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Statistical physicists recently proposed an expression for an autocorrelation function (ACF)
[R. Belousov and E. G. D. Cohen, Phys. Rev. E 94, 062124 (2016)] that has, until now, not been
tested experimentally. The expression captures the early behavior of the ACF decay, when the ACF
is flattened. Using experimental data from a nonequilibrium steady-state dusty plasma, we confirm
that the expression’s use extends to liquid-like strongly coupled plasmas. A transition in the shape
of the ACF is identified, and we suggest that it corresponds to the onset of collisional scattering.

I. INTRODUCTION

Time autocorrelation functions (ACFs) of fluctuating
quantities are often used to describe microscopic behavior
in gases, liquids, and plasmas, including strongly coupled
plasmas. In all these physical systems, quantities such
as particle velocity, shear stress, or energy current can
fluctuate spontaneously due to collisions among individ-
ual particles. Calculating an ACF for these quantities
requires particle-level data, which are commonly avail-
able in computer simulations [1]. Such fine resolution is
rarely accessible in experiments. However, for a strongly
coupled dusty plasma, like the one we analyze here, the
particle-level data can be measured.
The term “strong coupling” describes the condition in

a plasma when the average potential energy of a charged
species exceeds the thermal kinetic energy. A strongly
coupled plasma can behave like a liquid or solid [2]. Gen-
erally, the species that can most easily become strongly
coupled is the heaviest one, such as ions in the case of
an ultracold plasma [3] or warm dense matter [4]. The
heaviest species in a dusty plasma experiment like ours
consists of small particles of solid matter, which can be
strongly coupled due to their great mass and large charge.
Besides laboratory experiments like ours, dusty plas-

mas are found naturally in the interstellar medium,
comet tails, and planetary rings [5, 6]. Dusty plasmas
also occur in semiconductor manufacturing plasmas [7]
and fusion plasmas [8] where they pose a contamination
problem. In most of these dusty plasmas, the solid par-
ticles can be observed by video imaging, because they
are large enough to scatter light copiously. Such imaging
yields particle-level measurements of microsphere posi-
tions and velocities, which enables the calculation of an
ACF that describes the microscopic stochastic behavior.
For all kinds of physical systems with stochastic behav-

ior, a prominent feature in an ACF is its initial decay,

∗ zachary-haralson@uiowa.edu

which precedes the typical oscillatory and noisy obser-
vations at longer times. This decay has thus far usu-
ally been described [9–12] by a simple exponential curve
C(t) = C(0) exp(−t/τ). This description of an ACF can
be derived from a first-order Onsager-Machlup fluctua-
tion theory [13]. Unlike this simple exponential curve,
though, most instances of ACFs are flattened initially,
i.e. for t → 0. The exponential description fails to cap-
ture this initial decay of ACFs at short times [12].
An appropriate function to describe this initial decay

was needed, as recognized by Belousov and Cohen (BC),
who recently derived a formula [14]
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This expression is intended to be applicable to many
kinds of fluctuating quantities in substances that are
dominated by collisions. Equation (1) was derived theo-
retically for classical equilibrium and nonequilibrium sys-
tems by BC, from a generalized second-order fluctuation
theory of Machlup and Onsager [15]. The latter describes
irreversible processes, taking into account inertia, i.e., re-
sistance of a physical system to forced changes of its state.
At this point, experimental tests of Eq. (1) are lacking.
The only test of any kind thus far, for Eq. (1), was

a fit to simulation data, reported by BC alongside their
theory [14]. They performed a molecular dynamics sim-
ulation of a simple fluid. Among the many fluctuating
quantities in such a system that allow the calculation of
an ACF, they chose the shear stress, which we define be-
low. They confirmed that Eq. (1) fits their shear-stress
ACF much better, especially at short times, than does a
simple exponential.
In this paper, as our main result we report an ex-

perimental confirmation of the theoretically predicted
Eq. (1). We verify that the flattened shape at the begin-
ning of the decay, as well as the nearly exponential decay
at longer times, are both well-described by Eq. (1). To do
this, we use data from the experiment of Ref. [16], with
a strongly coupled dusty plasma in a liquid-like state.
In the experiment [16], the strongly coupled species

was a collection of about 6000 solid polymer micro-



2

spheres, which gained a large negative charge. The other
charged species were singly ionized argon ions and elec-
trons; neutral argon atoms were also present and applied
a frictional drag force to the microspheres. The micro-
spheres were electrically levitated in a single horizontal
layer, with minimal out-of-plane motion, so that their
behavior was mainly two dimensional (2D). The micro-
spheres also experienced a shielded electric repulsion with
each other, and this collisional behavior was responsible
for stochastic particle motion at a microscopic level. For
the collection of microspheres, video microscopy allowed
particle tracking so that we could obtain the shear stress
and its ACF.
The microspheres in our experiment comprised a

nonequilibrium steady state. This is because the mi-
crospheres constantly received energy from the ion flow
(and also from an external laser-heating manipulation
in some of our experimental runs), while simultaneously
losing energy by friction on the neutral gas. The bal-
ance of these energy inputs and losses to the microsphere
species determined its steadystate kinetic temperature.
Despite these nonequilibrium processes, the collection of
microspheres had several steady attributes, including an
absence of macroscopic gradients and flows, a velocity
distribution that was nearly Maxwellian, and a level of
temperature fluctuations (for a small subset of the mi-
crospheres) that was nearly the same as expected for a
canonical ensemble in thermal equilibrium [17].

II. EXPERIMENT

We now summarize some key conditions of the ex-
periment, which was described in greater detail in
Refs. [16, 17]. After igniting a radio-frequency powered
argon plasma at a pressure of 6 mTorr, we introduced
the melamine formaldehyde microspheres. These micro-
spheres were monodisperse, with a diameter 8.7 µm and
mass m = 5.2 × 10−13 kg, as specified by the manufac-
turer. The microspheres settled into a single horizontal
layer above the powered electrode. The same collection of
microspheres was used for all the experimental runs. The
primary data acquisition instrument was a top-view cam-
era that recorded particle motion at 70 frames/s. From
the recorded videos, we obtained microsphere positions
using a moment method [18] and velocities with parti-
cle tracking velocimetry [19, 20]. Each video consisted
of 4382 frames, corresponding to a length of 62.6 s. We
also used a side-view camera to verify that out-of-plane
motion was negligible.
In two runs, the collection of microspheres were settled

into a crystalline ground state, which allowed obtaining
required parameters. To calculate interparticle forces
we require the microsphere charge Q and the screen-
ing length λ for the Yukawa interaction potential. We
obtained these two quantities using a standard phonon
analysis of the random motion of microspheres in the
lattice [21–23]. The parameter Q drifted slightly from

−15 500 e for a run at the beginning of the experiment to
−15 900 e at the end [24], while λ drifted from 0.38 mm,
to 0.42 mm. In our analysis we take this small drift into
account by interpolating linearly between the starting
and ending conditions [17]. Other parameters obtained
from the analysis of the crystal include the areal density
n, the 2D Wigner-Seitz radius a = (πn)−1/2, the screen-
ing length κ = a/λ , and the nominal 2D dusty plasma
frequency ωpd = (Q2/2πǫ0ma3)1/2. At the start of the
experiment these values were a = 0.307 mm, κ = 0.72
and ωpd = 86 s−1, while at the end they were 0.298 mm,
0.78, and 92 s−1.
In eight other runs, which provide our main results,

the crystal was melted by applying laser heating to at-
tain a liquid-like state. Two laser beams, operated with
a constant power, were scanned over the monolayer, us-
ing the pattern of Ref. [25]. These beams imparted mo-
mentum to the microspheres [26], increasing the kinetic
energy more than 100-fold above the level in a crys-
talline lattice. The kinetic temperature T of the micro-
spheres was obtained from image analysis data by com-
puting the mean-square velocity. The temperature varied
from one run to another according to the applied laser
power, with T ranging from 1.1Tmelt to 1.5Tmelt, where
Tmelt is the melting temperature from Ref. [27]. The
corresponding dimensionless Coulomb coupling parame-
ter Γ = (Q2/4πǫ0akB)/T ranged from 139 to 104. The
two heating laser beams were balanced to minimize any
macroscopic gradients or flows of microspheres. In our
test of Eq. (1), we use the eight runs from Refs. [16, 17]
that had no manipulation besides the laser heating. For
brevity, in this paper we will present results from two of
these runs; the other six runs are presented in Supple-
mental Material [28].
For our liquid-like monolayer, microsphere trajectories

are shown in Fig. 1. Each data point represents a mea-
sured position of a microsphere in one video frame. The
trajectories are portrayed by superimposing the positions
for 15 frames (a time interval of 0.2 s). As expected in a
liquid, the position of a microsphere wanders stochasti-
cally, with a displacement typically ranging from about
0.15a to 0.6a in this time interval. We note that that the
shape of the trajectories, while often nearly a straight
line for the first few frames, always becomes deflected
well before the end of the 15 frames shown.

III. ANALYSIS

Our analysis of the particle tracking data yields the
autocorrelation function for shear stress, using the same
two steps as in Ref. [16]. While this paper uses the same
ACF data as presented in Ref. [16], here we use it for an
entirely different purpose. In Ref. [16], ACF data were
obtained only as one step toward calculating the viscos-
ity parameter through the Green-Kubo method, whereas
here we focus on the shape of the ACF itself, in order to
show consistency with the theory of BC. Next we briefly
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FIG. 1. Experimentally measured microsphere trajectories,
under liquid-like conditions. The data points are the posi-
tions of microspheres in fifteen successive video frames. The
shading indicates the passage of time. A significant fraction
of the microspheres are seen to be deflected after only four
video frames, and a few are already deflected by the third
frame. Data points shown here (for a run at T = 96800K)
were recorded at intervals of 0.014 s. Microsphere positions
and velocities from trajectories like these were used to calcu-
late shear stress autocorrelation functions. The region ana-
lyzed in the experiment was 15 mm× 21 mm, larger than the
representative portion shown here.

review the analysis necessary to obtain the shear stress
ACF, as also described in Ref. [16].
First, we obtained a time series of shear stress Pxy in

our monolayer from the time series of microsphere po-
sitions and velocities. The instantaneous value of this
shear stress within a region of area A is computed as

Pxy =
1
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2

∑

j 6=i

|xj − xi|∇Φij · ŷ



 , (2)

where vi is the velocity of particle i interpolated to the
same time as the position data xi and yi, whereas the sub-
scripts x and y indicate vector components [29]. The po-
tential Φij , between particles i and j that were separated
by rij , was obtained from the Yukawa (Debye-Hückel) ex-
pression Φij = (Q2/4πǫ0) exp(−rij/λ)/rij . The Yukawa
potential has been experimentally validated [30] in a
monolayer dusty plasma like ours. The screening length
λ arises physically from the electrons and ions that sur-
round a microsphere.
Second, the ACF for shear stress, C(t), was computed

from the time series of Pxy as

C(t) = 〈Pxy(t0)Pxy(t0 + t)〉 . (3)

The brackets represent a mean, averaged over all pos-
sible starting times t0. The error bar on the value of
C(t) is obtained as the corresponding standard deviation
of the mean. This error bar does not take into account
systematic errors due to uncertainties in the values of Q
and λ. Using Q and λ values from the extreme edges of
their uncertainty ranges [17] produces only a ±3% shift in
the entire ACF curve. A further possible source of error
is uncertainty in particle position and velocity measure-
ments, but these uncertainties are so small as to have a
negligible effect on Pxy and its ACF.

IV. RESULTS

Results for the experimental ACF are shown in Fig. 2.
Smooth curves are fits to the theoretical expression,
Eq. (1), and to a simple exponential decay. Our video
camera’s frame rate determined the time step, 0.014 s,
between the experimental ACF data points in Fig. 2. Be-
yond the initial decay in the 0.20 s time range of Fig. 2,
the ACF consists mostly of noise centered about zero,
not shown here.

We find that the theoretical expression of BC, Eq. (1),
fits our experimental data very well. This fit, shown as a
solid curve in Fig. 2, passes through the error bars of most
of the experimental data points. Of particular interest,
the expression of BC accurately captures the flattening
of the ACF at short times.

A simple exponential, on the other hand, never fits the
experimental ACF data well. Compared to this expo-
nential, which is plotted as a broken curve in Fig. 2, our
experimental data shows an excess correlation at short
times, where the ACF is flattened. This same excess
correlation and flattening was observed also in the sim-
ulation data of BC. The degree to which an exponential
fit fails varied from one run to another. Results for other
runs are shown in Supplemental Material, along with val-
ues of C(0).

The behavior of the ACF gradually transitions from
excess correlation at early times to a nearly exponential
decay later. Examining the ACF curves, we find that this
transition occurs generally between ωpdt = 3 and 7, and
at the end of this transition the two fit curves usually
cross. This transition time range is marked on the lower
axis of Fig. 2(a).

In presenting their theory, BC did not include a phys-
ical interpretation of the shape of the ACF decay, i.e.
the flattening at short times and a more exponential de-
cay later. We suggest that this transition between two
types of behavior seen in Fig. 2 is due to the transition
from ballistic to collisional behavior in the particle mo-
tion [10, 12]. We discuss two pieces of evidence support-
ing this interpretation in the Supplemental Material [28].
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FIG. 2. Shear stress autocorrelation function (ACF). An ex-
perimental ACF, obtained from Eq. (3), is presented as a
series of data points. At short times, t <

∼ 0.02 s, the ACF
is flattened, and not exponential; this shape is captured well
by the theoretical Eq. (1). Time is indicated in both experi-
mental and normalized units. The lower panel is for the same
experimental run as in Fig. 1, while the upper panel is for a
different run. Fit parameters for Eq. (1) are: (a) a = 82 s−1

and d = 53 s−1; and (b) a = 174 s−1 and d = 150 s−1.

V. SUMMARY

Our main result is an experimental confirmation that
Belousov and Cohen’s recent theory [14] accurately de-
scribes the initial decay of a time autocorrelation func-
tion for a strongly coupled plasma. The key formula
developed in this theory, Eq. (1), quantitatively predicts
the time dependence of the ACF decay, including its ex-
cess correlation at short times. Fitting to Eq. (1), we
find that our experimental data, for a liquid-like two-
dimensional strongly coupled dusty plasma, show good
agreement with the theory. As an intuitive interpreta-
tion, we suggest that the transition from a flattened to a
more exponential shape in the decay of the ACF is due
to the transition from ballistic to collisional behavior of
the microspheres [10, 12], which we find happens on a
timescale corresponding with the transition in the ACF.
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supported by the U. S. Department of Energy, the Na-
tional Science Foundation, and NASA.
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