezzola [2],
g0 and those derived from them, result in two-phase interfaces that are unstable with respect to
a1 the formation of additional phases, as discussed by Toth et al. [7]. Ref. [1] uses the double-
s2 well potential, with terms of the form I/szqbfgb? (where W;; is a constant), whereas Ref. [1]
s3 uses the double-obstacle potential, with terms of the form W;;¢;¢; and a sharp penalty
s4 for phase-field values outside the range [0,1]. The use of the double-obstacle potential
s significantly reduces third-phase formation at interfaces [33]. An alternative approach to
s preventing spurious third-phase formation in the models of Ref. [1, 2] was developed by Kim
&7 et al. [5, 29], who introduced a step function s;; to the Allen-Cahn equation for each order
ss parameter. The step function s;; = s;s;, where s; = 1 if ¢; > 0 and s; = 0 otherwise.
so Although this approach retains the variational formulation of the Allen-Cahn equations, it
o may generate a stationary solution from a non-equilibrium state [7]. It also prevents the
a1 propagation of ¢; into regions where ¢; = 0 initially unless the step function is modified
2 based on neighboring values of the order parameter on a uniform finite-difference grid [29].
o3 This requirement makes it difficult to generalize the method to adaptive grid spacing, finite
a element, or finite volume discretization schemes. The multi-phase field, grand-potential
s based models in Refs. [16, 18-24] use the multi-phase free energy functional including double
s obstacle potential of Ref. [2], whereas Ref. [25] uses the double-well potential of Ref. [1]. In
o Refs. [16, 18-24], the authors mitigated spurious third-phase formation by adding penalty
s terms of the form Wijr0,0;0r, where W, is a constant. Such terms can cause the contact
o angles at triple junctions to deviate from their equilibrium values; a procedure to calibrate
o Wik to obtain improved accuracy in triple junction angles is given in Ref. [8]. In Ref. [34],
101 terms of the form Wijr¢;¢;¢5 were employed in the model of Ref. [2] to minimize leakage of
102 third phases from triple junctions to adjacent grain boundaries in cases of large differences

103 in interfacial energies between the grain boundaries. A procedure to determine W;;, was
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104 given to obtain improved accuracy in triple junction angles and interfacial velocities in grain
105 growth simulations [34]. The three-phase model of Folch and Plapp [30] prevents spurious
s third phase formation through the use of a triple-well potential for the bulk energies and
w7 specially chosen fifth-order interpolation functions for the chemical free energies in each
s phase (with the limitation that the chemical free energies are parabolic with respect to
100 concentration). Along an i-j interface, derivatives of these interpolation functions are zero
o with respect to ¢,. The three-phase extension of the KKS phase-field model developed by
1 Ohno et al. [31] uses these same interpolation functions to allow for stable binary interfaces
2 with greater flexibility in choice of chemical energies for each phase. However, the polynomial
us interpolation functions developed in Ref. [30] cannot be readily generalized to higher numbers
s of order parameters. The previously discussed multi-phase, multi-order parameter model
s by Moelans [13] employs bulk and gradient energy terms that are stable with respect to
ue third phase formation at a two-phase interface. This work also introduced interpolation
uz functions for chemical energies that, in a binary interface, have zero slope with respect to
us order parameters for additional phases, and thus prevent the chemical energy terms from

uo contributing to third phase formation.

120 Here, we introduce a multi-phase, multi-order parameter model based on a grand po-
21 tential functional that features the desirable characteristics discussed above: decoupling of
122 interfacial energy from interfacial thickness and the stability of two-phase interfaces with
123 respect to the formation of additional phases. To our knowledge, the only existing model
124 for multi-grain, multi-phase, multi-component systems that features both of these charac-
125 teristics is the model of Moelans [13], based on the KKS approach. By employing the bulk
126 free energies and interpolation functions from Ref. [13] within a grand-potential functional,
127 we retain the decoupling of interfacial thickness and interfacial energy and the stability of
128 binary interfaces, while removing the need for additional phase concentration variables of
120 the KKS approach. This eliminates the need to solve a nonlinear equation for each of these

130 variables, simplifying implementation and reducing computational complexity.

m  An additional capability of grand potential-based phase-field models considered here is the
132 ability to model phase separation. Since its introduction, grand potential-based phase-field
133 models were considered incapable of simulating phase separation [32]. This conclusion was
134 drawn from the fact that the model formulation prevents the usage of square gradient terms

135 of concentrations in the total grand potential and requires a convex chemical free energy



136 function in each phase. These conditions are necessary such that concentration and chemical
137 potential are related by a local and invertible relation [32]. However, we demonstrate here
138 analytically and with simulations that the grand potential formulation can be used to model
139 phase separation.

1w  This work is organized as follows. In Section II, we give the formulation of the model
11 and show analytically that it has the desired properties discussed in the introduction. In
12 Section III, the formulation and implementation of the model is verified by comparing with
3 expected results for the morphology of steady-state microstructures and the kinetics of
us growth. The capability of both single-order parameter and multi-order parameter grand
us potential models to simulate phase separation is discussed in Section IV, and conclusions

us and future implications of the work are discussed in Section V.

ur II.  GRAND POTENTIAL MODEL FORMULATION

us  The phase-field model is formulated to describe NV possible phases and K chemical species.
1o For each phase «, there are p, possible grain orientations. The individual grains of phase «
150 are represented by a set of non-conserved order parameters 7, = (91, a2s - - - s Naps ), Where
151 the first subscript of each order parameter indexes the phase and the second subscript indexes
12 the grains. A similar set of order parameters exists for each of the N possible phases, such
13 that the microstructure is represented by the vector of order parameters 7 = (7, 73, - - - , TN )-
1ss Within the interior of grain ¢ of phase «, 1,; = 1 and all other order parameters have value
155 ). The interface between grain ¢ of phase a and grain j of phase 3 is represented by smooth
156 variation of order parameters 7,; from 1 to 0 and 7g; from 0 to 1.

157 In addition to the local crystallographic information, the local chemical composition is
158 required to represent the microstructure. As in Ref. [32], we track the number density p of
10 each solute species at each position. Assuming each chemical species has the same atomic
160 volume V,,, K — 1 variables are then required, and the Kth species is considered the solvent.

11 The number density of chemical species A, pg, is related to its local atomic fraction, c4, as

C
pa = 72‘ (1)

12 The total grand potential 2 of the system is defined as

Q= / (wmw + Wyrad + wchem) dV. (2)
\%
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163 Wiy 18 @ multi-well contribution to the bulk free energy density that has the form

Wmw = me (3>
164
N  pa T} 7] N pa Ps ”}/ 1
at ai aifj
RS (BB (Y S )l @
a=1 i=1 a=1 i=1 B=1 j=1,ai#Bj

16s where m is a constant with dimensions of energy per unit volume, o and ( index phases, @
166 and j index grains, and v,i3; are a set of constants that allow the interfacial energy between
167 grain ¢ of phase o and grain j of phase 5 to be controlled [13, 35]. We require Vaigj = Vsjai
16 50 the terms %% 5272 can be combined, resulting in one cross-term vaig;72;73; for each
160 pair of order parameters. Although interfacial energy anisotropy and/or grain boundary
170 energy anisotropy can be included by making the coefficients 7,:3; dependent on interface

11 orientation, these effects are not considered here. The gradient energy contribution wg,qq is

172 given by
N Pa

Wyrad = Z Z ’VTIMF (5)

a=1 =1
113 where x is the gradient energy coefficient. Consistent with the assumption of isotropic
s interfacial energy and grain boundary energy, we maintain a constant s throughout and
175 assume it is independent of composition. The chemical contribution to the grand-potential

e functional wepen, 18 given by
N

Wehem = Z hawa (6)

a=1
w7 where h,, is an interpolation function for phase o and w,, is the grand-potential density for

17s phase a. h, has the form [13]

pO&
ha = 1 naz ) (7)
Z,B 1= 1 77/31

9 ho, = 1 in the interior of phase v and h, = 0 in the interior of all other phases. h, can be
180 interpreted as the phase fraction of phase a. The grand-potential density for phase «, w,,

181 iS
Wo = fa — paliA — PBIUB — - - — PK—1[EK—1 ()

12 where f,, is the Helmholtz free energy density of phase «, and p4 is the chemical potential
183 difference between species A and species K. As in Ref. [32], here p4 has dimensions of

184 energy, rather than energy per unit volume as is often used in phase-field models.
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185 A. Evolution equations

85 Bach order parameter 7,; evolves by an Allen-Cahn equation derived from the grand-

17 potential functional:

815 57](11'
N pg
=— I [m (nii — Nai + 2Nai Z Z %iﬁjngj> (9)
B=1 j=1,0i#Bj
N
oh
- v2 [e%) 2
" " * BZ; 8nai wﬁ]

188 where the Allen-Cahn mobility is given by [13]

D i Zﬁj;ﬁm’ Laiﬁjnim%j

L =
> i Z,Bj;éai 7731‘771231-

(10)

180 Lo is the mobility coefficient for the interface between grain ¢ of phase o and grain j of
10 phase (3, and is discussed further in Section IID.

w1 For each solute species, the generalized diffusion equation is

1o where My is a mobility coefficient with dimensions of (energy x length x time)~!. (This
193 is in contrast to the more typically used evolution equation g—‘; =V (M V%—I;), where the
10a mobility coefficient has units of length®x (energy x time)~'). Since the phase-field model is
1s developed starting from a grand-potential functional, the chemical potential of each species,
106 Tather than its number density, is the appropriate field variable to express the functional
w7 in terms of [32]. Thus, the time evolution of p; rather than p; should be considered, and

s Eq. (11) is transformed to a set of evolution equations for u; as follows. Using the chain

199 Tule, ‘%“ can be expressed as
N P
Ipa \ pa Our dpa Ongi
FA 12
ot Z dur Ot ;; Ong; Ot (12)

200 Substituting Eq. (11) in Eq. (12) and re-arranging,

K—1 Dpa Oy K—1 N pg Dpa O
AOur A ONg;
—— =V M — 13
oo o o T 25, 9



201 The susceptibility x 45 is defined as

dpa
=—. 14
XAI T (14)
202 Using Eq. (14) in (13),
K-1 K-1 N pp
opr Opa Ongi

=V- MarV E g 15
XAI—(; It ATV P — D Ot (15)

I=1 I=1 B=1 i=1

203 The susceptibility x4; needs to be expressed in terms of order parameters and chemical
204 potential. To do so, the density ps can be determined from €2 using the thermodynamic

205 relation

pa = = Z hﬁ Z haply (16)
5—1

5MA -
206 where pg = —guij is the number density of A atoms in the interior of phase . Substituting
207 (16) into (14),

5 X N
Xar =g Z Pa=> hax (17)

B= B=1

8

28 Where x5, = ZPT*;‘. The specific form of xj, depends on f3, as further discussed in Sec-

200 tion ITA 1.
20 The mobility coefficients M4; are given by

My = Z hsM?,. (18)

a1 The mobilities in phase 3, M%,, can be determined as a function of the self-diffusivity D’ ,

22 and interdiffusivities D, A # I [36]:

K-
Oy 1

D = ZMEJ—ﬁ Z o (19)
Pr = X7

213 This results in a set of equations that can be solved for M ﬁ ;- For the case where interdiffu-

2 sivities are negligible, M, = 0 for I # A, and MY, = D ,x"1.4-

215 1.  Ewvolution equations for common free energy forms

26 The dependence of grand potential, density, composition, and susceptibility on chemical
217 potential is given here for common Helmholtz free energy functional forms. The functions

218 presented here are multi-species generalizations of the results of Ref. [32].
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20 For a parabolic free energy with f, = f2, + S0 Ak (er — o mm)Q, where I indexes

20 chemical species, k¢ is the curvature of the parabola with units of energy density, ¢;™"

221 is the composition at which the minimum occurs, f%. is a constant with units of energy

min

222 density, and using p; = gﬁ‘;‘ = Va%:
1 MI :u[ a,min
min + a - C (2())
Z Vazk_[ v, I

223

8wa LA Cj,min
a — 21
e T /T 7 (21

N
ca = Vapa = Z hg <V%LA5 + CA’mm) (22)

224

=1 akig
225
a apa VQ%’ =4
Xar = a—A =49 7 (23)
Hr 0, I+A
2 For a dilute solution with f, = f&, + S0t B ac] "“/T(CI Incr — ¢r), where EY is a
227 constant with units of energy,
K—1
T pr — E7
o o i 24
228 8 1 E
o Wa Ha — Ly
- _ — 25
PA= "o, — 1, P ( KT ) (25)
229 N
pa— Ey
=V,pa = h 26
CA pA ; B €Xp ( T ) (26)
230 -
o _ O0a RV, OXP (uAk:TEA) , I=4
Xar =5 == (27)
A ) I+A

2 For either the parabolic or dilute solution Helmholtz free energy, since x4; = 0 for A # I,
2 the evolution equation for chemical potential, Eq. (15), can be simplified to

N Pps

8u A Opa Ong;
Xaa—p = =V- Z MarVpr =YY 5= Ong: Ot (28)

=1 1=1
233 In the case when all interdiffusivities are zero, only My, is nonzero, and Eq. (28) further

23 simplifies to

o Y& Opa On
A A Bi

=V - (MaaV — ) 2
XAa—g~ (M4aVia) ﬁél ;:1 g Of (29)
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235 B. Steady-state conditions and interfacial profiles

26 The conditions for steady-state can be can be found from Eq. (15) and (9). Consider
237 a planar interface with its normal in the x-direction between grain 1 of phase o and grain
28 1 of phase 3, represented by order parameters 7,1 and 73;, respectively. The center of the
230 interface is at x = 0, with phase o where x < 0 and phase 8 where x > 0. For the system
20 t0 be in chemical equilibrium, the chemical potential p; for each solute species must be
21 constant, and the grand potential densities in each phase must be equal: w, = wg [37]. For
22 & two-species system, the conditions of equal chemical potential and equal grand potential
23 density are equivalent to the common tangent construction. For the system to be in steady-
2a state, 24 = 0 VI, which is met when p; is constant, and 2t = 9 ) by Eq. (15). By

ot ot ot
245 Eq. (9), when @8‘;—1 = 0,

Ohg oh
m (131 = Na1 + 20a1Va181M51) — KV a1 + 7w + —ng = 0. (30)
877&1 anal
Ohe _ Ohg _ 2ma1nj
226 Because oy = _anl = 17‘211%%11,
3 2 2 Oha
m (o) = Na1 + 2Na1Var1M31) — KV a1 + . (Wa — wp) = 0. (31)
27 A similar expression can be derived from the condition 8gf L =0:
3 2 2 Ohq
m (NG — N1 + 20g1Ymp17ar) — KV 181 + Wm(_wa +wg) = 0. (32)

28 Since w, = wg throughout in chemical equilibrium, Eq. (31) and (32) become

m 05y — Na1 + 2Na1Ve151751) — £V Nar = 0 (33)

249

m (0 — Np1 + 20p1Ya1p1 M) — KV 151 = 0. (34)

250 Thus, for steady-state conditions, p; = 0, w, = ws, and the steady-state equilibrium inter-
21 facial profiles for 7,1 and 7g; can be determined from the analysis of Ref. [35]. For the case

252 Vo151 = 1.5, an analytical solution can be found for both order parameters:

Mot = % {1 ~ tanh ng)} (35)
- % {1 + tanh (@x)] (36)

11
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2 These are referred to as the symmetric profiles in Ref. [35], where a symmetric profile has
255 the property 7q1(x) = 1 — na1(—2) with the midpoint of the interface defined at = = 0.
256 11 + 11 = 1 also holds throughout, and at x = 0, 1,1 = 731 = 0.5,

57 For 44151 # 1.5, an analytical solution to the interfacial profiles does not exist. The
258 interfaces are not symmetric, and 7,1 + 731 # 1 through the interface. For v4151 < 1.5, the
250 interface width becomes smaller and at x = 0, 1,1 = 75 > 0.5; conversely, for v,15 > 1.5,
260 the interface width becomes larger and at x = 0, 7,1 = 11 < 0.5. Further details are

261 available in Ref. [35].

262 C. Stability of two-phase interface with respect to third-phase formation

%3 One advantage of this formulation is that a two-phase interface is stable with respect to
264 formation of a third phase. To show this, we first demonstrate the stability of the multi-well
»s and gradient terms in the total grand potential functional, then show that the chemical
%6 energy contribution does not alter stability. Consider a three-phase system with phases «,
s7 3, and 0. 7 is an order parameter representing grain 1 of phase . Throughout a planar
8 -3 interface as described in Section II B, the § phase is not present initially, and 75 = 0.

260 The grand potential of the system with only the multi-well and gradient terms, €2,,,, is

ng = / (wmw + wgrad)dv (37>
14

o0 For the three-phase system in the absence of chemical energy, the variational derivatives are

0,
on 19 =m (N1 — a1 + 2701 (Ya1517751 + Ya151751)) — £V 7 (38)
271 59
S = 7 Ul = 11 + 20 Ol + v100751)) = KV 051 (39)
272 6Qﬁ
57]:;" =m (13 — 151 + 2051 (V51721 + Vp161731)) — £V 151 (40)
. . e 0m _ 0Qm, . 5qu .
23 The order parameters 1,1, 731, 751 Will be in steady-state if St = 5%19 = 5 = 0 holds
2 throughout. From Eq. (40), since 05 = 0, 63729 = 0. Also using 751 = 0, Eq. (38) — (39)

s reduce to Eq. (33) — (34). Thus, steady-state a - § interfaces in the two-phase system are

a6 also steady-state solutions 6;}7’”19 = % = 0 for the three-phase system when ns; = 0.

o7 Having established the stability of two-phase interfaces considering only the multi-well

o and gradient terms, we now consider the effect of the chemical energy contribution. For the

12



o9 three-phase system, the variational derivatives of the original grand potential §2 are

50 6y Oha Ohs Oh;
= + Wo + wg + w 41
5na1 6na1 anal anal g anal ° ( )
280
5Q 6, Oha Ohs Ohs
201 s 0mp O Os " Oy e
50 60, Oha  Ohs  Ohs )

= + W + wg + ws
Ons1 Ons1 Ons1 Ons1 g IMs1

w2 In Eq. (43), 751 = 0 and Zelm=0 _ 9s0m=0) _ Ohss1=0) _ g5 52 — (. Because

Ons1 Ons1 Ons1 ons1
2y 2801=0) — () "Fq (41) reduces to Eq. (31). Similarly, Eq. (42) reduces to Eq. (32). Thus,
Ma1 y
2 when 151 = 0, order parameter profiles that satisfy (31) and (32) result in 5221 = 5‘;;21 =

265 for the three-phase system, and 5‘;% = 0 also holds. Thus, the planar a-f interface remains
286 an equilibrium solution for the three phase-system when the chemical energy contribution
267 1 also considered, and is stable with respect to spurious formation of additional phases.

s Lo guarantee that these are stable rather than metastable solutions, the additional condi-

520
oz,
200 0 and small composition fluctuations decay away [30]. As discussed by Folch and Plapp,

280 tions > (0 and ?T? > 0 must be satisfied to ensure that small perturbations of 15 about
201 1t is not possible to show this is true for arbitrary chemical free energy parameters [30].
22 However, as discussed further in Section III B, testing of a-f interfaces with ns; # 0 in the
203 initial conditions showed that the equilibrium a-f interface with 75, = 0 was recovered for

20 the material parameters used for verification.

205 D. Interfacial parameters

26 To perform quantitative phase-field simulations, the model parameters need to be related
207 to physical parameters of the system. To determine the interfacial energy in terms of model
208 parameters, consider the interface between grain 1 of phase o and grain 1 of phase [ described
299 in Section II B, with the interface normal to the x direction. For a multi-component alloy, the
s00 interfacial energy per unit area between phase o and phase f is defined thermodynamically
301 as the excess of the grand potential per unit area [37]. The interfacial energy 4141 is given
302 by

Oalpl = % /V (Winw + Wyrad + Wehem — weq) dVv (44)

303 Where w, is the equilibrium grand potential and A is the area of the interface between phase

50 « and phase . Consider a rectangular cuboidal integration volume V', with faces normal

13



s to the z, y, and z directions, within the bounds —L,/2 <z < L,/2, —L,/2 <y < L,/2,
s —L,/2 < z < L,/2, where L,, L,, and L, are the dimensions of the rectangular cuboid
s7 in the z, y, and z directions. The area of the interface A = L,L,, and we allow L, — oo
s0s t0 ensure the entire interfacial region is contained in the integration volume. Because the

300 interfacial normal is in the x direction, the system is uniform in the y and z directions, so

1 o0
Oa1581 :LyLz / (Winw + Worad + Wenem — Weq) Ly L dx

o (45)
:/ (Winw + Wyrad + hawa + haws — weq) do
s In equilibrium, w, = wg = weq. Since by definition A, + hg = 1,
Oal1p1l = / (wmw + wgrad) dz. (46>

sn As expected, there is no contribution from the bulk chemical energies to the interfacial
a2 energy of the system. The interfacial energies described by Eq. (46) are thus equivalent
u3 to the those described in Ref. [35], and the analysis developed there can be applied to this
s model. For convenience, we restate those results here. The interfacial energy can be written

315 S [35]
Oa181 = 9(Va1p1) VMK (47)

16 where g(7aig;) is a dimensionless function of 7,;3;. For the symmetric interface, ¢(1.5) =
27 v/2/3 [35]. The values of g(7ais;) have been tabulated based on numerical simulations [35,
s 38]. Near 7,87 = 1.5, g(7Vaigj) can be approximated as

4

4 2%a1p1 — 1
o ~ =/ fosaddle = =4 | ———————— 48
9(7 1,81) 3 fo, ddl 3 4(2%151 T 1) ( )

s where fo sqaaie 18 the value of f, at the saddle point of the free energy landscape. In some
20 cases, a desired ¢(Vaigj) = %‘ﬁ is known for given 0,3, m, and &, and it is necessary to
sz determine the value of v,,3; that will result in the desired g(7as;). This can be done based

22 on the results of Ref. [35, 38] using the polynomial interpolation
Yaigj = (—5.288¢% — 0.09364¢° + 9.965¢" — 8.183¢" + 2.007)‘1 . (49)

223 The characteristic width of the interface ¢,14; is defined based on the absolute value of the

24 gradients of the order parameters at the interface, and is given by [35]

K
loipr = | —F—— 50
o me,inteTf ( )
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325 Where fo inters 15 the value of fj at the interface. For a symmetric interface fointerr = %; for
26 Vo151 # 1.5, tabulated values of fo iners are available [35, 38].
27 Eq. (47) and (50) can be re-arranged to obtain

_ anl«godm \ fO,interf (51)

9(Va1p1)

328
Oal1p1

m = (52)

5&1519(%151) \ fO,interf

29 A convenient method to parameterize a system with multiple types of interfaces is to choose

130 one interface to be a symmetric interface, for example the 7,;-1p; interface. This amounts
31 to setting va151 = 1.5. Kk and m are calculated using Eq. (51) — (52) based on the physical
32 value of the interfacial energy 0,15 and the chosen interfacial thickness (4151 (subject to
13 the need to be significantly smaller than the curvatures of microstructural features of the

s system being simulated). For v,15 = 1.5, Eq. (51) and (52) reduce to [35]
3

K= 10a1,31fa1,31 (53)
335 6
m = —2elfl (54)
galﬁl

136 In this case, the values of k and m are determined by the parameters of the symmetric

s interface. The interfacial energies and grain boundary energies for all other types of interfaces

18 can then be set by calculating g = \/‘7’% for each interface, and determining the value of the

130 7 parameter needed to obtain that value of g using Eq. (49). It should be noted that the
s interfacial width will also change with 7,45, and the simulation mesh resolution must be set
s to adequately resolve the thinnest interface.

32 The Allen-Cahn mobilities for interfaces between grains can be parameterized using [13]

Ma1a20a1a2 = KLalaQ (55)

33 Where M4 is the grain boundary mobility, with dimensions length? x (energy x time)~!.
1 To determine the Allen-Cahn mobility for interfaces between phases, note from Eq. (9)
us that the driving force for phase transformation between phase a and [ is the difference
1s between grand potentials of those phases. Thus, the thin-interface analysis of Ref. [13] also
.7 applies to this model. That analysis allows the Allen-Cahn mobility at the interface between
s phases L,151 to be related to the interfacial mobility 14151 from the sharp-interface equation

s AfO7P = 00151 (1/ Ry 4 1/Ry) + v/ Motz [39], where A fz-CHB is the driving force for phase

15



ss0 transformation, R, and Ry are the principal radii of curvature of the interface, and v, is the
ss1 magnitude of the velocity normal to the interface. Using that analysis,

1 mg( al,@l) K
_V > SR AT . 56
mai1p1 \/E[fal,ﬁl 2m ¢(7 151)C ( )

352 L4(Va1p1) 1 a numerical function whose values have been tabulated for a range of v,14 [38].

353 ( represents the effect of the difference in compositions between phases on the interfacial
354 velocity in the phase-field model, and is given by ( = V%Q ! (crea—chen) Zfz_ll myy (57—
355 cg’eq) [13, 40], where ¢/ and ¢;*? are the equilibrium compositions of solute I in phase
6 v and 3, respectively, and my; are the elements of the inverse of the diffusion mobility
ss7 matrix Mp;. The thin-interface analysis was performed under the assumption that the
sss diffusion mobilities are the same between phases, M7, = M IB ; = Mj;; however, it was
0 found that when diffusion mobilities were of the same order of magnitude, the use of an
30 averaged diffusion mobility M;; = 0.5(Mp, + M Iﬁ ;) resulted in only small deviations from

se1 the expected kinetic behavior [13]. For a binary alloy with solute species A, maa = 1/Mya

xeq  Beq . . . oy
32 and ( = (CAVQQTL\)Q. In the case of K solute species, 1fﬁthe off-diagonal terms of the mobility
. . K—1 (¢ —¢ ,Eq)z
ses matrix vanish (M;; =0for I #J), (=Y, i 40].

s« For diffusion-limited growth, 1/mq151 = 0 and [13]

. ﬁmg('yall?l)

Loigr = LY, = 57
181 alpl HI(b(’Yalﬁl)C ( )

s where L o, is the mobility coefficient that ensures that local equilibrium is maintained at

366 the interface.

7 III.  MODEL VERIFICATION

s 1o verify the model, a binary alloy of A and B atoms is considered, with the density
w0 of A atoms represented by p4 and the atomic fraction of A represented by c4 = V,pa.
s Three possible phases are considered: «, 3, and §. The « phase has a parabolic free energy

a,min

i fo = 3kG(ca — 3™")?, where %™ = 0.1 and k4 = 10. The J phase has a parabolic free

B,min

o energy, fs = 1ki(ca — ™2, where ;™" = 0.9 and k; = 10. Finally, the § phase also
a3 has a parabolic free energy, f5 = Sk (ca — M2 where ™" = 0.5 and k% = 10. Other
s chosen material parameters are listed in Table I. Different values of k, m, Vaigj, Vais;j, and

315 Ygis; are considered, as described in Section IIT A-IITC.
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Parameter Value
G 0.1
kS 10
Smin 0.9
k5 10
Amin 0.5
kS, 10

v, 1
D%, DY, DY 1
Laisj 021 or1
Lgigjs Laisj> Lpisj|1

TABLE 1. Parameters for «, 5, and ¢ phases used for model verification.

w  The governing equations were solved numerically using the MOOSE framework [41].
sz Bach system is discretized spatially using uniform linear Lagrange finite elements, with dif-
s ferent element sizes as discussed further in Sections IITI A-III C. Time discretization used the
9 second-order accurate backward difference formula, with adaptive time stepping using the It-
30 erationAdaptiveDT algorithm implemented in the MOOSE framework [42]. The discretized
31 system of equations was solved for each time step using the preconditioned Jacobian-free
32 Newton-Krylov method. The MOOSE framework repository is publicly available at [43];
383 an example of the implementation of the model can be found within the repository at [44];

se further information on installation and usage of the MOOSE framework is available at [45].

s A. Morphology

s Lo verify the equilibrium behavior of the model, we consider the morphology of an a-
;7 phase grain between two 8 phase grains, 51 and 2. In this case the « phase grain assumes a
s lenticular shape, as shown in Figure 1. Experimentally, this morphology is observed when a
;0 daughter phase precipitates at a high-angle grain boundary between two grains of a supersat-
300 urated parent phase, and is sometimes referred to as a grain boundary allotriomorph [46-50].

s This morphology is also observed in nuclear fuels such as UO, when insoluble gaseous fission
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302 products such as Xe and Kr form gas bubbles at grain boundaries [51-55].
33 In our simulations, a circle-shaped « phase particle with radius » = 10 is placed on the
s grain boundary between two [ phase grains as the initial configuration. The domain size is
s0s 40 X 40, and the mesh is composed of uniform elements with size Az = Ay = 0.5. Changing
306 the element size from Ax = Ay = 0.5 to Az = Ay = 0.125 caused the measured dihedral
57 angle, as described later in the present section, to change by only 0.12% for the case K = 1,
38 M = 1, Va3 = 1.5, vs132 = 1.5; therefore for computational efficiency Ax = Ay = 0.5 was
300 Used in the remainder of this section. No-flux boundary conditions are used. Because this
w0 configuration is not at thermodynamic equilibrium, microstructure evolution is expected
w01 during relaxation. After full relaxation, the o phase particle attains a lenticular shape,
a2 and its morphology is determined by the interplay of interfacial energy and grain boundary
a3 energy. We assume the interfacial energies 0,151 = 012 = 0ap. As shown in Fig. 1, the
s0s length, thickness and dihedral angle are noted as L, S and ¢, respectively. To verify that the
a5 model produces the correct morphology for a grain boundary allotriomorph, we calculate
we ¢*"™ from L and S measured from simulations, and compare ¢*™ to the dihedral angle
a7 predicted by the balance of interfacial energy and grain boundary energy, ¢*":

cos (?) = Zi—f;. (58)
w8 In the simulation of Fig. 1, the parameters are chosen as Y4181 = Ya1p2 = Yap = 4.9,
w9 Yg1p2 = 1.5, Kk = 1.0 and m = 1.0. The interfacial energy and grain boundary energy
a0 can be estimated using Eq. (47) and Ref. [38], and the dihedral angle is determined to be
m o™ = 135°.
a2 To determine ¢*™ from L and S, the results of previous geometric analyses are used [46,
a3 49]. The shape of an idealized grain boundary allotriomorph is assumed to be that of
aa two spherical caps, with both spheres having the same radius. In 2D, a grain boundary
a5 allotriomorph can be considered as the intersection region between two circles (orange dashed
a6 circles in Fig. 1). Assume the radius of each circle is r, and the distance between the two
a7 circle centers is d. The length and thickness of the grain boundary allotriomorph can be

a8 expressed as functions of r and d,

L=Va?—& (59)

419

S =2r—d, (60)
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FIG. 1. Geometrical analysis of a grain boundary allotriomorph, with length L, thickness S and
dihedral angle ¢ indicated. v,5 = 4.5, vgg = 1.5, ¢*"* = 135°. The color bar represents the value

of 7, 77%2‘ and is used to provide a visualization of the microstructure.

20 7 and d can be solved through Eq. (59) and (60) as,

L? + 52
= — 61
r=—Jg (61)
421 12 g
d=——" 62
55 (62)
222 On the other hand, the dihedral angle is also related to r and d through
d
R 63
O T o (63)

23 The dihedral angle ¢ can be expressed in terms of L and S by combining Eq. (61), Eq. (62)
a0 and Eq. (63),
¢ = 4arctan(S/L). (64)

w5 The geometrical parameters L and S can be measured in our simulation results. S is
w6 measured as the distance from h, = 0.5 on the top edge of the « particle to h, = 0.5
227 on the bottom edge of the particle, along the vertical line x = 0 through the center of
w8 the system. (Because the circular initial condition was exactly centered in the simulation
»o domain, the thickest portion of the particle in the y-direction is expected to remain along
a0 this vertical line; this was verified by measuring the thickness along the edges of adjacent
s elements located at * = —0.5 and © = 0.5.) The location along x = 0 where h,; = 0.5

sz was determined through linear interpolation of the shape functions representing 7,1, 11,
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K |m |Yas 65152 ¢an ¢sim A¢sim

1.0|1.0{4.5 2.82 |135°]131.6°16.3°

0.5]1.0(4.5 2.0 |135°]133.3°|4.2°

0.5/0.54.5 2.82 |135°]132.1°|5.7°

0.5]1.0(1.5 2.0 |120°]118.3°|3.4°

0.5/1.0{0.9988(2.0 |105°|103.3°|2.7°

TABLE II. Parameters for a-f3 system used for model verification. Measured dihedral angles ¢

are within estimated measurement uncertainty A¢*™ of the analytical prediction ¢®".

s and 7nge and calculation of the resulting h,. Similarly, L is measured along the horizontal
s line x = 0 through the center of the system. However, because in the present model the
.35 order parameters are not constrained to sum to 1 at each position, the definition of where
a6 the left and right edges of the particle are located is not completely clear. This leads to
a37 uncertainty in measurement of L due to the diffuse interface description that is large relative
a3 to the uncertainty in the measurement of S. We choose the points h, = 1/3, hg = 2/3 as
a3 the edges of the particle (which corresponds to 7,1 = 751 = 1z2 = 0.270 for the simulation
w0 shown in Fig. 1). To estimate the effect of the uncertainty AL on the measurement of ¢*™,
a1 we assume that the location of the left and right edges of the particle cannot be determined
a2 any more accurately than half the characteristic thickness of the grain boundary, £z42/2.

w3 The uncertainty in the measurement of the angle, A¢*™, is given by

sim 8¢81m 2 B 4 S
s = (22w = S )

L

ass where AL = l31430/2 is the uncertainty in the measurement of L, and the uncertainty in S
us has been neglected. Since the interface width is a function of x and m, we perform a series of
us simulations to test the effects of K and m on ¢*™. The results and associated uncertainties
w7 are summarized in Table IT. All the listed values of ¢**™ are in a reasonable range comparing
ag with their analytical counterparts.

w9 Another two simulations are performed with different values of 7,4, and results are also

ss0 included in Table II. Similar to the previous cases, the dihedral angle measured in the

a

ss1 simulation differs slightly than that from energetic calculations, which is due to the diffuse

a1

4

a1

> interface description in the phase field model as discussed above. From above simulation
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a3 results, the morphologies of the grain boundary allotriomorphs are well captured in our
sse multi-phase grand potential based model, with the predicted dihedral angles agreeing with

w55 classical geometrical and energetic analyses within estimated measurement uncertainty.

6 Another test case was conducted to demonstrate that the model is able to capture the
ss7 different morphologies of corner (triple-junction) and edge (grain boundary) second-phase
s particles. In this simulation, a hexagonal matrix grain structure with four different a-phase
w0 grains (order parameters) and periodic boundary conditions in 2D was used. The system
w0 size was 512 x 512, and initially circular 3 particles of radius 15 were distributed on both
1 grain boundaries and triple-junctions. It was assumed the interfacial and grain boundary
w2 energies are equal, as may be encountered for incoherent a-f interfaces and random high-
w3 angle grain boundaries between a grains [56]. The same parameters summarized in Table I
w4 were used, along with m = k£ = 1.0 and 7438 = Yaia; = 1.5. Uniform finite elements with
ws Az = Ay = 0.5 were used, since converged particle morphologies were obtained for particles
66 with the same parameters and initial radius 10 previously in this section. The a-phase matrix
w67 Was supersaturated in the initial conditions, with an initial composition ¢4 = 0.15 compared

a,min

ss with the bulk equilibrium composition ¢y = ¢™" = 0.1, while the § phase precipitates
a0 had initial composition ¢4 = 0.9 equal to the bulk equilibrium composition for the g phase.
a0 After a short transient, the particles assume their expected shapes as shown in Fig. 2a below.
«n While edge particles have the expected lenticular (consisting of two circular segments) shape,
a2 corner particles have three circular segments with a triangular cross-section [57]. The shape
a3 of corner particles also stems from the balance between interfacial and grain boundary
as energies that requires grain boundaries to enclose equal dihedral angles and form three
ars tips [57].

aws  Fig. 2b - 2¢ show the continued evolution of the microstructure. Both corner and edge
a7 particles initially grow because of supersaturation. However, as supersaturation in the ma-
a3 trix decays, the coarsening stage is entered and corner particles start to grow at the expense
aro of edge particles. This preferential coarsening results from the curvature difference that
a0 establishes a chemical potential gradient, driving matter from edge particles to corner par-
ss1 ticles. This could have a strong implication on grain growth kinetics in materials containing
s second phase particles since it has been shown that corner particles are more effective in
43 pinning grains than edge particles [58]. Hence, if coarsening of second phase particles is

ses active in such systems, grain growth will be hindered, which will make it difficult to achieve
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FIG. 2. Snapshots of growth and coarsening of a-phase particles from a supersaturated (¢ = 0.15)
polycrystalline matrix. Simulation times are as follows: (a) ¢ = 50, (b) ¢ = 100, (c) ¢t = 150.
Corner (triple-junction) particles grow at the expense of edge (grain boundary) particles because
of the effect of curvature. The color bar represents the value of . ngﬂ- and is used to provide a

visualization of the microstructure. The color bar is applicable to each subfigure.
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w5 large grain sizes in such materials.

6 B. Stability of a two-phase interface

w7 To verify that a two-phase interface is stable with respect to the formation of a third phase
s at the interface, a 1D domain with the «, 3, and ¢ phases is considered. The 1D domain
a0 Tanges from x = —15 to x = +15 and is discretized with uniform elements with Az = 0.5. A
a0 uniform time step At = 1 was used in this case. The initial conditions are an a-( interface
w01 With some amount of the § phase present, as given by 7, = % [1 — tanh (\%)}, ngL =
492 % [1 + tanh (\%)], and ns; = A, where 0 < A < 0.1. The initial condition for chemical
a3 potential was p = 0 throughout. We take kK = m = 1 and v,181 = Ya151 = Y151 = 1.5.

wa  For the case A = 0, the initial conditions are equivalent to the steady-state equilibrium
w5 interfacial profile given by Eq. (35)-(36) with no 0 phase present. It was verified that ns;
w06 Temained at 0 as the system evolved in time, as expected from Section IIC. The cases A =
07 0.005, 0.05, and 0.1 were also simulated, corresponding to a small perturbation in 759 in the
w0 initial conditions. In each case, 15y rapidly decreased to 0 throughout. An example of the
a0 evolution of the order parameters for the case A = 0.1 is shown in Fig. 3. Thus, for the
so0 aterials parameters considered here, the a-f3 interface is stable with respect to formation

sor of the ¢ phase.

502 C. Kinetics

s To verify the kinetic behavior of the model, the growth of a precipitate phase from a su-
soa persaturated matrix is simulated. Two geometries are considered for the kinetic verification:
sos the growth of a plate of g phase from supersaturated o (1D configuration), and the growth
s Of a spherical particle of 8 from supersaturated o (3D configuration). In the 1D configura-
so7 tion, one-half of a growing plate of the S phase is simulated in a 1D domain ranging from
so8 © = 0 to x = 5000. The initial half-thickness T" of the plate is 100. In the initial conditions,
500 1)31 = 1 [1 — tanh <%>} and 1, = % [1 + tanh (%)}, where x¢o = 100. The initial

2

s10 chemical potential is given by ps = }1 1 + tanh ’”\_/”250 , corresponding to c4 = 0.9 in the

su precipitate and ¢4 = 0.15 in the matrix. This supersaturation causes the precipitate to grow

si2 in the 4+ direction. No-flux boundary conditions are used on both ends of the domain.
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FIG. 3. Simulation of the evolution of a non-equilibrium «-f interface with 7s5; = 0.1 in the initial
conditions. Simulation times are as follows: (a) t =0, (b) t =1, (¢) t =2, (d) t = 5. ns1 decreases
to 0 and the a-f interface evolves to the equilbrium interfacial profile, demonstrating that for the

materials parameters considered here, the a-8 interface is stable with respect to formation of a

third phase.

s3.  The results of the 1D simulations are shown in Figure 4a. An analytical solution is
s1e available for this configuration [59], which predicts T' = ay v/ Dt, where ¢ is the time and
'y —c5
o =K (7;41 BA) o) (66)
(ca —ci)2(ey —ch)?

sis where ¢ = 0.1 is the atomic fraction of A in the o phase at the v — (3 interface, ci =0.9is

si6 the atomic fraction of A in the § phase at the v — 3 interface, and ¢} = 0.15 is the atomic
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FIG. 4. Simulations of growth of 5 phase from supersaturated a phase (parameters given in Table I,
with ¢4 = 0.9 in the § phase and ¢4 = 0.15 in the « phase). (a) Growth of a plate of § phase (1D
geometry). (b) Growth of a spherical precipitate of 8 phase (3D geometry). The fit is to the linear
portion of the Az = 1 results, and in each case the slope of the fit line is in good agreement with
the analytical prediction. The inset shows the effect of decreasing mesh resolution to the point

where the interface is no longer adequately resolved.

s17 fraction of A in the supersaturated matrix far from the interface. K is a numerical constant
s18 with a value of 1.13 for the values of ¢}, cﬁ, and ¢’} used.

s As shown in Figure 4a, the expected linear relationship between 7" and v/t is observed for
s0 Ax = 1 (the characteristic interface thickness used in these simulations was {4151 = 2.82).
s2 The slope of a least-squares fit to this data was 0.073 &= 8.0 x 107°, in good agreement with
522 the prediction of the analytical solution of ayv/D = 0.073.

s To quantify the effect of mesh resolution on the accuracy of the results, the simula-
s2¢ tions were repeated with coarser mesh spacings. As shown in the inset to Fig. 4a, when
s5s Ax = La151/2 = 1.41, T begins to deviate from linear behavior with respect to V/t, showing
s26 periodic increases and decreases in the growth rate as the interface between phases becomes
s7 insufficiently resolved. When Az = 2, the magnitude of oscillations in growth rate increases,
s2s and the deviation of T' from the Az = 1 simulation becomes significant.

s20  In the 3D configuration, a spherical § particle of initial radius ro = 100 grows into

s3 the supersaturated o matrix. The simulation domain is spherical, ranging from R = 0 to

sn R = 5000, and symmetric spherical coordinates are used. No-flux boundary conditions are
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s22 used. The initial conditions used hyperbolic tangent functions as in the 1D configuration,
s33 and the matrix composition was again supersaturated to c4 = 0.15.

s The results of the 3D simulations are shown in Figure 4b. For growth of a spherical
s35 precipitate, the analytical solution [59] predicts particle radius r = a3V Dt, where

m
a3:K3(CA )

67
(dh— ) (o7

=] o=

s3 The initial particle radius of 100 is large enough that the Gibbs-Thomson effect on equilib-
s37 rium compositions can be neglected, and again ¢} = 0.1, ¢’y = 0.15, and cﬁ = 0.9. For these
s3s values, K3 = 1.59.

s As shown in Fig. 4b, after an initial transient, the expected linear relationship between
s0o 7 and +/t is observed. Consistent with the results of Ref. [13], the initial transient for 3D
s simulations was much longer than for the 1D simulations. A least-squares fit to the data for
si2 /t > 400, Az = 1 had slope 0.413 £2.7 x 107, in good agreement with the prediction of
s a3/ D = 0.410 from the analytical solution. When coarser meshes were used, oscillations in
saa growth rate were observed as in the 1D case, although their magnitude was smaller. Based
sss on the 1D and 3D results, a ratio of interface thickness to mesh spacing of approximately
sa6 3 Or greater is recommended, although it should be noted that the interfaces considered in
se7 this section had either zero or relatively low curvature (for 1D and 3D cases, respectively).
s [t should also be noted that identical results were obtained for Lais = L5 = 0.21 and
s90 Lo1g1 = 1. In Ref. [13], instability in the order parameters and detachment of the order
ss0 parameters from the composition profiles was observed for Ly > L} 51- These phenomena
ss1 were not observed here. This may be due to the fact that equal diffusivities were used in each
s> phase, in contrast to Ref. [13], where the diffusivities in different phases varied by several

ss3 orders of magnitude.

s« IV, PHASE SEPARATION

ss5  In this section, we consider the capability of grand-potential based phase-field models to
ss6 model phase separation. The phase stability can be examined using linear stability analysis
ss7 of the phase-field kinetic equations. For the case where concentration is used as the sole
sss phase-field variable (Cahn-Hilliard model), it is well known that spinodal instability takes

sso place when the second derivative of the free energy becomes negative. This analysis has been
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se0 generalized by San Miguel et al. [60] to systems with different types of phase transitions and
ss1 where both conserved and non-conserved order parameters are coupled. Instead of repeating
ss2 the linear stability analysis here for the grand potential formulation, we transform the grand
se3 potential model back to the classical free energy formulation, and use the results of San
see Miguel to deduce its stability. Note that such a transformation always exists, but it can be
ses derived analytically only for the special cases of parabolic or dilute solution free energies
ssc Wwhere concentration can be directly expressed in terms of chemical potential and phase-field
se7 variable [32].

ss¢  For simplicity, we first consider phase separation by spinodal decomposition in a two-
se0 phase binary system. In this case, a single phase-field variable (order parameter) 7 is suffi-
s cient to distinguish between the phases, i.e., 7 equals 0 in the matrix/parent phase («) and
sn 1 in the precipitate/second phase (). Similar to the original work by Plapp [32], the total

s22 grand potential can be expressed as

0= [ [, V) + o, ]V (63)
s73 In the above, the interfacial grand potential has the regular form,

wins(0, V) = mf(1 = n)? + 5| V[ (69)
sz and the bulk grand potential takes on the form

wouk = h(n)wa(p) + [1 = h(n)]wa(u) (70)

szs where the interpolation function has to satisfy the following conditions,

h(n=0)=0 (71)
576
hn=1)=1 (72)
) )
d77 n=0 d?’] n=1

sis A few interpolation functions have been proposed in literature. However, as we will demon-
s7o strate below, the exact form of this function determines whether or not phase separation
ss0 can be simulated. We assume here that the free energies of the phases have parabolic de-
ss1 pendence on concentration as in the cases presented above. In this simple case, the solute

se2 concentration is related to the chemical potential and phase-field variable by [32]

¢ = c*n) + plh(n)/ke + (1 = h(n))/ka] (74)
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ss3 The first term on the right hand side is the equilibrium concentration profile given by
ssa ¢24(n) = h(n)c® + [1 — h(n)]c*. Therefore, if one is to construct a free energy-based phase-
ses field model consistent with the grand potential formulation above, the chemical potential
sss dependence on concentration and phase-field variable must satisfy Eq. (74), that is, it has

ss7 to take on the form
o) = )
’ h(n)/ks + (1 = h(n))/ka

sss 'T'he total free energy can then simply be deduced by integrating

(75)

8f521k = p(c,n) with respect

ss0 to ¢ using Eq. (75) and noting that the constant of integration is simply given by Eq. (69).

soo ' This results in

_ [c — ()]’
Foi 1) = 3oy s + (1~ W) el 7
so1 and the total free energy is
F= / ftot(”a an C)dv = / [fint(na V77) + fbulk(C> 77)] dv (77)
1% v
se2 Where
fus (0, V) = (1 = )2 + 2|Vl (78)

s03 One must keep in mind that the resulting free energy-based model derived here will also have
s the advantage of decoupling interfacial energy from bulk energy. In other words, there is only
sos one unique way of interpolating the free energies of the phases (Eq. (76)) that guarantees
s06 this feature.

s Before we present the stability analysis of the model discussed above, we simplify things
se¢ further by requiring, without loss of generality, that the free energy parabolas of the two
s90 phases to have the same curvature k, = kg = €, and the solute concentration to be normal-
s00 ized such that ¢ = 1 in the precipitate phase and ¢ = 0 in the matrix phase. After such

so1 simplification, Eq. (76) becomes

Fout(e.m) = 5le = b)) (79)

2 According to the linear stability analysis of San Miguel [60], the chemical spinodal insta-
s03 bility can be inferred from the Hessian matrix of the total free energy density. Particularly,
s0os spinodal decomposition will proceed if the value of the determinant of the Hessian matrix

s0s calculated for the initial state is negative, i.e.,

_ 82ftot athot azftot ?
det H(ftot) = 662 0772 - |: aca/r, :| < 0.

(80)
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sos Now if we consider the initial state to be a supersaturated matrix (n = 0, 0 < ¢ < 1) and
sor taking into account the specific total free energy density of Eq. (77) and the requirements

s0s of Eq. (71) - (73) on the interpolation function, the stability limit can be expressed as

c=0. (81)

s00 In other words, phase separation via spinodal decomposition takes place if the concentration

s10 is higher than the critical spinodal concentration, i.e.,

2
> = (82)
-
dn n=0

su According to Eq. (82), the interpolation function has then a profound effect on the phase sep-
e12 aration stage. For instance, if one considers the two most common forms used in literature,

s13 the results are completely different. The first commonly used form is
h(n) = 3n° = 21° (83)
e1a for which the spinodal concentration is ¢* = £*. On the other hand, for the form
h(n) = n*(6° — 157 + 10) (84)

s1s the spinodal concentration is infinite since the second order derivative vanishes, which means
s16 that this specific form cannot be utilized to describe phase separation.

sz Based on our analysis presented above, we conduct for the first time simulations of phase
s1s separation using a grand-potential phase field model. We implement the two-phase grand
s10 potential model described by Egs. (68) - (70) and use the interpolation function given by
620 Fiq. (83). The kinetic equations are the same as the ones that appear in the original work
sz by Plapp [32] and are solved using MOOSE as summarized in Section IIT .

s22  T'wo simulations for two different spinodal decompositions were carried out. Note that
s23 for the simplified model we use here, the chemical potential and concentration are related
624 by p(c,n) = ele— h(n)] via Eq. (79). Hence, the critical chemical potential that corresponds

e2s to the spinodal concentration is simply given by
w(c®,n=0)=ec (85)

e In the first simulation, we use m = 1.5, ¢ = 1.0, and hence p* = ¢* = 0.5, while in

27 the second simulation we use m = 0.5, ¢ = 1.0, and hence p* = ¢® = 0.167. In both
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s2s simulations, the initial configuration was a supersaturated matrix close to the spinodal
s20 instability, i.e. 7 = 0, and u = p® + 9, where § is a random fluctuation given by a uniform
s30 random number between —0.1x° and +0.1x°. This corresponds to fluctuations in the range
631 0.45 < ¢ < 0.55 for ¢® = 0.5 and 0.1503 < ¢ < 0.1837 for ¢® = 0.167. The magnitude of
s32 initial composition fluctuations in physical systems undergoing spinodal decomposition may
633 vary widely depending on the materials system and processing conditions; however, unstable
s fluctuations will grow regardless of their initial amplitude in spinodal decomposition [61],
s35 S0 the choice of initial magnitude should not change whether spinodal decomposition occurs
636 in the present simulations. Snapshots of the phase separation process in these systems are
s shown in Fig. 5 below. For the case of high spinodal concentration (upper row), the emerging
s3s second phase has the usual lamellar structure, while for the low spinodal concentration (lower
s TowW), the emerging phase has a circular shape. The dependence of the morphology of the
s40 precipitates on spinodal concentration has been reported in literature before [62].

sa1  While the analysis presented here is for the simple case of a two-phase system, it can
sz be adapted for a multi-phase system using the formulation presented earlier in the paper.
3 To demonstrate this, without loss of generality, we also consider a binary two-phase sys-
o tem. However, now there are two order parameters representing the two phases, 7z (the

s4s precipitate) and 7, (the matrix). Therefore the total grand potential is now given by

Q= /V [Wint(nﬁa N, vnﬁa vna) + Wbulk(,uv Nes 77,6’)] dv (86)

sss The interfacial and bulk grand potential densities now have the forms,

1 77?3 77% 77i 773 2 9 K 2 2
Wint (18, T, Vg, Vo) =m | = + = — — 4+ =% — 2 4 ymenz | + = [[Vnal™ + | Vnsl’]
L R R 2
647 (87)
Wouk = "g(13, Na)ws (1) + ha(Ns, Mo )wa (i) (88)
648 9
n
ha ng,Na) = = 89
(18, 7a) e (89)
649 n2
hs(Ns Ta) = ——2 90
5(18,Ma) Bt (90)

sso0 Now, following the same procedure described earlier in Section IV to derive the correspond-

es1 ing free energy consistent with this grand potential, one arrives at

F /V Frot (€15, s Vi, Vi)V = /V it (13 1 V03 V1) + ot (31 m)] 4V (91)
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FIG. 5. Simulations of phase separation in a two-phase binary system using a grand potential based
phase-field model with a single order parameter. Simulation times are as follows: (a), (c) t = 0;
(b), (d) t =200. The left column represents the initial configurations of the supersaturated matrix
(see text) and the right column shows the concentration map after phase separation is complete.
The upper row shows the morphology of second phase developed during separation for the case of
high spinodal concentration (¢®* = 0.5), and the lower row captures the morphology developed for

the case of low spinodal concentration (¢® = 0.167).

1 77?3 77% 7721[ 7734 2 92 K 2 2
Fint (03,0 Vlg, Vila) =m | 7 4 5 = o+ 25 = T Yagllalls | + 5 [[V7a]™ 4+ Vsl

(92)
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[c — (15, a)]?
2[hp(Mp, M)/ ks + ha(nps Na)/kal

Ceq(ﬂm 77a) - hﬂ(nb’a %)Cﬂ + ha(nﬁa %)Ca (94)

Jou (¢, M8, Ma) = (93)

654

sss Moreover, the bulk free energy density can be simplified further if one follows the same
sss assumptions that led to Eq. (79), i.e., same curvature of parabola for the two phases and
es7 normalized concentration, and notes that h.(7s,17.) = 1 — hg(ns, na). Specifically, Eq. (93)

ss8 becomes,

e e = ha(g, na)]”
2

sso The stability can then be determined from the Hessian matrix of the free energy as described

fbulk(cv N3, na) = (95)

s0 previously in the current section, though the Hessian matrix here is a 3 x 3 matrix. The

s stability condition for an initially supersaturated matrix (ns =0, 7, =1, 0<c< 1) is

m(29as — 1)

c>c =
2¢

(96)

sz To demonstrate phase separation using the multi-phase model, 3D simulations were per-
s3 formed of an a-f system with ¢ = 1 and normalized concentration, so that ¢® is given by
ses £q. (96). Other parameters were m = 0.4 and 7,3 = 1.5, resulting in ¢®* = 0.4, and xk = 1.
ss The initial conditions for the order parameters were 7, = 1 and 73 = 0, and the initial
sss condition for p was 0.5 4 o, where in this case 0 is a uniform random number between —0.1
7 and 0.1. This corresponds to fluctuations in the range 0.4 < ¢ < 0.6. The system size was
scs 270 x 270 x 270, with a uniform element size Ax = Ay = Az = 1.5. The initial condition
sso and microstructure after phase separation is shown in Fig. 6. Consistent with Fig. 5, the

s70 higher average composition ¢*9 = (0.5 results in a lamellar microstructure.

o1 V. CONCLUSIONS
s In this work, a new multi-phase, multi-order parameter model has been developed based
o3 on a grand potential functional. The advantages of this model are:

ez« 1. it removes the chemical energy contribution to interfacial energy, simplifying parame-

675 terization;

ets 2. it decouples interfacial energy and interfacial thickness, allowing the use of increased

677 interface thickness and therefore improving computational efficiencys;
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(a) (b)

FIG. 6. Simulations of phase separation in a two-phase binary system using a grand potential based
phase-field model with 1, = 1,73 = 0 representing the o phase and 1, = 0,73 = 1 representing
the /5 phase.(a) shows the initial condition of ¢ (¢ = 0) and (b) shows ¢ after phase separation is
complete (¢ = 600). The average concentration ¢**9 = (0.5 is above ¢® = 0.4, so the system phase

separates and forms a lamellar microstructure.

es 3. it prevents the spurious formation of additional phases at two-phase interfaces due to

679 stability against third-phase perturbations;

s 4. additional phase concentration variables are not required as in the KKS approach,

o

681 simplifying implementation.

2 It is limited in the forms of chemical free energy that can be used, but this is not a severe
s83 limitation since parabolic functions can be used in this model, and more complex free energy
ssa functions are often approximated using such parabolic functions in phase-field modeling.

s The equilibrium behavior of the model was verified by comparing the simulated morpholo-
ess gies of second-phase particles at grain boundaries and triple junctions to the morphologies
ss7 expected from the balance of interfacial and grain boundary energies. The kinetic behavior of
sss the model was verified by comparing simulation results to the analytical solution for second-
ss0 phase growth from a supersaturated matrix in 1D (plate morphology) and 3D (spherical

s0o morphology). Finally, we showed that phase-field models based on a grand-potential func-
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soa1 tional are capable of simulating phase separation, and derived the conditions under which
so2 this is possible. Since this model is formulated for an arbitrary number of phases, grains,
sz and chemical species, it is expected to be useful for simulating a broad range of materials

604 Systems.
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