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We conduct molecular dynamics (MD) simulations and develop scaling laws to quantify the lubri-
cation behavior of weakly interpenetrated polymer brush bilayers in presence of an external shear
force. The weakly interpenetrated regime is characterized by 1 < dg/d0 < 2, where dg is the gap be-
tween the opposing surfaces (where the brushes are grafted) and d0 is the unperturbed brush height.
MD simulations predict that in the shear thinning regime, characterized by a larger shear force or a
large Weissenberg number (W ), R2

g ∼W 0.19 and η ∼W−0.38, where Rg is the chain extension in the
direction of the shear and η is the viscosity. These scaling behaviors, which are distinctly different
from that witnessed in strongly compressed regime (for such a regime, characterized by dg/d0 < 1,
R2

g ∼W 0.53 and η ∼W−0.46), match excellently with those predicted by our scaling theory.

I. INTRODUCTION

Functionalizing surfaces by grafting them with poly-
mer molecules in “brush” like configurations [1–6] have
been employed in a large number of applications such
as drug delivery [7, 8], oil recovery [9], emulsion sta-
bilization [10], wettability modulation of coatings [11],
developing anti-biofouling crystals [12], sensing of ions
and biomolecules [13–17], current rectification [18], fab-
rication of nanofluidic diodes [19, 20], and many more.
In “brush” configuration the polymer molecules stretch
away from the grafted surface and several of these ap-
plications harness this stretching behavior in response
to environmental cues (e.g., salt concentration, solvent
quality, pH, etc.). An extremely important variant of the
problem is the case of interpenetrating polymer brushes,
where the polymer brushes grafted at two opposing walls
interact [21]. In other words the distance of separation
between the opposing grafting surface (dg) is less than
2d0 (where d0 is the height of the unperturbed brushes).
Such interpenetrated polymer and polyelectrolyte (PE)
brush systems have been extensively explored often with
the intention to better understand the large lubricity that
characterizes this regime and makes such interpenetrated
polymer brush systems employable in applications such
as friction reduction [22–30] and fabrication of lubricated
coatings [31] and artificial hip and knee joints [32, 33].

The majority of the studies on interpenetrated poly-
mer and PE brushes have focused on strongly com-
pressed brush bilayers (BBLs) characterized by dg < d0

(i.e., there is an actual physical compression) [26–30, 34–
60]. This has stemmed from the fact that such highly
compressed brushes being the best representation of the
conditions in the human hip and knee joints are ideal
to probe for facilitating the fabrication of the artificial
joints. Kreer in his recent review has nicely summarized
several key findings of these papers [21]. Very recently
we extended these calculations for a different compression
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regime [61, 62]: we considered a weakly interpenetrated
regime characterized by 1 < dg/d0 < 2. We conducted
MD simulations and scaling analyses to establish a com-
pletely different scaling behavior of the equilibrium con-
figuration of the polymer and PE brushes in comparison
to those witnessed for highly compressed regimes.

In this paper, we carry out MD simulations and scaling
analysis to study the lubrication behavior of the weakly
interpenetrated polymer BBLs in the presence of an ap-
plied shear. We establish through MD simulations that
in the shear thinning regime, characterized by the appli-
cation of a large shear stress or W � 1 (where W is the
Weissenberg number, which represents the dimensionless
shear rate and can be expressed as W = γ̇τ with γ̇ being
the shear rate and τ being the polymer relaxation time),
η ∼W−0.38 and R2

g ∼W 0.19 (where η is the viscosity and
Rg is the chain extension in the direction of the applied
shear). These scaling conditions are distinctly deviated
for the brushes in the highly compressed regime, where
one witnesses η ∼ W−0.46 and R2

g ∼ W 0.53 [21, 34, 35].
We also carry out an extensive theoretical analysis and
obtain excellent match with our MD predictions. We dis-
cuss that such a match for the variation of the viscosity
occurs only when, motivated by the findings of the MD
simulations, we consider that even at very small shear
rate (γ̇) the shear stress (fs) varies non-linearly with the
shear rate, i.e., fs ∼ γ̇0.81. On the other hand, the match
for the variation of the extension is ensured by accounting
for the contribution of both the interpenetrated and the
non-interpenetrated (brush-like) segments of the polymer
brushes.

II. MOLECULAR DYNAMICS SIMULATIONS:
METHODOLOGY

We perform molecular dynamics (MD) simulations us-
ing the LAMMPS software package [63]. We consider
a system of two opposing plates, with M = 49 polymer
chains grafted on each plate. Each polymer chain con-
sists of N = 30 monomers. The polymers are grafted in
a uniform square lattice with a grafting density ρg =
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FIG. 1. (a) Snapshots showing the polymer BBLs in presence of a large shear (γ̇ = 0.1τ−1
LJ ). (b) The polymer BBL in absence

of the shear. (c) The polymer BBL in presence of the large shear (γ̇ = 0.1τ−1
LJ ). In (b) and (c) we intentionally select only 3

polymer brush molecule from the top and the bottom plate of the configuration shown in (a) in order to clearly visulaize the
massive deformation of the brushes in presence of the shear. In (a-c), we consider dg/d0 = 1.2.

0.1460 σ−2
LJ = 5ρg

∗, where σLJ is the Lennard-Jones
length unit and ρg

∗ is the critical grafting density at
which the polymer crosses over from the mushroom to
the brush regime.

We use the Kremer-Grest (KG) bead spring model to
simulate the polymer chains [64–66]. In the KG model
the monomers of a polymer chain are connected by a
FENE bond and the non-bonded monomers interact via
the shifted and truncated Lennard-Jones potential (LJ)
potential. The detailed equations for these potentials
are provided in our previous paper [61] and are not re-
peated here for the sake of brevity. The brushes are
grafted at z = 0 and z = dg (see Fig. 1). Additionally,
to prevent the monomers from crossing the wall bound-
aries, we place an infinite smooth wall at z = −1.12σLJ
and z = dg + 1.12σLJ . Here infinite smooth wall is
a particle-less wall that exerts a repulsive force on the
monomer beads enforcing them to always remain be-
tween z = 0 (bottom grafting surface) and z = dg
(top grafting surface); hence the infinite smooth wall
has been placed below the bottom grafting surface (i.e.,
at z = −1.12σLJ) and above the top grafting surface
(i.e., at z = dg + 1.12σLJ). The parameters for the
interactions are same as our previous work [61]. The
polymers are simulated in an implicit solvent (i.e., the
case where the solvent molecules are not modelled ex-
plicitly, or in other words, the interactions between the
solvent molecules and polymer chains are not explicitly
accounted for) – however, as in our system the polymer

brushes are grafted with a large grafting density, we an-
ticipate that our simulation results would be similar to
that with an explicit solvent [34] (i.e., the case where
the interactions between the solvent molecules and the
polymer chains are explicitly accounted for).

Simulations are carried out in the presence of the pe-
riodic boundary conditions employed in x, y directions
as well as in the presence of an NVT ensemble. The
temperature was set to T = 1.2 (dimensionless tempera-
ture) and isothermal conditions were maintained during
the simulation using a DPD (Dissipative Particle Dynam-
ics) thermostat. The DPD thermostat adds a dissipative
force and a random force to each particle. These forces
are described by Ref. [34]. We choose a friction coeffi-
cient of 5τLJ

−1 and the cut-off is set to 2.24σLJ . The
DPD thermostat cannot efficiently maintain the isother-
mal condition in good-solvent conditions [67]; in order to
improve the performance of the DPD thermostat, we set
the cutoff of the DPD thermostat to twice the cutoff of
the LJ interaction. This strategy has been suggested and
implemented previously by Pastorino and Müller [68].

In our simulations, initially the two opposing plates
are placed far apart so that the polymer chains grafted
on these opposing plates cannot interact with each other.
This configuration is equilibrated for 1.2×107 time steps
with a time step size of 0.006τLJ . The polymer-brush-
grafted top plate was then moved closer to the bottom
plate to a distance that ensures a plate separation of
dg. Under this situation the polymer brushes from the
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FIG. 2. MD simulation results for the variation of the ratio
R2

g(W � 1)/R2
0 = R2

g(W � 1)/Rg(W � 1)(denoting the
square of the shear-induced extension of the chain in the di-
rection of the applied shear in dimensionless form) with W
(Weissenberg number). The results are provided for different
values of dg/d0 ratio (please see the legend), where dg is the
gap between the two opposing plates (where the polymers are
grafted) and d0 is the unperturbed brush height. MD simula-
tion results are shown for 1 < dg/d0 < 2 signifying a weakly
interpenetrating regime. From the MD simulation results, we
get R2

g(W � 1)/Rg(W � 1) ∼W 0.19±0.01 (i.e., including the
error). In the figure, in addition to the MD simulation results,
we plot a line denoting W 0.19 variation.

opposing plates interacted with each other. This config-
uration was equilibrated for 3 × 106 time steps with a
time step size of 0.006τLJ . To simulate the condition of
the externally imposed shear, we move the beads grafted
to the top plate by a constant velocity of +vx and the
beads grafted to the bottom plate move with a constant
velocity of −vx, (therefore the shear rate is γ̇ = 2vx/dg).
Under these conditions, the system is equilibrated for 107

time steps with a time step of 0.005τLJ . Post this equili-
bration, the system is simulated for an additional 2×107

time steps and data was collected for every 5000 time
steps.

The shear stress fs is calculated as fs = -< Pxz >,
where < Pxz > is the off diagonal component of the
virial pressure tensor calculated directly by LAMMPS
[69]. The viscosity η is calculated as η = fs/γ̇. Figs.
2,3 shows the variation of the extension and the viscos-
ity as function of the Weissenberg number (W ). While
discussing Fig. 2, we provide a detailed methodology of
how we obtain the W from the shear rate γ̇. Similarly
while discussing Fig. 3, we discuss the manner in which
we obtain η(W = 0).

III. MOLECULAR DYNAMICS SIMULATIONS:
RESULTS

In this section, we present the results from our MD sim-
ulations for the weakly interpenetrating polymer BBLs in
presence of the applied shear ensured by subjecting the
grafting surfaces (on which polymer brushes are grafted)
to lateral steady-state motion.

Fig. 1 provides the MD simulation snapshots for the
weakly interpenetrated polymer BBLs in presence and in
absence of the shear force. We use the OVITO software
package [70] to render the snapshots. We clearly witness
that the presence of the shear deforms the brushes.

The response to the shear is quantified in terms of the
extension Rg and the change in the viscosity η. Here Rg
is same as Rg,x i.e., the chain extension in the direction
of the shear (i.e., in the x−direction). Henceforth, Rg
will be used to denote Rg,x. Fig. 2 provides the log-
log variation of the ratio of the square of the extension
R2
g/R

2
0 = R2

g(W � 1)/R2
g(W � 1) with W . We witness

R2
g ∼ W 0.19. This suggests a significant lowering of the

extension in the shear-thinning (or high W ) regime in
comparison to the case of the highly compressed brushes
(where R2

g ∼ W 0.53). Later during the derivation of the
scaling theories, we would discuss that such a reduction
in the extension for the weakly interpenetrated brushes
can be attributed to the fact that the overall brush ex-
tension is dictated by the contribution of both the non-
interpenetrated and the interpenetrated segments. In
this context, it is useful to discuss the procedure by which
we obtain W from an applied shear rate γ̇. W and γ̇ are
related as W = γ̇/γ̇∗, where γ̇∗ = 1/τ where τ is the
polymer relaxation time. Since the bilayer has a broad
spectrum of the relaxation time [34], it is not easy to iden-
tify the appropriate τ that would provide us the W from
γ̇. For this purpose, we follow the same procedure as elu-
cidated by Galuschko et al. [34]. We first plot the MD
results for the variation of R2

g/R
2
0 = R2

g(γ̇)/R2
g(γ̇ = 0)

with γ̇ and then shift the data such that a master curve
results where there is a perfect data collapse (please see
Fig. 2). From this master curve, we can identify W = 1
as that value below which the there is no chain deforma-
tion [i.e., Rg(γ̇) = Rg(γ̇ = 0)].

Fig. 3 provides the log-log variation of the viscosity
ratio η/η0 = η(W � 1)/η(W = 1) as a function of W .
Here η0 refers to the zero shear viscosity. We witness
η ∼ W−0.38, i.e., the dependence on shear is slightly
weaker as compared to that for the highly compressed
regime (where η ∼ W−0.43). Such a behavior reflects a
relatively weaker lubrication (or equivalently, a weaker
lowering of the viscosity) at a high shear rate in com-
parison to the case of the highly compressed brushes.
It is worthwhile to discuss here our strategy to obtain
η(W = 1). We first wanted to obtain η(W = 0) and not
η(W = 1). The exact value of η(W = 0) obtained from
the MD data suffers from strong fluctuations. There-
fore, following Refs.[34, 35], we assume that the value of
η(W = 0) to be approximately equal to η(W = 1). Of
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FIG. 3. MD simulation results for the variation of the ra-
tio η/η0 (i.e., the shear viscosity ratio) with W (Weissenberg
number). The results are provided for different values of dg/d0
ratio (please see the legend), where dg is the gap between the
two opposing plates (where the polymers are grafted) and
d0 is the unperturbed brush height. MD simulation results
are shown for 1 < dg/d0 < 2 signifying a weakly interpen-
etrating regime. From the MD simulation results, we get
η/η0 ∼ W−0.38±0.01 (i.e., including the error). In the fig-
ure, in addition to the MD simulation results, we plot a line
denoting W−0.38 variation.

course it should be noted here that the exact value of
η(W = 0) will not affect the scaling variation of η(W )
with W ; it will simply shift the data along the y-axis
without changing the slope.

Finally in Fig. 4, we show the variation of the shear
stress (fs) with the shear rate γ̇, elucidating fs ∼ γ̇0.81.
This scaling behavior persists over a wide range of shear
rates Fig. 4 therefore confirms that even for γ̇, the shear
stress does not vary linearly with γ̇. The scaling calcula-
tions provided below will utilize this highly non-intuitive
situation where fs ∼ γ̇0.81.
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FIG. 4. MD simulation results for the fs − vs − γ̇ variation,
where fs is the shear stress (in units of εLJ/σ

3
LJ) and γ̇ is

the shear rate (in units of τ−1
LJ ). The results are provided for

different values of dg/d0 ratio (please see the legend), where
dg is the gap between the two opposing plates (where the
polymers are grafted) and d0 is the unperturbed brush height.
MD simulation results are shown for 1 < dg/d0 < 2 signifying
a weakly interpenetrating regime. From the MD simulation
results, we get fs ∼ γ̇0.81±0.015 (i.e., including the error). In
the figure, in addition to the MD simulation results, we plot
a line denoting γ̇0.81 variation.

IV. SCALING THEORIES

A. Previously obtained scaling expressions for
weakly interpenetrated polymer BBLs

We first re-express certain scaling behavior witnessed
for weakly interpenetrated polymer brush bilayers. Most
of the expressions provided in this subsection have
already been derived in our previous paper [61], but we
repeat them here for the sake of completeness.

As we are studying a weakly interpenetrated poly-
mer BBL, a part of the polymer molecule is in the
interpenetrated domain while the other part is outside
the interpenetrated domain. The part that is in the in-
terpenetrated domain can be considered to be described
as blob-encased segments [61, 62]. Following Kreer and
Balko [42], we can express the interaction energy per
unit area for the interpenetrated semidilute polymer
BBLs as:

A ∼ nikBT, (1)

where kBT is the thermal energy and ni is the number
density of blobs (having the units of 1/m2) within the IP
(Interpenetration) zone expressed as:

ni = cδδ/gc. (2)
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Here δ is the interpenetration length, cδ is the monomer
concentration in the IP zone, and gc is the number of
monomers present in each blob. Considering N1 num-
ber of monomers are outside the IP zone and N − N1

monomers are inside the IP zone, we can express [61]:

cδ ∼
(N −N1)σg

δ
∼ N (2 − x)σg

δ
, (3)

gc ∼
(
ξc
a

)1/ν

, (4)

ξc ∼ a
(
cδa

3
)ν/(1−3ν)

, (5)

where a is the Kuhn length (a polymer molecule can be
assumed to be made of several freely jointed segments,
which are known as the Kuhn segments and the length of
each segment is the Kuhn length), σg is the grafting den-
sity, x = 1+N1/N , gc is the number of monomers in each
blob, ξc is the blob radius, and ν is the Flory exponent
(this exponent expresses the radius of gyration of a coiled
polymer chain as a function of the number of monomers
and the solvent quality). Of course, following our pre-
vious paper [61] we get a new scaling expression for the
interpenetration length δ for the weakly interpenetrated
semi-dilute polymer BBLs as:

δ ∼ a

[
N1−ν (2 − x)

2ν
(
a2σg

)(7−15ν)/3
]1/(5ν−1)

. (6)

We arrive at eq.(6) This expression for δ is distinctly dif-
ferent from that of the strongly compressed regime [21].
Using eqs.(3,6) in eq.(5), we can eventually write:

ξc ∼ aN
2ν

1−5ν (2 − x)
ν

1−5ν

(
σga

2
) 10ν

3(1−5ν)

. (7)

Furthermore, using eqs.(3,4,6,7) in eq.(2), we can write:

ni ∼ a−2N
1+5ν
5ν−1 (2 − x)

5ν
5ν−1

(
σga

2
) 7+15ν

3(5ν−1)

. (8)

Consequently, we may express the per unit area interac-
tion energy as:

A ∼ kBTa
−2N

1+5ν
5ν−1 (2 − x)

5ν
5ν−1

(
σga

2
) 7+15ν

3(5ν−1)

, (9)

which in turn helps to express the per unit area compres-
sive force fc as:

fc ∼ − ∂A

∂dg
= −∂A

∂x

dx

d(dg)

∼ kBT

d0
a−2N

1+5ν
5ν−1 (2 − x)

1
5ν−1

(
σga

2
) 7+15ν

3(5ν−1)

. (10)

B. Relaxation time

The relaxation time of the polymer brush can
be expressed as [considering τmelt,highly compressed =
Γa2N2/(kBT ) [21] and replacing a by ξc, N by (N −
N1)/gc and Γ (friction constant of a blob) by ηsξc (ηs is
the solvent viscosity)]:

τ ∼ ηsξ
3
c

kBT

(
N −N1

gc

)2

. (11)

Using eq.(4) to replace gc and eq.(7) to replace ξc, we can
obtain:

τ ∼ ηsa
3

kBT
N

4ν+2
5ν−1 (2 − x)

7ν
5ν−1

(
σga

2
) 10(3ν−2)

3(1−5ν)

. (12)

C. Scaling of η/η0

As established by our MD studies (see Fig. 4), we can
consider that the shear stress fs does not vary linearly
with the shear rate γ̇ even for weak values of γ̇. Rather
fs ∼ γ̇b, where b = 0.81 (see Fig. 4). Consequently,

fs ∼ niξcηs
(
γ̇dg

)b
∼
ηsγ̇

bdbg
a

N
1+3ν
5ν−1 (2 − x)

4ν
5ν−1

(
σga

2
) 7+5ν

3(5ν−1)

. (13)

For critical shear stress (i.e., the shear stress correspond-
ing to the critical shear rate, or the shear rate for which
W = 1), fs(W = 1), we can replace γ̇ by 1/τ [where
eq.(12) provides τ ] yielding:

fs(W = 1) ∼
ηsτ

−bdbg
a

N
1+3ν
5ν−1 (2 − x)

4ν
5ν−1

(
σga

2
) 7+5ν

3(5ν−1) ∼

η1−b
s a−1−3bdbg(kBT )bN

1+3ν−(4ν+2)b
5ν−1 (2 − x)

4ν−7νb
5ν−1 (σga

2)
7+5ν−10b(3ν−2)

3(5ν−1) . (14)

On the other hand, for large shear rate, we can write:

fs(W � 1) ∼ N(2 − x)β , (15)

which suggests that the interpenetrated segments of poly-
mer molecule also attain a brush like configuration.
Please note that here we have fs(W � 1) ∼ N(2 − x)β
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and not fs(W � 1) ∼ N (which occurs for fully inter-
penetrated brushes, see Kreer [21]) since here the shear
stress is only witnessed in the interpenetrated regime.
The exponent β accounts for the possible decrease in the
interpenetration due to shear.
Of course, following Kreer [21] we can write:

fs(W � 1) = fs(W = 1)W k, (16)

where using eq.(12), we can write

W k ∼ (γ̇τ)k ∼
ηksa

3k

(kBT )k
N

k(4ν+2)
5ν−1 (2 − x)

7νk
5ν−1

(
σga

2
) 10k(3ν−2)

3(1−5ν)

. (17)

Using eqs.(14,15,17) in eq.(16) and balancing the expo-
nents of N and 2 − x, we can finally write:

k − b =
ν − 1

2ν + 1
,

(Balancing the exponent of N) (18)

β =
7ν(k − b) + 4ν

5ν − 1
.

[Balancing the exponent of (2 − x)](19)

From eq.(18) we obtain (using ν ≈ 0.588 and b = 0.81,
see Fig. 4):

k = 0.62 (20)

On the other hand from eq.(19), we can write:

β = 0.81, (21)

which confirms the lowering of the interpenetration. Fol-
lowing Spirin et al. [35] and using eq.(20), we can finally
write:

η

η0
∼ 1

W

fs(W � 1)

fs(W = 1)
∼W k−1 ∼W−0.38, (22)

i.e., we get a perfect match with the MD results.

D. Scaling of R2(W � 1)/R2
0

We now consider the scaling of R2(W � 1)/R2
0 (here

R(W � 1) represents the stretching in the direction of
the shear). We can express R0 as the sum of the interpen-
etrated and non-interpenetrated (which forms a brush)
segments yielding:

R0 = R(W � 1) ∼ Ξ1aN
ν(2 − x)ν + Ξ2bN (23)

Variation of Ξ1 and Ξ2 dictates the extent of IP: no IP
would imply Ξ1 = 0 and Ξ2 = 1, whereas maximum
penetration would imply Ξ2 = 0 and Ξ1 = 1 and x = 0.
Secondly, we can write:

R(W � 1) ∼ N, (24)

implying that the interpenetrated part also forms a
brush-like configuration. Of course, here too we use the
relationship presented by Kreer [21], i.e.,

R(W � 1) ∼ R(W � 1)Wα (25)

where using eq.(12), we can write

Wα ∼ (γ̇τ)α ∼
ηαs a

3α

(kBT )α
N

α(4ν+2)
5ν−1 (2 − x)

7να
5ν−1

(
σga

2
) 10α(3ν−2)

3(1−5ν)

. (26)

Therefore, using eqs.(23,24,26) in eq.(25), we can write
by balancing the powers of N and considering ν ≈ 0.588:

(α)Ξ2=0 =
(1 − ν)(5ν − 1)

4ν + 2
≈ 0.18 (full interpenetration),

(α)Ξ1=0 = 0 (no interpenetration).

(27)

We can therefore consider an average α in the weakly
interpenetrated domain as:

α ≈
(α)Ξ2=0 + (α)Ξ1=0

2
≈ 0.09. (28)

Therefore, following Spirin et al. [35] and Kreer [21] and
eq.(28) we can write:

R2(W � 1)

R2
0

∼ R2(W � 1)

R2(W � 1)
∼W 2α ∼W 0.18, (29)

i.e., here too we get a wonderful match with the MD
simulation results.

V. CONCLUSIONS

In this paper, we study the shearing of weakly inter-
penetrated polymer brushes and identify scaling regimes
that are significantly deviated from the well-studied case
of highly compressed polymer brushes. Our findings
point to a weakened lubricity effect and a significantly
reduced stretching behaviors compared to that witnessed
in the highly compressed regimes. We explain these find-
ings through a detailed scaling theory that matches nicely
with the MD predictions. In fact, a key component of this
scaling theory, motivated by the MD predictions, is a con-
sideration that even at weak W , the shear stress varies
non-linearly with the shear rate. The scaling calcula-
tions also assume that the overall stretching is dictated
by the behavior of both the interpenetrated and the non-
interpenetrated segments of the polymer brush. Overall
this study sheds light on the lubricity and shearing ac-
tion of the polymer BBLs in a domain that has remained
hitherto unexplored.

As has been already discussed above, our scaling the-
ory is based on the condition (motivated by the findings
of the MD simulations that) shear stress fs ∼ γ̇0.81. This
is very counter-intuitive since we work with a small shear
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rate and at such conditions one would expect that fs
should vary linearly with γ̇. Possibly, such a non-linear
variation (quantified by this exponent 0.81) arises due to
the fact that at the small shear rates that we are apply-
ing it becomes difficult to equilibrate a sheared system.
Another issue with our derivation is that we assume that
the segment of the polymer brush that is in the interpen-
etrated regime is encased in blobs of uniform size (char-
acterizing a uniform monomer density in the interpen-
etrated regime). Such a situation is not strictly correct
especially for large (close to 2) values of dg/d0 (i.e., where
the degree of interpenetration decreases), as evident from
Fig. A1. Due to these above two reasons, there can be a
possibility that this wonderful match between the scaling
approach and the MD data is coincidental.

Finally, we would like to point out that there are no
experiments that have conducted the shear experiments
for such weakly interpenetrated polymer brush bilayer
system. However, experiments based on surface forces
apparatus (SFA) have carried out shear force measure-
ments between the polystyrene chains grafted to oppos-
ing surfaces for larger degrees of interpenetration [55].
Similarly, SFA-based experiments have quantified com-
pressive forces for both large and weak interpenetration
[31]. Approaches highlighted in these two studies can be
easily coupled to carry out the SFA-based experiments to
pinpoint the shear stress, chain extension, and shear vis-
cosity in weakly interpenetrated polymer brush bilayer
system.
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Appendix A: Variation of the monomer density
profile

Fig. A1 shows the variation of the monomer den-
sity profile in absence of the shear. As the degree of
interpenetration decreases, i.e., dg/d0 increases and ap-
proaches 2, we find that the monomer density in the chan-
nel centre decreases, establishing the non-uniformity in
the monomer concentration (or the non-uniformity in the
size of the hypothetical blobs used to describe the inter-
penetration zone).
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0.5
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FIG. A1. Variation in the monomer density profile across the
channel for different values of dg/d0 (shown in the legend).
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148, 3 (2015).
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