Two-dimensional bicontinuous structures from symmetric surface-directed spinodal decomposition in thin films

Michael B. Wise and Paul C. Millett

Phys. Rev. E 98, 022601 — Published 6 August 2018
DOI: 10.1103/PhysRevE.98.022601
Two-Dimensional Bicontinuous Structures from Symmetric Surface-Directed Spinodal Decomposition in Thin Films

Michael B. Wise and Paul C. Millett

Department of Mechanical Engineering, University of Arkansas
Fayetteville AR 72701
(Dated: July 10, 2018)

We present numerical simulations of symmetric surface-directed spinodal decomposition in thin films with varying film thickness and film composition. The simulations utilize a Cahn-Hilliard model to describe phase separation kinetics in confined film geometries. The systems consist of two phases: a wetting phase that completely wets the top and bottom surfaces, and a non-wetting phase. Three distinct morphologies emerge including a discrete non-wetting morphology, a discrete wetting morphology, as well as a unique two-dimensional bicontinuous morphology that forms for specific values of film thickness and composition. The morphologies are analyzed with a Hoshen-Kopelman algorithm to quantify the degree of continuity of the non-wetting phase, and a morphology map is presented to guide future work.

I. INTRODUCTION

The physical characteristics associated with phase separation in immiscible mixtures have been widely studied for many decades [1–5]. Topics of particular interest include the morphological structure that develops in the early and late stages of separation, the rate of domain growth versus time, and the influence of geometrical confinement on the separation process. The multi-phase morphologies that develop in immiscible systems explicitly govern macroscopic properties such as viscosity (in the case of fluidic systems such as emulsions) and strength (in the case of solid systems such as alloys or polymer blends). From a materials processing standpoint, a multi-phase morphology can serve as a template to fabricate porous materials or membranes for many technological applications [6–9].

Bulk phase separation driven by thermodynamic demixing forces is well understood in both diffusion-governed and hydrodynamic-governed systems [2, 5, 10]. Following the nucleation stage, microscopic phase domains, formed either by spinodal decomposition or discrete nucleation events, enter into power-law scaling regimes associated with the growth of their average domain size. The morphology coarsens in a self-similar manner indefinitely in time, or until the characteristic domain size becomes comparable with the macroscopic material dimensions.

The phase separation process is altered by the presence of a surface, which will generally have unequal interactions with the two components in the system. Surface-directed spinodal decomposition (SDSD) has been shown to occur at air and/or substrate interfaces where one component preferentially wets the interface [11–17], thereby leading to the enrichment of one phase along that interface [12, 13]. Initial works by Guenoun and coworkers found that the formation of a wetting layer and its corresponding depletion region caused an increased growth rate for adjacent domains of the non-wetting component [11]. Several experiments [17–19] and models [20–26] were designed for the purpose of studying this interplay and its implications on late stage morphology. Reviews of SDSD summarize these efforts [27, 28].

Many experimental works focus on asymmetric SDSD, typically consisting of a multi-phase film in contact with a substrate below and an air interface above, whereby the two interfaces generally exhibit different wetting characteristics.

On the other hand, symmetric SDSD refers to the spinodal decomposition that occurs within a film constrained between two identical parallel substrates with equal wetting characteristics. Numerical simulations by Das and coworkers [29, 30], Puri [31] and Hore and Laradji [32] of symmetric SDSD found that early-stage spinodal decomposition with bicontinuous domains evolved into a morphology consisting of two wetting layers connected by a random array of discrete columnar structures (of the wetting phase) that spanned the internal non-wetting phase. This structure was observed earlier by Composto’s group in experiments involving binary polymer films [18]. The through-thickness columns coarsen in time and, in later stages, reduce the thickness of the wetting layers (but not to the point where the wetting layers break). These studies, however, focused on a specific range of thicknesses and blend compositions, which left the parameter space largely unexplored.

It has been demonstrated that phase domain growth laws are altered below a certain film thickness, which some have reported to be 1.5 times the spinodal wavelength [16, 17]. One of the most comprehensive thickness-variation studies was performed by Chung and Composto [33], during which they discovered the potential for stable, nearly bicontinuous morphologies. While structures seen in this experiment did tend to break down into discrete domains, their results imply that one could use the thickness of a confined film to tune thin-film morphology. In addition, while previous experiments studied a single composition, it would be logical to assume that similar
effects could be achieved by altering the film composition. Indeed, recent work by our group has shown that unique two-dimensional bicontinuous structures can form with asymmetric compositions in very thin films [34]. The phase separation process in this study [34] was halted by nanoparticle jamming at the phase interfaces, so it was not clear if late stage coarsening would involve a transition from a bicontinuous morphology to a discrete one.

This paper describes a numerical simulation study of the effects of symmetric, preferential wetting on phase separation in thin-film confinement, with a particular focus on the influence of composition and film thickness. A Cahn-Hilliard-Cook (CHC) model with modified free energy was utilized to simulate symmetric SDS with complete surface wetting for long evolutions well into the late-stage coarsening regime. We employed a cluster enumeration algorithm to determine the degree of bicontinuity within the film throughout time, which allowed us to quantitatively classify morphology type as either bicontinuous or discrete. A morphology map was constructed to relate morphology with composition and film thickness for symmetric SDS. The confined phase separation we observe has potential applications in membrane science.

II. METHODS

Following the approach of Puri, Binder and others [21–23], our numerical simulations utilize a CHC equation to model the confined phase separation process within a constrained thin film consisting of a wetting phase with volume fraction ϕ_W and a non-wetting phase with volume fraction ϕ_{NW} (see schematic in Fig. 1). Due to volume conservation, the binary system can be described with a single order parameter $\phi = \phi_{NW} - \phi_W$. The kinetic equation is written as

$$\frac{\partial \phi}{\partial t} = \nabla \cdot (M \nabla \mu) + \zeta,$$

where M is a mobility parameter and μ is a chemical potential defined as the variational derivative of a free energy functional, F, with respect to ϕ, $\mu = \delta F/\delta \phi$. ζ is a small (volume conserving) random fluctuation term that models thermal noise in the field. The free energy functional is

$$F = \int [f(\phi) + \kappa(\nabla \phi)^2] dV;$$

where $f(\phi)$ is the bulk free energy density and the gradient term accounts for the phase interfacial energy. The functional form of the bulk free energy density is expressed as

$$f = w(f_{pp} + f_{ps}),$$

where f_{pp} accounts for interactions between the wetting phase and the non-wetting phase, f_{ps} for phase-surface interactions, and w is a scaling coefficient. These terms are defined by

$$f_{pp} = \phi^4/4 - \phi^2/2,$$

$$f_{ps} = B(z)(\phi^2 + 2\phi)/2.$$

Here, f_{pp} is a commonly used polynomial double-well function with minima at $\phi = \pm 1$ associated with the wetting ($\phi = -1$) and non-wetting ($\phi = 1$) phases. The f_{ps} term distorts the double-well curve into a single-well curve with a minimum at $\phi = -1$ (i.e., the wetting phase). $B(z)$ is a depth dependent function that alters the energy near the confining surfaces, defined as

$$B(z) = \begin{cases}
\frac{(4 - z)\delta}{4}, & 0 < z < 4\delta \\
\left[z - (n_z - 5)\delta\right]/4, & 4\delta < z < (n_z - 5)\delta \\
\left(n_z - 5\delta\right)/4, & (n_z - 5)\delta < z \leq n_z\delta
\end{cases};$$

where δ is the simulation grid spacing, z is height in the direction perpendicular to the confining surfaces, and n_z is the total distance between the confining surfaces. This term models the strong wetting tendency very near the surfaces, which decreases linearly to 0 within a small distance from the surfaces (see Fig. (2)).

Equation (1) was solved using a pseudo-spectral method [35] in three-dimensional domains of size $n_x \times n_y \times n_z$. The lateral x and y dimensions were set equal with $n_x = n_y = 512 \delta$. A variety of values of $n_z = 14, 16, 18, 20, 22, 24, 26$ were chosen to understand the effects of film thickness. Composition is conserved by applying periodic boundary conditions in all directions, and the wetting condition of Eq. (6) essentially

FIG. 1. Diagram showing the thin film morphology with layers of the wetting phase adjacent to the top and bottom substrates, and internal domains of the non-wetting phase.

FIG. 2. Schematic of the $B(z)$ function described in Eq. (6) used to induce preferential wetting on the top and bottom z boundaries.
eliminates flux across the \(z \) boundaries (although a zero-flux condition, which is burdensome with the pseudospectral method, is not strictly enforced). We ensure that complete wetting layers always form along the top and bottom \(z \) boundaries. The simulations used non-dimensionalized time (\(\tau \) with a time step size of 0.5 \(\tau \)) and length (\(\delta = 1 \)) scales. To simplify the model as much as possible, the CHC parameters were assigned values of \(M = \kappa = w = \zeta = 1 \). In order to understand the effect of film composition, we systematically varied the volume-averaged fraction of the non-wetting phase with values of \(\Phi_{NW} = 0.25, 0.2625, 0.275, 0.2875, \) and 0.3. We choose this seemingly narrow range (i.e., \(0.25 < \Phi_{NW} < 0.3 \)) based on preliminary simulations which showed that the resulting morphologies above or below this range were predictably bicontinuous or discrete for the range of film thicknesses we choose.

Analysis of the simulation results was performed using the Hoshen-Kopelman algorithm [36]. This algorithm efficiently identifies and labels individual phase domains represented by an order parameter (in our case, \(\phi \)) stored on a grid. Details of the algorithm can be found in the literature [36]. For the purposes of this paper, and as shown in Fig. 3, the algorithm labels all individual domains of the non-wetting phase (defined by values of \(\phi > 0.2 \)), and stores the total volume of each domain based on the number of grid points associated with it. We then quantify the continuity of the non-wetting phase by calculating a continuity order parameter, \(\Gamma_C \) [37]:

\[
\Gamma_C = \frac{V_L}{V_T},
\]

where \(V_L \) is the volume of the largest non-wetting phase domain and \(V_T \) is the total volume of the non-wetting phase. A system that is very continuous will have a \(\Gamma_C \) value near one, and a system with little continuity will have a \(\Gamma_C \) value near zero. In our analysis, a thin-film morphology is considered bicontinuous if the non-wetting phase has a value of a \(\Gamma_C > 0.8 \). The continuity order parameters were calculated throughout time and, in order to account for statistical variations, the reported values are averaged from 20 different independent simulations (with random initial conditions). Each simulation begins with a homogeneous distribution of the two components with some random variations in space, and the beginning of the simulation corresponds to an instantaneous quench into the unstable regime of the phase diagram, hence phase separation commences at the beginning of the simulation.

III. RESULTS

We aim to understand the influence of film composition and film thickness on morphology with symmetric SDSD conditions. In bulk conditions, bicontinuity of the phase domains is typically limited to a narrow composition window near the critical composition (typically \(\sim 0.5 \) in low molecular weight liquids; in polymer solutions, this value usually shifts to lower values in the range of 0.1 - 0.3). In our simple model, the critical composition is 0.5, and off-critical compositions that are below the binodal line of the phase diagram will generally undergo phase separation via nucleation of discrete domains of the minority phase that grow and coarsen with time. In a film with symmetric SDSD, this basic morphology should emerge if the distance between the wetting surfaces is adequately large.

In Fig. 4, the morphologies of thin films with symmetric SDSD are displayed with a composition of the non-wetting phase of \(\Phi_{NW} = 0.256 \), which is certainly off-critical. For each image, the simulations have evolved to a simulation time of \(\tau = 7500 \) (note that the wetting phase is rendered very transparent for clarity). In Fig. 4a, the film thickness is \(n_z = 256 \delta \), which is relatively large, and the local effects of the two wetting surfaces are not overlapping. For this thickness, the internal morphology of the non-wetting phase consists of discrete domains (as expected). However, as the film thickness is decreased, and the wetting surfaces brought closer, the morphology of the non-wetting phase transitions (rather abruptly) to a percolated state. For the smallest film thickness of \(n_z = 16 \delta \) (Fig. 4c), the non-wetting phase is continuous, and the system as a whole is bicontinuous, due to the fact that the wetting phase forms continuous layers on the top and bottom of the film as well as significant portions of the midsections of the film.

We identify the morphology in Fig. 4c as a “two-dimensional (2D) bicontinuous” morphology. The domains of the non-wetting phase resemble a percolated network of cylindrical (or, slightly flattened cylindrical) tubes. The emergence of a bicontinuous morphology with a composition so far away from the critical composition is somewhat unexpected, but is enabled by the symmet-
FIG. 4. Thin film morphologies with symmetric SDSD and varying thickness at a simulation time of $\tau = 7500$. The volume fraction of the non-wetting phase is $\bar{\phi}_{NW} = 0.256$. The film thicknesses are (a) $n_z = 256 \delta$, (b) $n_z = 64 \delta$, and (c) $n_z = 16 \delta$. Note that the wetting phase has been rendered a very transparent shade to visualize the internal non-wetting phase (orange).

FIG. 5. Top-down views of the film morphology (at the mid-plane cross-section) for varying compositions: (a) $\bar{\phi}_{NW} = 0.2$ resulting in a discrete-non-wetting (DNW) morphology, (b) $\bar{\phi}_{NW} = 0.275$ resulting in a 2D-bicontinuous (2DBi) morphology, and (c) $\bar{\phi}_{NW} = 0.325$ resulting in a discrete-wetting (DW) morphology. The simulation time is $\tau = 2500$ and the film thickness is $n_z = 20 \delta$. The non-wetting phase is colored orange, and the wetting phase colored purple.

The film thicknesses are (a) $n_z = 256 \delta$, (b) $n_z = 64 \delta$, and (c) $n_z = 16 \delta$. Note that the wetting phase has been rendered a very transparent shade to visualize the internal non-wetting phase (orange).

ric wetting conditions of the very nearby surfaces. For these small film thicknesses, the morphology transitions in a narrow window of composition, as shown in Fig. 5. When changing the composition from $\bar{\phi}_{NW} = 0.2$ to $\bar{\phi}_{NW} = 0.325$, the morphology transitions from discrete domains of the non-wetting phase in the middle of the film (Fig. (5a), labeled “DNW”), to a 2D bicontinuous morphology (Fig. (5b), which is similar to Fig. (4c), labeled as “2DBi”), to a morphology with discrete columns of the wetting phase spanning the internal section of the film (Fig. (5c), which is similar to earlier experimental and theoretical observations \[18, 32\], we label as “DW”). It should be noted that, technically, the structure in Fig. (5c) is also bicontinuous, as both the non-wetting and wetting phases have percolating domains, however the wetting phase is only continuous due to the top and bottom wetting layers in the film.

We now focus on the time evolution of these unique thin film morphologies. Earlier works on SDSD with critical compositions (i.e. equal quantities of the two phases) revealed that structures similar to Fig. (5c), with two wetting layers and discrete columns of the wetting phase spanning the top and bottoms layers, evolved from a bicontinuous morphology at early stages to the discrete morphology at late stages. Therefore, we wish to explore whether the 2D bicontinuous structures of Figs. (4c) and (5b) remain 2D bicontinuous during late-stage coarsening. The results presented above were taken from rather early simulation times.

FIG. 6. Time evolution of the phase-separation for compositions: (a,b) $\bar{\phi}_{NW} = 0.275$, and (c,d) $\bar{\phi}_{NW} = 0.200$. The early simulation snapshots in (a) and (c) are at $\tau = 2500$, and the later snapshots in (b) and (d) are at $\tau = 50,000$.

Figure (6) shows examples of how two distinct morphologies coarsen through time. In Fig. (6a-b), the composition is $\bar{\phi}_{NW} = 0.275$ corresponding to the 2D bicontinuous morphology, and in Fig. (6c-d) the composition is $\bar{\phi}_{NW} = 0.200$ corresponding to the discrete non-wetting morphology. Both early ($\tau = 2500$) and late
(τ = 50,000) stages show that, although the structures undergo considerable coarsening, their basic category of morphology does not change. Hence, the 2D bicontinuous morphology persists throughout time (remaining self-similar), as does the discrete non-wetting morphology. However, the aspect ratio of the height-to-width of the non-wetting domains does change. For the 2DBi morphology, the early structure has tubes of the non-wetting phase that have cross-sections that are fairly circular. At latter times, as the widths of the tubes increase, this aspect ratio changes, and the non-wetting domains have a more "flattened" appearance (which is not due to any change in their height, solely the change in their width). The same is true for the discrete domains in Fig. (6c-d). This flattening is due to the restriction created by the two wetting layers on the top and bottom of the film.

To provide a more quantitative analysis of the morphology change throughout time, with varying film thickness and film composition, we have calculated the continuity factor (ΓC) of the non-wetting phase. Figure (7) shows an array of plots of ΓC versus time, averaged over 20 independent simulations for each condition. The top-to-bottom rows correspond to film thicknesses of nz = 26 δ, 20 δ, and 14 δ. The left-to-right columns correspond to film compositions of \(\phi_{NW} \) = 0.25, 0.2625, 0.275, 0.2875, and 0.3. General trends can be detected: films with larger thickness and lower \(\phi_{NW} \) have continuous non-wetting domains. On the other hand, films with smaller thickness and larger \(\phi_{NW} \) have continuous non-wetting domains. Figure (7) illustrates the abrupt transition in morphology as you move left-to-right and top-to-down with the array of plots. For intermediate values of composition and film thickness, there are morphologies with intermediate values of ΓC (i.e., 0.25 < ΓC < 0.75). These systems have morphologies that typically appear bicontinuous, but their largest non-wetting domain is in the range of 25 - 75% of the overall non-wetting phase volume, which is generally below a percolation threshold.

This is made evident by the plot in Fig. (8), showing representative snapshots of the morphologies for the same configuration of film thicknesses (rows) and film compositions (columns) as Fig. (7). In Fig. (8), the non-wetting domains are colored according to their respective size, with yellow indicating the largest size. Again, this is accomplished with the Hoshen-Kopelman algorithm. These snapshots show more clearly the degree of continuity in terms of percolating domains, and the transition in morphology from discrete to bicontinuous for varying composition and film thickness.

Finally, we compiled all of the data from the array of film thicknesses and film compositions and created a morphology map, which is shown in Fig. (9). Figure (9), in fact, also includes additional simulations for thicknesses greater than nz = 26 δ as well as composition values of \(\phi_{NW} \) up to 0.350, which was done to greater explore
Subplots – Simulation Examples

Caption: Figure #: Samples showing morphology of average continuity for $\phi_{NW} = 0.25, 0.2625, 0.275, 0.2875, 0.3$ (listed left to right) and $n_z = 14, 20, 26$ (listed top to bottom) at $\tau = 5000$.

FIG. 8. Snapshots of the non-wetting phase morphology for the same array of conditions as described in Fig. (7). The non-wetting domains are colored according to their size, with yellow being the largest size (the wetting phase is colored light grey). Individual domains are identified with the Hoshen-Kopelman algorithm. Each snapshot is taken at a simulation time of $\tau = 5000$.

FIG. 9. Morphology map of the multi-phase systems with symmetric SDSD with varying composition (x-axis) and film thickness (y-axis). The discrete and bicontinuous regions are labeled, and the narrow transition region is indicated by the orange band in the middle of the plot, which corresponds with the 2D bicontinuous structure described in the text.

The regions of DNW, 2DBi, and DW morphologies are indicated. The 2DBi region exists as a narrow band that separates the DNW and DW regions. For very small thicknesses, below our smallest thickness of $n_z = 14\, \delta$, phase separation is suppressed due to the strong overlapping wetting layers adjacent to the surfaces. As film thickness is increased, the regions for all three morphologies shift right, to greater values of ϕ_{NW}. The largest film thickness we studied was $n_z = 64$, where both the DNW and the 2DBi morphologies were observed (the DW phase will also form at this thickness when $\phi_{NW} > 0.350$, which we know from previous simulations [34]). Figures (10-11) contain images of the morphologies for the larger thicknesses.

The question becomes: will the 2DBi morphology emerge for larger film thicknesses? Or, is there an upper limit for the film thickness where 2DBi morphology can form? The geometrical size of 3D simulations are limited by computing power, so there is a limit to which we can probe this question computationally. Nonetheless, we argue that as long as two parallel surfaces with symmetric wetting conditions are present, all three morphologies may emerge, depending on the composition. We base this conjecture on the fact that in power-law growth regimes, the morphology coarsens in a self-similar manner. In a film with symmetric SDSD, the coarsening structure eventually becomes constricted by the two wetting layers, and a transition to the thin-film morphologies described herein takes place. The time it takes to reach this transition increases with the thickness of the film. Once this transition has taken place, the morphology may have discrete domains of non-wetting phase, or discrete domains of wetting phase, and there should be an intermediate zone with the 2DBi morphology. Observance of the 2DBi morphology at large film thicknesses (i.e., $n_z >> 64\, \delta$) will require much longer simulation times and much larger simulation domains, and we therefore leave
FIG. 10. Thin-film morphologies for a film composition of $\phi_{NW} = 0.35$ with film thickness of (left-to-right) $n_z = 26, 40, 50, \text{ and } 64 \delta$. The purple shading represents wetting phase and the orange shading represents non-wetting phase. Each image was taken at a simulation time of $\tau = 50,000$. The two left images were classified as DW morphologies, and the two right images were classified as 2DBi morphologies.

FIG. 11. Same as Fig. (10), but with $\phi_{NW} = 0.30$, and film thickness of (left-to-right) $n_z = 32, 40, 50, \text{ and } 64 \delta$. The leftmost image was classified as 2DBi morphology, and the three right images were classified as DNW morphologies.

that for future work.

We furthermore point out that our CHC model does not include hydrodynamic effects. The influence of hydrodynamic effects will likely be minimal with the respect to the emergent morphologies observed here, due to the near proximity of the boundaries which will keep Reynolds numbers very low. However, while we do not expect a qualitative influence on morphology, it is known that hydrodynamic flow accelerates the coarsening process, even in SDSD, as examined by Tanaka [19].

IV. CONCLUSIONS

We have investigated how symmetric SDSD is influenced by both the film thickness and film composition using three-dimensional computer simulations. A 2D bicontinuous morphology can develop for certain compositions depending on the film thickness. This 2D bicontinuous morphology persists in time into the late-stage coarsening regime, and remains self-similar after significant coarsening. A morphology map was constructed to illustrate the regions of DNW, 2DBi, and DW morphologies on the film thickness/composition space.

The 2D bicontinuous morphology described here potentially has interesting applications for membrane science. The structure for example might be fabricated from a thin film consisting of a binary polymer melt. Following solidification, either the wetting or the non-wetting phase could be chemically etched. If the wetting phase is etched, a 2D mesh-like membrane would remain. On the other hand, if the non-wetting phase were etched, a membrane with internal porosity not accessible from the top or bottom surfaces could be formed. Due to the continuity of the internal porosity, such pore channels could be used to laterally transport medium, for example with applications such as artificial skin or artificial plant leaves.

ACKNOWLEDGEMENTS

The authors acknowledge support from the National Science Foundation under award No. 1457888. This research is also supported by the Arkansas High Performance Computing Center, which is funded through multiple National Science Foundation grants and the Arkansas Economic Development Commission.

