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Networks facilitate the spread of cascades, allowing a local perturbation to percolate via interac-
tions between nodes and their neighbors. We investigate how network structure affects the dynamics
of a spreading cascade. By accounting for the joint degree distribution of a network within a gen-
erating function framework, we can quantify how degree correlations affect both the onset of global
cascades and the propensity of nodes of specific degree class to trigger large cascades. However, not
all degree correlations are equally important in a spreading process. We introduce a new measure
of degree assortativity that accounts for correlations among nodes relevant to a spreading cascade.
We show that the critical point defining the onset of global cascades has a monotone relationship
to this new assortativity measure. In addition, we show that the choice of nodes to seed the largest
cascades is strongly affected by degree correlations. Contrary to traditional wisdom, when degree
assortativity is positive, low degree nodes are more likely to generate largest cascades. Our work
suggests that it may be possible to tailor spreading processes by manipulating the higher-order
structure of networks.

I. INTRODUCTION

A local perturbation in a network can spread to
many nodes through the interactions of nodes with their
neighbors. Such effects have been studied in numerous
contexts, including critical phenomena [1] and percola-
tion [2]. One of the simplest models used to describe
these interactions is the threshold model [3, 4], where a
node changes its state to one held by a sufficiently large
fraction of its neighbors. Under some conditions, even
a single node can trigger a global cascade that affects a
significant portion of the network [4]. Despite its sim-
plicity, the threshold model has been used to study a
surprisingly wide range of social, biological, and techno-
logical phenomena. For example, in social systems, the
local perturbation could represent adoption of an inno-
vation, e.g., a new product, action, or idea, that spreads
throughout society as individuals adopt the behavior of
their friends [3–5]. In technological systems, the pertur-
bation could represent the failure of a single component,
which triggers a cascade of failures in connected com-
ponents. If small shocks can become pandemic, then
nodes that can seed global outbreaks will have outsize
importance [1, 2, 6]. Such seeds represent influential in-
dividuals in social systems, who can help an innovation
become widely adopted, or “weak links” in technologi-
cal systems, whose failure compromises the robustness of
the entire system. For example, cascading failures were
implicated in widespread blackouts in the power grid [7],
and market crashes in financial systems [8].

Under what conditions do cascades spread globally?
Researchers have examined how the dynamics of cascades
are affected by network structure, including degree dis-
tribution [4] and degree correlations between connected
nodes [9, 10]. The latter property is important, because
nodes in real-world networks are not connected at ran-
dom, but tend to link to other nodes with either a simi-
lar or dissimilar degree. Following Newman [11] network

scientists have used degree assortativity to measure the
correlation of degrees of connected nodes: in positively
assortative networks, nodes with similar degrees are con-
nected, e.g., high-degree nodes connected to other high-
degree nodes, while in negatively assortative networks,
high-degree nodes tend to be connected to low-degree
nodes. Surprisingly, networks with both sufficiently pos-
itive and sufficiently negative assortativity have been
found to be vulnerable to global outbreaks. Such non-
monotone behavior was reported in Erdős-Rényi ran-
dom networks [10], and for k-core networks [9]. How-
ever, these works did not explain the anomalous rela-
tionship between degree assortativity and cascade size,
nor did they provide a general mathematical framework
for quantifying how degree correlations affect the prop-
erties of cascades under the threshold model. Our work
addresses these topics and also demonstrates that assor-
tativity does not adequately capture some important as-
pects of degree correlations in networks. Specifically, in
real-world networks, assortativity is heavily skewed by
nodes with a single neighbor, which act as “dead ends”
to spreading cascades. To address this shortcoming, we
introduce a new measure, which accounts for degree cor-
relations of nodes that participate in a spreading cas-
cade. We demonstrate that cascade size is monotonically
related to this measure.

In this paper, we study dynamics of cascades that
spread on networks according to the Watts threshold
model [4]. Every node in this model can be in one of two
possible states: either active or inactive (e.g., adopting
an innovation or not). Nodes change their state based
on the states of their neighbors, with activated nodes
remaining active in the later updating steps. Specifi-
cally, an inactive node with k neighbors becomes active
if at least φk of its neighbors are active. The activation
threshold φ takes values 0 ≤ φ ≤ 1, with smaller values
of φ rendering a node more susceptible to the influence
of neighbors. Following Watts, we call a node vulnera-
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ble if it can be activated by a single active neighbor. In
a threshold model this is equivalent to a node of degree
k having an activation threshold φ < 1/k. We study
undirected networks with degree distribution pk, giving
the probability that a randomly chosen node has degree
k, and joint degree distribution ek,k′ , giving the proba-
bility that a randomly chosen edge in the network links
nodes of degrees k and k′ [11]. We ignore correlations
beyond two neighboring nodes, so structures of higher-
order than ek,k′ are assumed to be random. The joint
degree distribution matrix ek,k′ is symmetric and related
to pk through

∑∞

k′=1
ek,k′ = qk = kpk/〈k〉, where qk here

is the probability that a node at the end of a randomly
chosen link has degree k, and 〈k〉 is the network’s average
degree. Globally, the strength of degree correlation in an
undirected network can be quantified by the assortativity
coefficient:

r =
1

σ2
q

∑

k,k′

kk′ [ek,k′ − qkqk′ ] . (1)

Here, σ2
q =

∑

k k
2qk − [

∑

k kqk]
2. In assortative (resp.

disassortative) networks with r > 0 (resp. r < 0), nodes
have a tendency to link to similar (resp. dissimilar) de-
gree nodes, e.g., high-degree nodes to other high-degree
(resp. low-degree) nodes.
We use the generating function approach [12] to de-

rive the expected size of cascades triggered by a single
active node. In the subcritical regime, cascades never
reach an appreciable fraction of the network, but when
the system transitions to the supercritical regime, global
cascades are possible. We derive the condition for this
supercritical transition to occur. The supercritical for-
mulas yield the expected size of cascades given the seed’s
degree. To better understand how degree correlations
affect cascades, we model the joint degree distribution
using a bivariate log-normal distribution [13]. Strong as-
sortative behavior renders networks vulnerable to global
outbreaks. Surprisingly, the same holds for strongly dis-
assortative behavior, as long as there are enough links
between vulnerable nodes. This highlights the limits of
using assortativity to measure degree correlation. Addi-
tionally, we show that in some networks when assortativ-
ity is strongly positive (or negative), lower degree nodes
are more influential, as they can trigger larger outbreaks.
As assortativity approaches zero from either direction, in-
fluence shifts to higher degree nodes. This phenomenon
can be explained by the fraction of edges that link vul-
nerable nodes.
We replicate these findings by simulating cascades on

synthetic random networks with power-law degree dis-
tribution, which have been rewired to obtain a range
of degree-degree correlations. Both the onset of global
outbreaks and their size agree with theory. However,
in real-world networks drawn from diverse domains, cas-
cade size is systematically smaller than theoretical pre-
dictions. This reflects the fact that real-world networks
have structure beyond that given by degree-degree cor-
relations [9, 13]. After rewiring the networks so as to

eliminate the higher-order structure, while preserving the
degree and joint degree distributions, we find the agree-
ment with theoretical predictions of simulated outbreak
sizes restored. This suggests that higher-order network
structure suppresses outbreaks. Despite this, theory pre-
dicts well who the influential nodes are.

II. THEORY

A. Subcritical cascades

Consider a network with N nodes, in the limit where
N → ∞. We adopt the setting of [12], distinguishing
between a local cascade that reaches at most a vanishing
fraction of nodes (such as some countable number), and a
global cascade that spreads to a nonvanishing fraction of
the nodes. Given a seed node of degree k, we denote by
πk,n the probability that it generates a local cascade, of
size n, and we denote by gk the probability that it gener-
ates a global cascade. We represent the distribution πk,n

through its generating function H0,k(x) =
∑∞

n=0
πk,nx

n.
Generating functions easily allow calculating many key
properties of cascades, such as the total probability of
a local cascade H0,k(1) =

∑∞

n=0
πk,n or its mean size

H ′
0,k(1) =

∑∞

n=0
nπk,n. Since a seed node can generate

either a local or a global cascade, H0,k(1) + gk = 1.

First, we consider the subcritical regime, where only lo-
cal cascades exist and gk = 0. In this regime, the size of
a local cascade generated by a seed node of degree k can
be decomposed as one (the seed itself) plus the collective
size of cascades generated by its k neighbors. We denote
as H1,k(x) the generating function for the size of the lo-
cal cascade created by the neighbor of a k-degree node.
The power-rule of generating functions [11] states that if
k independent realizations of a random process with gen-
erating function G(x) are created, then the probability
distribution for the sum of the outcomes has generating
function [G(x)]k. Therefore,

H0,k(x) = x[H1,k(x)]
k, (2)

where the leading factor x on the right hand side of
Eq. (2) has the effect of adding one to the combined size
of the cascade generated by the neighbors of the seed
node (and thus accounting for the seed node itself). To
determine H1,k(x), we first note that the neighbor of the
k-degree seed node can only generate a cascade if it itself
is vulnerable, i.e., it can be activated by a single active
neighbor. This will occur if the neighbor’s degree k′ sat-
isfies k′ ≤ φ−1. Given that the neighbor is activated, the
size of the cascade generated by that neighbor is one plus
the size the cascade generated by its neighbors down the
tree (that is, not including the seed). Hence, H1,k(x) is
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given by

H1,k(x) = x
ek,1
qk

+
∑

k′>φ−1

ek,k′

qk

+ x

⌊φ−1⌋
∑

k′=2

ek,k′

qk
[H1,k′(x)]k

′−1, (3)

where the first term on the right hand side of Eq. (3)
is the probability that the neighbor of a degree-k node
has no other outgoing links (i.e., has degree k′ = 1), the
second term is the probability that the neighbor is not
vulnerable, and the third term is the generating function
for the size of the cascade generated from its k′−1 down-
tree neighbors. The right hand side of Eq. (3) only con-
tains H1,k′(x) terms, and indeed if we were to consider
the next level of the tree (i.e., neighbors of the seed’s
neighbors) then we would obtain the same equations, as
our network model only considers correlations between
nearest neighbors. Thus, the full system of equations
describing the distribution of the sizes of local cascades
generated by a degree-k seed is given by Eqs. (2) and (3)
for kmin ≤ k ≤ kmax.

B. The Onset of Global Cascades

In the subcritical regime, the mean cascade size 〈sk0
〉

generated by a k0-degree seed node is H ′
0,k0

(1) (as gk =

0). Differentiating Eqs. (2) and (3) and evaluating at
x = 1 gives a system of equations for 〈sk0

〉,

〈sk0
〉 = 1 + k0H

′
1,k0

(1), (4)

H ′
1,k(1) =

⌊φ−1⌋
∑

k′=2

ek,k′

qk

[

1 + (k′ − 1)H ′
1,k′(1)

]

, (5)

where we have used the identity H0,k(1) = H1,k(1) = 1
in the subcritical regime. Eq. (5) holds for all values of
k, and can be written in matrix form as h

′
1(1) = B1 +

BUh
′
1(1). Here, h

′
1(1) is the state vector with (h′

1(1))k =
H ′

1,k+1(1), B is a matrix with elements Bkk′ = ek,k′/qk
for 2 ≤ k′ ≤

⌊

φ−1
⌋

and 0 otherwise, 1 is a vector of ones,
and U is a diagonal matrix with elements Ukk = (k−1).
Notice from the upper limit of the sum in Eq. (5) that
the threshold φ affects the system of equations discretely,
through the integer value

⌊

φ−1
⌋

.
The linear system can be rearranged to give

(I−BU)h′
1(1) = B1. (6)

In the subcritical regime, I−BU can be inverted to give
an expression for h′

1(1) that is positive and finite. How-
ever, there exists a critical value of φ marking the onset
of global cascades where I−BU is no longer invertible,
and hence there is no solution to Eq. (6). This critical
point can be expressed formally as

det(I−BU) = 0. (7)

The critical point marks the transition to the supercrit-

ical regime, where the network is vulnerable to global
outbreaks (i.e., gk 6= 0). Note that Eq. (7) corresponds
to the largest eigenvalue of BU being equal to one, and
from Eq. (6) we can see that the supercritical regime ex-
ists if and only if the largest eigenvalue of BU is greater
than one. Since the critical threshold is the largest value
of φ for which this condition holds, it will be the inverse
of an integer degree.
In general, the critical condition depends on the thresh-

old φ, the degree distribution pk, and the joint degree dis-
tribution ek,k′ through the matrix B. Thus, for a given
degree distribution and threshold, degree-degree corre-
lations determine whether the network is vulnerable to
global outbreaks. To illustrate this, we consider two ide-
alized cases: a network in which the degrees of nodes
are completely independent, and one in which they are
perfectly correlated. The first case is a network with no
degree-degree correlations; therefore, ek,k′ = qkqk′ . As a
consequence of Eq. (7), the critical point exists when

⌊φ−1⌋
∑

k=2

kpk
〈k〉

(k − 1) = 1. (8)

The sum on the left hand side of Eq. (8) is a decreasing
function of the threshold φ, and if the degree distribu-
tion satisfies

∑∞

k=1
k2pk/〈k〉 > 2, then there will always

exist a critical threshold φ∗ for which global cascades can
occur for values φ ≤ φ∗ but will never occur for φ > φ∗.
Moreover, in this scenario H ′

1,k(1) is independent of k

(Eq. (5)), and thus from Eq. (4) we can see that nodes
of any degree can generate global cascades in the super-
critical regime.
The second case we consider is a perfectly assortative

network in which nodes are connected only to other nodes
of the same degree: ek,k′ = δ(k, k′)qk′ , where δ(k, k′) =
1 if k = k′ and 0 otherwise. While this limiting case
may seem artificial in that it results in a collection of
disconnected regular graph components (note that more
than one degree value is needed in order for assortativity
to be well-defined), it allows Eq. (5) to reduce to the set
of independent equations

H ′
1,k(1) =

{

1 + (k − 1)H ′
1,k(1) 2 ≤ k ≤

⌊

φ−1
⌋

0 k = 1 or k >
⌊

φ−1
⌋

(9)
which, rearranged, gives H ′

1,k(1) = 1/(2− k) for 2 ≤ k ≤
⌊

φ−1
⌋

. This expression is either infinite or negative for
all values of k, and since H ′

1,k(1) should be positive and

H ′
1,k(1) = 0 is not a solution to Eq. (9), the only possible

solution for these degree classes k is the global cascade
condition H1,k(1) → ∞. Thus, in perfectly assortative
networks, there will always be global cascades when φ ≤
1/2, but from Eq. (4) we see that these cascades can
only be triggered by seed nodes that are vulnerable (i.e.,
2 ≤ k ≤

⌊

φ−1
⌋

).
The two scenarios above illustrate not only that
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degree-degree correlations affect the onset of global cas-
cades in networks, but also that such correlations affect
the ability of seeds in different degree classes to trigger
global outbreaks.

C. Supercritical Regime and Node Influence

To identify influential nodes, we calculate the expected
size of the cascades they trigger. A node can be consid-
ered influential if it is able to seed a global outbreak [6].
In the supercritical regime, the network is composed of a
single vulnerable component , and thus a node will trigger
a global outbreak if and only if it belongs to this giant
vulnerable component (GVC). The size S of the giant
vulnerable component can be calculated as follows. A k-
degree node will be in the GVC if and only if it triggers a
global cascade, and so the fraction of k-degree nodes that
are in the GVC is the fraction that will generate global
cascades, i.e., gk. Summing over all degree classes, the
size of the giant vulnerable component is

S =

∞
∑

k=1

pkgk. (10)

Because a k-degree node either belongs to the GVC or
not, the expected fraction of the network triggered by
a k-degree seed is Sk = S for nodes in the GVC, and
Sk = 0 for nodes outside of the GVC, and thus we have
that Sk = Sgk. Then, as gk = 1−H0,k(1), and H0,k(1) =
[H1,k(1)]

k (from Eq. (2)), we have a system of equations
that give us the expected outbreak size triggered by a
node of degree k:

Sk =
(

1− [H1,k(1)]
k
)

S (11)

H1,k(1) =
ek,1
qk

+
∑

k′>φ−1

ek,k′

qk

+

⌊φ−1⌋
∑

k′=2

ek,k′

qk
[H1,k′(1)]k

′−1 (12)

S =
∞
∑

k′=1

pk′

(

1− [H1,k′(1)]k
′
)

(13)

Equation (12), for all values of k, gives a set of polynomial
equations that can be solved forH1,k(1), and substituting
these values into Eqs. (11) and (13) gives us the expected
cascade size Sk triggered by nodes of degree k.

III. BIVARIATE LOG-NORMAL MODEL

To understand better how the properties of cascades
depend on network structure, we model ek,k′ as a
bivariate log-normal distribution [13] with parameters
(µ, σ2, c), where µ is the location parameter, σ2 is the

scale parameter, and c is the correlation coefficient.

log k′| log k ∼ N
[

µ+ c(log k − µ), (1 − c2)σ2
]

. (14)

The assortativity of the network is then

r =
Cov(k, k′)

Var(k)
=

ecσ
2

− 1

eσ2 − 1
. (15)

Note that, for a given value of σ2, the assortativity is

bounded by −e−σ2

≤ r ≤ 1.
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FIG. 1. (Color online) Critical threshold φ∗ as a function of
network’s degree assortativity. Global cascades exist in the
parameter region φ < φ∗, and only local cascades exist in the
region φ > φ∗.

We identify the location of the critical point defining
the onset of global cascades by inserting the log-normal
distribution into Eq. (7) and varying c to produce a range
of assortativity values. Fig. 1 shows the series of critical
points obtained from the theory using parameters µ = 1.5
and 2.5, σ = 1.5 and 2.5 as a function of assortativity
r. The critical point is defined by the threshold φ∗, such
that global cascades exist in the parameter region φ < φ∗,
and only local cascades exist in the region φ > φ∗. A
maximum degree in the joint degree distribution needs
to be introduced here in order to solve the outbreak size
by Eq. (12). We set the cutoff to be kmax = 1, 000. As ex-
pected, assortative (r > 0) networks are more vulnerable
to global outbreaks, since with increasing assortativity,
vulnerable nodes are more likely to connect to other vul-
nerable nodes, which helps create the giant vulnerable
component on which global outbreaks spread.
Interestingly, as observed by Payne et al. [10], disas-

sortative (r < 0) networks are vulnerable to global out-
breaks as well. Fig. 1 shows that, for certain values of
µ and σ, the critical point φ∗ displays non-monotone be-
havior and in fact increases with disassortativity. At
first this may appear puzzling, since in the disassorta-
tive regime, vulnerable nodes are less likely to connect to
other vulnerable nodes, which would seem to inhibit the
formation of a giant vulnerable component on which cas-
cades spread. That intuition is flawed, however, because
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of the heterogeneous nature of the joint degree distribu-
tion: even in networks that are globally disassortative,
nodes of lower degree can be linked assortatively. Some
numerical evidence of this has been seen in [10] for the
r = −0.8 case of a random network, where nodes with
degrees k = 2 through k = 4 have a strong tendency to
link to one another.
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FIG. 2. (Color online) Expected outbreak size S(k) on net-
work with log-normal distribution network joint degree dis-
tribution ek,k′ . The distribution is with parameters µ = 1.5
and σ = 1.5, and the assortativity parameter c is tunable be-
tween range −1 and 1. The vertical dashed line indicates the
threshold chosen φ = 1

6
.

We also consider the impact of assortativity on how
influential nodes of a given degree are, as measured by
their ability to initiate large cascades. Fig. 2 shows the
expected size of cascades triggered by seeds in different
degree classes. Perhaps surprisingly, the best-connected
nodes—hubs—are not always the most influential. In-
stead, we again see a non-monotone effect. For highly as-
sortative networks, the largest cascades are triggered by
lower-degree nodes. As assortativity decreases, influence
shifts to higher-degree nodes, and lower-degree nodes lose
their ability to trigger large outbreaks. But when assor-
tativity becomes negative, the picture changes: influence
shifts back to lower degree nodes. In highly disassorta-
tive networks, similar to the highly assortative networks,
the degree of the most influential nodes is not far from
the inverse of the threshold (φ−1).
In order to explain these effects, consider how degree

correlations among nodes in disassortative networks can
promote global outbreaks. From Eq. (7), it is clear
that the matrix BU dictates the occurrence of global
outbreaks. This matrix has entries ek,k′ (k′ − 1)/qk for
2 ≤ k′ ≤

⌊

φ−1
⌋

, and as φ decreases, the nonzero part
of the matrix increases. At some point, it may reach a
size for which the largest eigenvalue is greater than one,
at which point it will be unstable to global outbreaks.
The interpretation of this is that decreasing φ makes an
increasing number of nodes vulnerable, and when a suf-
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FIG. 3. (Color online) The block probability weight on differ-
ent threshold chosen in ek,k′ with µ = 1.5, 2.5 and σ = 1.5, 2.5
which sums over the element values in range of 2 ≤ k ≤ φ−1

0
,

2 ≤ k′ ≤ φ−1

0
, where φ−1

0
solves the equation of Eq. (8).

ficient number of links exist between vulnerable nodes
— or when a sufficient amount of probability mass is
contained in the submatrix ek,k′ for 2 ≤ k, k′ ≤

⌊

φ−1
⌋

— then a giant vulnerable component will form. Fig. 3
shows how the probability mass of ek,k′ in the vulnera-
ble regime (i.e., ek,k′ for 2 ≤ k, k′ ≤

⌊

φ−1
⌋

) changes as
a function of the global assortativity coefficient. Com-
paring this plot to Fig. 1, we can see that the parameter
regime where the block probability mass is large corre-
sponds to networks that are more unstable to global out-
breaks, even when they are disassortative at the global
level.
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FIG. 4. (Color online) Critical threshold φ∗ as a function
of the network’s vulnerable node degree correlation defined
by Eq. (16). Global cascades exist in the parameter region
φ < φ∗, and only local cascades exist in the region φ > φ∗.

As an alternative to assortativity, we propose a mea-
sure that quantifies degree correlation between vulner-
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able nodes. We introduce an indicator for node i to be
vulnerable as vi = 1

2≤ki≤⌊φ−1

0 ⌋, where φ
−1
0 solves Eq. (8).

Here P (vi = 1) =
∑⌊φ−1

0 ⌋
k=2

qk = Qv. Then the correlation
between degrees of vulnerable nodes is

ρvul =

∑⌊φ−1

0 ⌋
k=2

∑⌊φ−1

0 ⌋
k′=2

ek,k′ −Q2
v

Qv(1−Qv)
. (16)

When we plot the critical threshold as a function of this
new measure—vulnerable node degree correlation—we
observe a monotone behavior (Fig. 4). That suggests
that this quantity, rather than degree assortativity, is
an appropriate control parameter determining the size of
outbreaks. Both the most disassortative and the most
assortative networks in Fig. 1 have high vulnerable cor-
relation in Fig. 4. This also explains the effect seen in
Fig. 2. While high-degree nodes can influence more nodes
once they are activated, low-degree nodes are more likely
to be vulnerable. Thus, when the vulnerable node degree
correlation is high, large cascades are more likely to be
initiated by nodes of lower degree.

IV. RESULTS

We use the theoretical framework to study vulnerabil-
ity of synthetic and real-world networks to global out-
breaks and the properties of cascades in such networks.

A. Cascades in Synthetic Networks

Using the configuration model, we generate networks
with N = 10, 000 nodes and a power law-like degree se-
quence with exponents α = 2.1 and 2.4. The result-
ing networks have assortativity r = −0.17 and −0.07
respectively. We then change the degree correlations in
the networks by rewiring them according to Newman’s
method [11]. The rewiring procedure picks two pairs of
linked nodes at random and exchanges their edges if do-
ing so changes the assortativity in the desired direction.
Note that this procedure only changes the so-called 2K

structure of the network [13]—its joint degree distribu-
tion ek,k′ matrix—without changing its degree distribu-
tion. Through this process, we obtain a series of networks
that share the same degree sequence but span a range of
assortativity values from r = −0.1 to −0.3 for α = 2.1,
and r = 0.05 to −0.15 for α = 2.4. Note that we choose
the degree sequence with not too large maximum degree
to allow greatest flexibility for the rewiring process.
Fig. 5 reports the size of the giant vulnerable compo-

nent for different values of the threshold φ. This was cal-
culated by plugging the ek,k′ matrix of the network into
the nonlinear equations Eq. (12). The critical point sig-
naling the onset of global outbreaks occurs at the inflec-
tion point, where the line departs from the x-axis. As as-
sortativity of the rewired network increases (r > −0.07),
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FIG. 5. (Color online) Theoretical calculation (lines) and ob-
servations (points) of giant vulnerable component of synthetic
power-law networks with exponent α = 2.4 and number of
nodes n = 10, 000.

the critical point shifts to ever larger values of φ. Degree
correlations destabilize the network, creating conditions
for outbreaks to spread. This is because in assortative
networks, similar degree nodes are connected, with vul-
nerable nodes more likely to be linked to one another,
forming a giant vulnerable component on which out-
breaks spread. However, as assortativity increases, the
network also becomes more fragmented. Since cascades
are limited to the giant component of the network, as-
sortativity decreases their maximum size. In contrast, as
the network becomes more disassortative (r < −0.07), we
also observe that the upper bound of the onset of global
outbreaks increases. This non-monotonicity is similar
to that observed in numerical experiments with the log-
normal distribution (Fig. 1). Although the assortativ-
ity of the unrewired network (black line, r = −0.07) is
slightly negative due to the structural cutoff [14], this net-
work corresponds to the neutral assortativity networks in
Fig. 1 with lowest values of critical threshold. When the
network is more assortative or more disassortative, the
critical threshold for the onset of global cascades shifts
to larger values, just as in Fig. 1.

Next, we study node influence, which, as explained
earlier, we measure by its ability to trigger large cascades.
We simulate cascades using the threshold that puts the
network in a slightly supercritical regime. Fig. 6 shows
expected size of cascades predicted by theory, together
with the average size of the simulated outbreaks triggered
by nodes of different degree. Each plot in Fig. 6 with α =
2.4 produces a single point in Fig. 5 via a weighted sum
by network degree distribution. Again, the observations
made in synthetic networks are similar to those for the
log-normal model.

In the more disassortative networks (right hand plots
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FIG. 6. (Color online) Theoretical calculation and observations of single seed cascading problems on synthetic power-law
networks with α = 2.1 and 2.4, comparing the observed expected outbreak by the seed degree (blue dots) and the predictions
of the generating function formulation (red line).

in Fig. 6), the high-degree nodes are more influential.
However, when assortativity increases, low-degree nodes
also become influential. In the more assortative networks
(left hand plots in Fig. 6), both the low-degree and high-
degree nodes initiate larger cascades, on average, than
the middle-degree nodes.

B. Cascades in Real-World Networks

Finally, we study cascade dynamics on real-world net-
works, which include biological, social, and semantic net-
works, ranging in size from 4k to 150k nodes. The ba-
sic properties of these networks are listed in Table I.
Their assortativity ranges from mildly disassortative (r =
−0.0623) to strongly assortative (r = 0.6322). Fig. 7
shows the size of the giant vulnerable component as a
function of threshold φ. Unlike in synthetic networks,
the theory (lines) does not agree well with results of sim-
ulations (symbols).

We simulate cascading dynamics on real world-
networks and measure their size. The thresholds for
these simulations are chosen slightly below the theoreti-
cal global cascading threshold by Eq. (7). As shown in
Fig. 8, the average size of cascades triggered by seeds
of a given degree (blue dots in Fig. 8) is smaller than
theoretical predictions (red lines). This is likely because
real-world networks have structure beyond that given by
the joint degree distribution ek,k′ , which our theory does
not take into account, and which confines cascades within
portions of the network. To test the hypothesis, we rewire
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FIG. 7. (Color online) Theoretical calculation (lines) and ob-
servations (points) of giant vulnerable component of selected
real-world networks.

the network in such a way as to preserve the ek,k′ and pk
distributions, but destroy higher-order structure such as
clustering, community structure, or neighbor degree cor-
relations [13]. In each step of the rewiring, we randomly
choose two edges subject to the constraint that one end-
point from each edge shares the same degree value. Then
we swap the edges so that each of those endpoints instead
links to the other node [15]. This step does not change
the two edges’ contribution toward the joint degree distri-
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FIG. 8. (Color online) Theoretical calculation and observations of single seed cascading problems on real-world networks,
comparing the observed expected outbreak by the seed degree (blue dots), predictions of the generating function formulation
(red line) and the observation on the reconstructed graph (green crosses).

bution ek,k′ . The step is then implemented a large num-
ber of times, roughly equal to the total number of edges.
Since the edge chosen depends only on the degrees of
its endpoints, the procedure is sufficient to eliminate the
higher-order structures in the network. The average cas-
cade size on such rewired networks (green dots in Fig. 8)
is in agreement with theoretical predictions. This sug-
gests that higher-order structure beyond degree-degree
correlations suppresses outbreaks in real-world networks.

At the same time, we notice that the theory does ac-
curately predict the seed degree at which the outbreak
size peaks in these real-world networks. We explain this
as follows. In the log-normal joint distribution model,
we have seen that low-degree nodes (degree near φ−1)
are influential when the network is both highly assorta-
tive and highly disassortative, and a similar peak phe-
nomenon also exists in assortative synthetic networks.
In real-world networks, on the other hand, the presence
of higher-order structure means that there is a mixing
of more assortative and more disassortative network ele-
ments. Our analysis of the log-normal model illustrates
that both of these elements, assortative and disassorta-
tive, can contribute to a peak of influence around φ−1.
Thus, even if the theory does not reproduce the size of
cascades well in real-world networks, it correctly identi-
fies the location of the peak and thereby identifies the
influential nodes in the network.

V. CONCLUSION

In this paper, we have explored how the structure of
networks affects the dynamics of cascades. We have used
a tree-like approximation to calculate the expected size
of cascades spreading on networks according to the Watts
threshold model. The mathematical formulation allows
us to explicitly model the impact of degree correlations,
specified by the joint degree distribution ek,k′ , on the size
of outbreaks triggered by a single node. Global outbreaks
are more likely in strongly assortative networks, where
the degrees of connected nodes are highly correlated. In
such networks, nodes that are vulnerable to changing
state tend to be connected to other vulnerable nodes,
forming a giant connected component on which cascades
spread. Surprisingly, strongly disassortative networks are
also unstable to global outbreaks, but only when enough
vulnerable nodes are connected. Outside of this impor-
tant block of assortativity, the probability mass of the
joint degree distribution matrix is dominated by non-
spreading nodes, leading to an overall negative assorta-
tivity. We have introduced a new measure — vulnerable
node degree correlation — that better captures the size
of outbreaks of the Watts threshold model.

We have also explored the role of seed node degree in
cascades. While low-degree nodes are the most vulnera-
ble, high-degree nodes are typically the most influential
as they can trigger the largest outbreaks. On the other
hand, in sufficently assortative as well as sufficiently dis-
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assortative networks, the low degree nodes turn out to be
the most influential. We have found that this, too, relates
closely to the correlation between degrees of vulnerable
nodes. When that correlation is sufficiently high, which
corresponds to both the highly assortative and the highly
disassortative case, the vulnerable low-degree nodes are
themselves able to initiate the largest cascades.

Our theory, which is based only on degree correlations
of connected nodes, accurately predicts the seed degree
at which a local maximum in cascade size can occur in a
real-world network: near the inverse threshold φ−1. How-
ever, for the theory to correctly predict the cascade size
itself, these networks must be rewired so as to random-
ize any structure beyond the joint degree distribution.
We know that local assortativity is more heterogeneous
in real-world networks than in synthetic ones, with cer-
tain parts of a given network being assortative and other
parts being disassortative. This suggests that manipu-
lating a network’s higher-order structure may allow us to
tune the size of cascades, with an appropriate rewiring
strategy offering a valuable tool for tailoring its stability

to outbreaks.

Appendix A: List of Networks

The six networks we study are from a variety of
domains, including social networks (Facebook [16],
Digg [16]), biological (Reactome [16]), Co-authorship
(HepPh [16], HepTh [16]), and Semantic networks
(WordNet [17]). The basic properties of networks we
used in this paper are listed in Table I.

Network Type Nodes Edges 〈k〉 Assort.

Facebook Social 4,039 88,234 43.69 0.1660

Digg Social 27,567 175,892 12.76 0.1660

Reactome Biological 6,327 146,160 46.64 0.2449

ArXiv HepPh Co-authorship 12,008 118,489 19.74 0.6322

ArXiv HepTh Co-authorship 9,877 25,998 5.26 0.2679

WordNet Semantic 146,005 656,999 9.00 −0.0623

TABLE I. List of real-world networks and their basic profiles.
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