
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Using correlated motions to determine sufficient sampling
times for molecular dynamics

Ryan L. Melvin, Jiajie Xiao, Kenneth S. Berenhaut, Ryan C. Godwin, and Freddie R.
Salsbury, Jr.

Phys. Rev. E 98, 023307 — Published 24 August 2018
DOI: 10.1103/PhysRevE.98.023307

http://dx.doi.org/10.1103/PhysRevE.98.023307


APS/123-QED

Using correlated motions to determine sufficient sampling times

for molecular dynamics

Ryan L. Melvin

Wake Forest University Department of Physics and

Wake Forest University Department of Mathematics and Statistics

Jiajie Xiao

Wake Forest University Department of Physics and

Wake Forest University Department of Computer Science

Kenneth S. Berenhaut

Wake Forest University Department of Mathematics and Statistics

Ryan C. Godwin and Freddie R. Salsbury Jr.∗

Wake Forest University Department of Physics

(Dated: August 6, 2018)

Abstract

Here we present a novel time-dependent correlation method that provides insight into how long

a system takes to grow into its equal-time (Pearson) correlation. We also show a novel usage

of an extant time-lagged correlation method that indicates the time for parts of a system to

become decorrelated, relative to equal-time correlation. Given a completed simulation (or set

of simulations), these tools estimate (1) how long of a simulation of the same system would be

sufficient to observe the same correlated motions, (2) if patterns of observed correlated motions

indicate events beyond the timescale of the simulation, and (3) how long of a simulation is needed

to observe these longer timescale events. We view this method as a decision-support tool that will

aid researchers in determining necessary sampling times. In principle, this tool is extendable to

any multi-dimensional time series data with a notion of correlated fluctuations; however, here we

limit our discussion to data from Molecular Dynamics simulations.

∗ salsbufr@wfu.edu
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I. INTRODUCTION

What is an appropriate amount of sampling in molecular dynamics (MD) simulations is

a recurring, open question (see for example [1–4]). For example in amyloid studies of fibril

and oligomer stability, this problem is particularly severe (see for instance [5–9]). Especially

when limited by computational resources, a choice often must be made between running few

long-timescale simulations to capture rare conformations and slow events or running many

short simulations for stronger statistics. Here we present two tools that will aid researchers

in this decision.

Extant methods for addressing issues of sufficient sampling in MD tend to modify the

method of sampling itself. For example, umbrella sampling techniques modify a system’s

potential in order to access regions of conformation space that traditional MD might not

reach under limited sampling. For a thorough discussion of such techniques, see [10, 11] and

the citations therein. Another popular technique – replica exchange Markov chain Monte

Carlo sampling (also called parallel tempering) – runs multiple simulations in parallel at

various temperatures and exchanges conformations among them [12, 13].

Rather than adjusting the sampling method, we take on the issue of determining how

much sampling is sufficient for a given system in the absence of experimental guidance. If

experimental data is available and indicates the physiological time for some process, that

information provides the best possible guidance for how much simulated time is needed; see

for example [3, 14–25]. However, for systems or processes without clear experimental data,

researchers are left to make educated guesses at sufficient timescales for their simulations.

The two techniques we present here refine such initial conjectures. Given a completed pilot

simulation (or set of simulations), the methods presented here determine (1) how short of

a simulation of the same system would be sufficient to observe the same correlated motions

as seen in the pilot simulation(s), (2) if patterns of correlated motions observed in the pilot

simulation(s) indicate events beyond the timescale of the simulation(s), and (3) how long of

a simulation is needed to observe these longer timescale events. Also, it is worth mentioning

that this method could be implemented to run periodically during a simulation to inform

stopping conditions.
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II. METHODOLOGY

We first perform this analysis using a well-established time-lagged correlation technique

(see for example [26]), which modifies Pearson correlation to ask how is atom j at time

α correlated to atom k at time α + τ . By calculating the correlation coefficient of the

time-lagged correlation matrix with the equal time (also called Pearson [27, 28]) correlation

matrix for various values of τ and various systems (Figure 1), we see roughly exponential

decay of correlated motions from the equal time correlations. Mathematically, such a decay

pattern is expected as the correlation matrices are exactly the same at τ = 0. We can then

fit exponential curves (supplemental Figures 1-3) to these data sets to estimate the number

of events (number of exponential terms needed) and the timescale of these events (decay

constant for a given exponential term).

This section proceeds with a discussion of time-lagged correlation, exponential fitting and

our novel correlation propagator. For those wishing to reproduce our analysis and/ or apply

it to their own work, we have made our python code and the time series data for the examples

presented in this work available at https://doi.org/10.6084/m9.figshare.6613481.

A. Time-lagged correlation

If ri and rj are position vectors of two atoms in the sample, then the typical covariance

of their motion is calculated using

C̃ij ≡
N
∑

α=1

(rαi − 〈rαi 〉) ·
(

rαj − 〈rαj 〉
)

N
(1)

Here N indicates the total number of frames and alpha is the index over each frame of

the trajectory. We then calculate the correlation by normalizing the covariance. To do so,

we divide by the square root of the product of C̃ii and C̃jj, making the diagonal elements

all 1 – that is, an atom always fluctuates exactly with itself. That is, the correlation matrix

is calculated by

Cij =
C̃ij

√

C̃iiC̃jj

(2)
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For time-lagged correlation with a lag time of τ , we modify C̃ij to

C̃
(τ)
ij ≡

N−τ
∑

α=1

(rαi − 〈rαi 〉) ·
(

rαj − 〈rα+τ
j 〉

)

N − τ
(3)

and similarly normalize to make the diagonals 1, as in Equation (2), to arrive at the the

time-lagged correlation matrix with a lag time of τ . Intuitively, consider at time α, the

movement of x provides information about the future movement of y at time α + τ .

B. Exponential fitting

Having calculated both the typical correlation matrix and time-lagged correlation matri-

ces for a series of values of τ , we calculate the correlation coefficient of the typical correlation

matrix with each time-lagged matrix, resulting in a time series of correlation coefficients.

We perform exponential fitting on this time series to estimate the number of events and the

respective timescales thereof. The intuition here is that the number of overlapping expo-

nential curves is the number of “events.” That is, each correlated motion “event” has its

own decay constant.

The results of exponential fitting are sensitive to the algorithm and parameters (e.g.

initial guess) used. For extensive discussions, see for instance [29, 30] and the citations

therein. We describe here the algorithms used for the fits displayed in supplemental Figures

1-6.

For single exponential fits, with y as the observed time series of correlation coefficients

and τ as the corresponding lag times, we want to fit a model of the form

y = A∗eB
∗τ . (4)

For this case, we make a transformation in τ and define a new response variable Y , that is

linear with respect to ln(τ). This transformation allows for fitting with typical least squares

regression.

Y = A+B ln(τ). (5)

To perform a least squares linear regression of the form Y ∼ ln(τ) using the polyfit method

in the Python NumPy package [31] to obtain estimates for A and B, Â and B̂, and calculate

the corresponding fitted values

Ŷ = Â+ B̂ ln(τ). (6)
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FIG. 1. Correlation coefficients of time-lagged correlation matrix at a series of τ values to the typical

equal time correlation matrix are presented for (a-b) therapeutic DNA strand F10 in physiological

solvents – (a) potassium-heavy and (b) sodium-heavy. NEMO zinc finger with (c) and without (d)

a bound zinc ion, Thrombin in a (e) stabilizing and (f) destabilizing solvent, and MutSα with (g)

cisplatinated DNA and (h) carboplatinated DNA. Bars indicate one standard error.
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In the case of single exponential fitting, we preferred this transformation-then-fit due to the

intuitive, ubiquitous nature of least squares fitting. However, one could certainly use the

Levenberg-Marquardt method discussed below for all cases.

For double (or triple) exponential fitting, we want to fit a model of the form

y = AeBτ + CeDτ +
(

EeFτ
)

. (7)

In, this case, we use the optimize.curve_fit method in the SciPy Python package

[32, 33]. Here we used all default options for this method. The default non-linear least

squares regression method is the Levenberg-Marquardt [34, 35] (or damped least squares)

algorithm. For a critical discussion of this method and available alternative see [36]. One

issue of particular note is that Levenberg-Marquardt, as with many such methods, may

report a solution that lies in a local (rather than global) minimum. To partially address this

issue, for each such fit, we plot the observed and fitted values to judge the reasonableness

of the solution (supplemental Figures 2-3 and 5-6), iteratively adjusting the initial values.

We recognize such analysis cannot be performed without bias, and we refer readers to [36]

for alternatives. The algorithm we have chosen here is relatively fast for our particular use

case [36].

It is worth noting at this point that more than three exponential terms may be appropriate

for a given scenario. Furthermore, there is a level of iterative validation involved in this

process. Therefore, we view this method as a type of decision-support tool, not a definitive,

faultless procedure for determining necessary sampling with absolute certainty.

C. Correlation propagator

We also introduce a new time-lagged correlation measure that we have termed Correlation

Propagator. Let rα be the M × 3 matrix of atom positions (e.g., Cartesian coordinates) at

time α for M atoms in a trajectory of N steps. Let τ be a user-specified lag time of interest.

Then, define the matrix

Pα,τ ≡ rα − rα+τ , (8)

which is an M × 3 matrix. We then define the correlation propagator to be the time-

averaged dot product of this matrix with itself. That is, let i index dimensions (e.g., 1 to

3 for Cartesian coordinates x, y and z) and j and k index atoms in the trajectory (i.e., the
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rows of rα) then the correlation propagator is

Cj,k ≡

∑N−τ

α=1

∑3
i=1P

α,τ
j,i P

α,τ

k,i

N − τ
.

By calculating the correlation coefficient of the correlation propagator matrix with the equal

time correlation matrix for various values of τ and various systems (Figure 2), we see roughly

exponential convergence to the typical equal time correlation matrix. Intuitively, this con-

vergence makes sense, as we would expect rα+τ to go to the average position vector for large

values of τ . The development of the correlation propagator is phenomenological, and we

hope that it adds to the ongoing discussion of correlated motions and allostery in the field of

biophysics [37] and the use of autocorrelation for general time series analysis in other fields.

Using the correlation coefficient between the correlation propagator matrix with the equal

time correlation matrix, we can then fit exponential curves – as described above – to these

data sets to estimate the number of events (number of exponential terms needed) and the

timescale of these events (decay constant for a given exponential term). See supplemental

Figures 4-6 and the Python notebooks we have made available at https://doi.org/10.

6084/m9.figshare.6613481 for examples.

III. EXAMPLES

In the case of a relatively unstructured [38] nucleic acid strand in two physiological solva-

tion conditions, we see growth into the equal time correlation on a timescale of nanoseconds

(Figure 2a-b and supplemental Figures 4a-b, 5a-b and 6-ab), indicating this would be a sys-

tem where many short simulations would be appropriate. In the case of the small, structured

NEMO zinc finger with a bound zinc ion, we predict that 500 ns simulations are needed,

agreeing with previous results for this system [39]. In the case of the zinc-unbound case,

which is known to be less stable [40, 41], we see indications of a nanosecond-scale process

observable with relatively short simulations (Figure 2c-d and supplemental Figures 4c-d,

5c-d and 6c-d).

A similar story emerges in the case of Thrombin, where the presence of the known sta-

bilizer sodium produces longer timescale process than destabilizing [42] potassium (Figure

2e-f and supplemental Figures 4e-f, 5e-f and 6e-f). In the case of a large protein complex,

MutSα, exponential fitting (supplemental Figures 4g, 5g and 6g) predicts one roughly 50 ns
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process and one microsecond timescale process for both types of DNA damage investigated

– cisptlatinated (Figure 2g) and carboplatinated (Figure 2h and supplemental Figures 4h,

5h and 6h) DNA. The second process is beyond the time simulated in the pilot simulations,

indicating much longer simulations are needed for this system. In the eight brief case studies

presented here, we see the utility of this technique in predicting how long a simulation is

needed to observe the correlated motions observed in the pilot simulations and the timescales

of events indicated by exponential fitting.

IV. SIMULATED DATA METHODS

A. General computational methods

All protein simulations were run under the isothermal-isobaric ensemble (NPT) in

ACEMD [43]; F10 simulations were run under the canonical ensemble (NVT), the rec-

ommended ensemble for ACEMD[43]. Damping via a Langevin thermostat [44] maintained

target temperature of 300 K via a damping coefficient of 0.1. A Berendsen pressure piston

[45] held all systems at roughly 1.01325 Bar using a relaxation time of 400fs. Hydrogen

mass repartitioning allowed for 4fs time steps in our production runs. We applied a 9Å

cutoff and 7.5Å switching distance for VdW and electrostatic forces, calculating long-range

electrostatics with a smooth particle mesh Ewald (SPME) summation method [46, 47].

These simulations were run on Titan GPUs in Metrocubo workstations produced by

Acellera. All systems were solvated in explicit TIP3P water [48], using VMD’s [49] “Add

Solvation Box” feature. The CHARMM27 forcefield parameters used here are based on

interaction energies of small model systems calculated by quantum mechanics computations

and direct experiment [50–52].

B. F10

For F10, the CHARMM27 forcefield was supplemented with FdU-specific MD parameters

[53, 54], which have been validated in previous studies [54, 55]. F10 was solvated in a cubic

water box – 50 angstroms on a side – with the concentration of counter ion (in the form

of salt, i.e., NaCl or KCl) set to 150mM using VMD’s [49] “Add Solvation Box” and “Add
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FIG. 2. Correlation coefficients of the correlation propagator at a series of τ values to the typical

equal time correlation matrix are presented for (a-b) therapeutic DNA strand F10 in physiological

solvents – (a) potassium-heavy and (b) sodium-heavy, NEMO zinc finger with (c) and without (d)

a bound zinc ion, Thrombin in a (e) stabilizing and (f) destabilizing solvent, and MutSα with (g)

cisplatinated DNA and (h) carboplatinated DNA. Bars are one standard error.
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Ions” plugins with salt concentrations set using the “Neutralize and set” option and all other

parameters left as default.

C. NEMO zinc finger

Initial coordinates are based on an experimental crystal structure, accessed from the

RCSB data bank – PDB ID 2JVX [56]. Before production runs, each fully solvated system

underwent conjugate gradient minimization for 5000 time steps. Subsequent equilibration

lasted approximately 18ns, as measured by the RMSD. Prior to analysis, this equilibration

period was removed from each of each of eight 1µs trajectories used here. All NEMO systems

were solvated in 150mM NaCl using the “Add Ions” extension in VMD.

D. Thrombin

Initial coordinates are based on an experimental crystal structure from the RCSB data

bank – PBD ID 4DII and 4DIH[57]. Missing residues (18 and 19 out of 295 residues respec-

tively for PDB 4DIH and 4DII) in these PDBs were added via Modeller [58] – a structural

template-based atom fill-in tool. Hydrogen atoms were added by VMD’s “psfgen” tool using

the topology file in CHARMM 27 force field. The system was solvated in the buffer with

125mM KCl and NaCl respectively. Systems underwent 1000 steps of conjugate gradient

minimization. The final trajectory analyzed here is a concatenation of 5 simulations, each

of 1µs.

E. MutSα

Initial coordinates are based on an experimental crystal structure from the RCSB data

bank – PDB ID 208E [59]. For cisplatinated and carboplatinated DNA, we used additional,

pre-existing, cisplatin and carboplatin parameters [53, 54, 60, 61]. We fitted cross-linked

structures of modified DNA strands into the mismatched binding pocket – as seen in RCSB

PDB ID 208E [59]. All systems were solvated in 150mM NaCl using the “Add Ions” plugin

in VMD. Each trajectory analyzed here was concatenated from two 250ns all-atom MD

production runs. Before production runs, each system underwent 1000 steps of conjugate
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gradient minimization and 250ps of thermal equilibration.

V. CONCLUSIONS AND FUTURE WORK

Here we have presented a novel time-dependent correlation method that provides insight

into how long a system takes to grow into its equal-time (Pearson) correlation. We have

shown a novel usage of an extant time-lagged correlation method that indicates the time

for parts of a system to become decorrelated, relative to equal-time correlation. The tools

presented here estimate (1) how long of a simulation of the same system would be sufficient to

observe the same correlated motions, (2) if patterns of observed correlated motions indicate

events beyond the timescale of the simulation, and (3) how long of a simulation is needed to

observe these longer timescale events. We view this method as a decision-support tool that

will aid researchers in determining necessary sampling times.

A logical extension of this work may be to use the information from this decision support

tool to define stopping conditions for a “smart” simulation scheme. That is, one might

iteratively check and restart a pilot simulation, as described above, until no additional

(de)correlation events are observed and the simulation has achieved the predicted timescale

of the observed events events.

A. Figure note

For all figures, data are truncated at the maximum (Figure 2) or minimum (Figure 1)

y-axis value.
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