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An observability condition number is defined for physical systems modeled by network dynamics.
Assuming the dynamical equations of the network are known and a noisy trajectory is observed
at a subset of the nodes, we calculate the expected distance to the nearest correct trajectory as
a function of the observation noise level, and discuss how it varies over the unobserved nodes of
the network. When the condition number is sufficiently large, reconstructing the trajectory from
observations from the subset will be infeasible. This knowledge can be used to choose an optimal
subset from which to observe a network.
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I. INTRODUCTION

The study of network dynamics is increasingly useful in modeling physical processes. Networks present a fascinating
departure from generic dynamical systems due to the constraints imposed on direct communication between nodes,
resulting in complicated dynamics and nontrivial bifurcation structures [1–4]. Modeling by networks has become an
important topic in almost every area of physical and biological science, including distributed mechanical processes,
weather and climate, and metabolic, genomic and neural networks.

A crucial aspect of studying distributed systems is the difficulty of finding generic observables that facilitate re-
construction of the entire collective dynamics of the network. The theory of observability was pioneered for linear
dynamics by Kalman [5]. For nonlinear dynamics, the theory of attractor reconstruction [6, 7] provides hope that
for generic observables of sufficiently high dimension, the dynamics can be reconstructed. Although observations at
single or even multiple nodes of a network may not be provably generic, the results of Joly [8] show that some aspects
of reconstructibility may be present by observing even a single node in a strongly connected network, i.e. a network
for which every node is downstream from every other node. Observability in both linear and nonlinear networks is a
topic of intense recent interest [9–14] and has close connections to controllability [15–17].

However, observability in theory does not guarantee a satisfactory reconstruction from data collected from a
sparsely–connected network, or far from target nodes, even in the case where the equations of motion are known.
To date, even in this more tractable scenario, surprisingly little in the way of general practical requirements have
been developed for inferring information from measurements. A critical obstruction is the presence of noise in the
observations, and how this is magnified in efforts to reconstruct the dynamics. In this article, we offer a definition of
observability condition number for reconstruction of network trajectories, demonstrate its asymptotic properties for
limiting cases such as full observability, and exhibit its behavior for some relevant examples. The main conclusion
is that for practical use of network reconstruction techniques, theoretical observability may be only a first step, and
that a condition number measuring error magnification may fundamentally govern the limits of reconstructibility. In
short, if the observational noise level is σ times the macroscopic level of the dynamics, then the error magnification
must be less than 1/σ to allow accuracy in the reconstructed dynamics. Our aim is to quantify this magnification for
each specific observing subset and target node of the network.

II. OBSERVABILITY CONDITION NUMBER

In the following, we denote by S a subset of observed nodes or variables of a dynamical network. Let X be a
network node whose trajectory needs to be reconstructed. We consider an ergodic trajectory of a compact attractor
which is observed with noise, and consider the trajectory reconstruction error at one node X of the network.

In this scenario, we conjecture that there is a constant κ depending on S,X, and the dynamics, such that in the
low noise limit, the expected error of reconstructing a length-N trajectory satisfies

reconstruction error per step at X

observation error per step at S
∼ κ√

N
. (1)

asymptotically as N →∞. To be more precise, consider the observation noise to be mean zero with variance σ2, and
let e = {e1, . . . , eN} denote the trajectory error at X with component ei = zi − xi in terms of the exact trajectory
xi and the reconstructed trajectory zi. Since the standard deviation of the trajectory errors ei on each step is the

expected value E
[
||e||22/N

]1/2
, the asymptotic relation (1) translates to the existence of the limit

κ = lim
N→∞
σ→0

√
N E

[
||e||22/N

]1/2
σ

= lim
N→∞
σ→0

E
[
||e||22

]1/2
σ

. (2)

We call κ = κS,X the observability condition number of node X observed by S. This is a single constant that
encapsulates the ability to reconstruct the dynamics at X from the subset S.

The study of condition number as a measure of controllability and observability is classical, beginning with Friedland
[18] in the context of linear systems. Here we consider the nonlinear case, and append the asymptotics expressed
in (2). In addition, we describe a direct computational approach to approximating the condition number: Small
observational noise is added to a length N trajectory of the dynamical system and a variational data assimilation
technique is used to reconstruct the nearest exact trajectory. The ratio of output (reconstruction) error to input

(observation) error is κS,X/
√
N .

The fundamental importance of the existence of a universal quantity κS,X , independent of trajectory length, is that
it allows us to compare the varying fidelity of various observation sets S at node X. This has direct implications for
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sensor placement in general systems, such as measurements in a metabolic network or the location of electrodes in a
neural assembly.

We begin by establishing the formula (2) for the case of completely observed linear dynamics, where κ exists
and equals 1. By “completely observed”, we mean that the subset S of observed variables includes all variables.
Consider first the scalar case and assume the dynamics f(x) = ax. Let {x1, . . . , xN} be a trajectory under f , so that
xt = f (t−1)(x1). Let yt = xt + δt be the (completely observed) trajectory observed with i.i.d. observation noise δt of
mean 0 and covariance Σ(δ) = σ2IN×N for some σ > 0. We search for a trajectory {z1, . . . , zN} where zt = f (t−1)(z1),
that minimizes the sum squared error

N∑
t=1

(zt − yt)2 =

N∑
t=1

(at−1z1 − at−1x1 − δi)2. (3)

In the sense of least squares, the {zt} trajectory is the one closest to the observations. Setting the derivative with
respect to zt to zero and solving yields

0 = z1

N∑
t=1

a2(t−1) − x1
N∑
t=1

a2(t−1) −
N∑
t=1

at−1δt

z1 = x1 +

∑N
t=1 a

t−1δt∑N
t=1 a

2(t−1)
. (4)

The square of the numerator of (2) is the expected squared error of the reconstructed trajectory {z1, . . . , zN} compared
with the original trajectory {x1, . . . , xN}, or using zt − xt = at−1(z1 − x1) and (4),

E

[
N∑
t=1

(zt − xt)2
]

= E(z1 − x1)2
N∑
t=1

a2(t−1)

= E

(∑N
t=1 a

t−1δt∑N
t=1 a

2(t−1)

)2
 N∑
t=1

a2(t−1)

=

∑N
t=1 a

2(t−1)E(δ2t )∑N
t=1 a

2(t−1)
= σ2

where we used the fact that the noises δt are uncorrelated. Dividing by the observation noise level σ, we conclude
that κ = 1 for the completely observed case.

The scalar case can be extended to linear dynamics f(x) = Ax for a symmetric matrix by diagonalizing A and
applying the above argument componentwise. We expect the result to extend to nonlinear dynamics as well under
appropriate technical conditions, whose details will be presented elsewhere.

For partial observations, such as observing at a proper subset S of nodes of a network, κS,X will be substantially
greater than 1, which is the focus of this article. As an illustrative example, consider the undirected network of nine
nodes illustrated in Fig. 1, where the update equations at node j follow the nonlinear discrete dynamics

xjt+1 = a cosxjt + byjt + c

9∑
k=1

Ajkx
k
t , yjt+1 = xjt (5)

where a = 2.2, b = 0.4 for j = 1, . . . , 9 and A = {Ajk} is the (symmetric) adjacency matrix of the network. The
discrete dynamical map used here at each node is a variant of the classical Hénon map [19] that is suitable for
distributed dynamics.

We describe an algorithm to compute κ as in (2) from a general network. Generate an exact trajectory {x1, . . . , xN},
which is observed by a function h(x) plus Gaussian observational noise with variance σ2 at each point of the trajectory
to get {y1, . . . , yN}, where yt = h(xt)+εt. In the examples to follow, h will be the projection from the current state x,
the set of all nodes, to the observation subset S. We apply what amounts to a variational data assimilation method,
described in the remainder of the paragraph, to the inexact yt observations to find an exact trajectory {z1, . . . , zN}
that minimizes the least squares difference between the yt and zt trajectories, analogous to (3). To accomplish this, we
applied a Gauss-Newton iteration [20] that enforces zt being a trajectory while minimizing the observation difference.
More precisely, we search for zt minimizing

R2 =
1

q2

N−1∑
t=1

(f(zt)− zt+1)2 +
1

r2

N−1∑
t=1

(h(zt)− yt)2 (6)
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FIG. 1. Undirected network of nine nodes with dynamics (5) and adjacency matrix A as shown. (a) Node X is shaded (color
online) according to κS,X where S = {1, 2}. (b) Estimates of κS,X in (a) as a function of trajectory length.(c) Same as (a), but
S = {2, 8}. (d) Estimates of κS,X in (c).

where q and r are weights that specify the trajectory noise and observation noise tolerances, respectively. We use
q << r to ensure that the zt trajectory is effectively exact, at least relative to the observation errors. At the conclusion
of the Gauss-Newton iteration for zt, we compute the errors et = zt − xt and the approximation (2) to κS,X .

III. EXAMPLES

The results of this algorithm applied to the network in Fig. 1(a), observed with the x-coordinates at the set
S = {1, 2}, are shown in Fig. 1(b). The nine traces correspond to each of the nine network nodes X. The two
observed nodes are at the bottom, and remaining traces show various levels of κS,X . In this example, the asymptotic
N →∞ limit in (2) is reached for relatively short trajectory lengths. The nodes in Fig. 1(a) are colored according to
the respective observability condition numbers.
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FIG. 2. (a) A network of 10 nodes with dynamics from (5). (b) Plot of κS,X for nodes 1 – 10 when observed at x-coordinates
of subset S = {1, 2}. The means and standard deviations for the xj (left, red online) and yj (right, blue online) variables are
shown. The colors correspond to the color bar in Fig. f1.

The fact that κS,X can be arbitrarily large is illustrated by undirected networks such as Fig. 2. The equations (5)
are used, and the observing set is S = {1, 2}. As expected, the resulting condition numbers grow with the distance
from the observing set. However, calculating large κS,X is delicate, as we discuss below.

As an example of a discretely-sampled continuous dynamical system we built a directed network of FitzHugh-
Nagumo neurons [21, 22] as shown in Fig. 3(a)

v′j = −wj + djvj − v3j /3 + I + g

9∑
k=1

Ajkvk

w′j = aj − bjwj + cjvj (7)

where the parameters were varied by about 5% from a = 0.42, b = 0.8, c = 0.08, d = 0.01 and I = −0.025 among the
nodes. The system was observed at nodes 1 – 4 at a step size ∆t = 0.1, and small observation noise was added at
each step. Fig. 3(b) shows the observability condition number calculated at the remaining four nodes.

A. Erdős-Rényi and scale-free networks

We tested the computation of κS,X in two network constructions to compare the effects of degree distribution on the
observability condition number. For each construction, we used measures of degree and centrality in our exploration.
The example in Fig. 4(a) is a scale-free network of 20 nodes. After sorting the nodes in descending order by degree,
κS,X was computed for S equal to the first (largest) four, second four, etc and denoted by the round markers. The
same analysis carried out using closeness centrality instead of degree is plotted in diamonds. Note that the more
sparsely-connected observer sets lead to much increased mean κS,X .

The same analysis, but for an Erdős-Rényi network of the same size, is shown in Fig. 4(b). Note that values of κS,X
vary much less with the choice of the subset S. This comparison appears to show that according to the observability
condition number, there is an advantage to concentrating observers at hub-like nodes, which is quite intuitive.
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FIG. 3. (a) κS,X for FitzHugh-Nagumo network. (b) Estimates of κS,X versus trajectory length. Although not obvious from
the adjacency matrix, node 7 is more difficult to observe from the set S = {1, 2, 3, 4} than the remaining nodes.

B. Regulatory network

The application of observability condition number to the regulatory network in [23] shows how alternative choices of
observation subsets can be usefully compared as a component of experimental design. A representation of the model
of 21 differential equations, representing a network that regulates circadian rhythm, is shown in Fig. 5(a), where a
directed edge from one variable to another denotes the former is in the right-hand side of the latter’s equation. The
Supplementary Material contains a Matlab implementation of the equations.

This system was also studied in [24], and we adopt a set of parameter values used there, resulting in periodic
dynamics. Fig. 5(b) shows a sample trajectory of all 21 variables undergoing periodic behavior.

Fig. 6(a) displays the observability condition number for 100 random choices of three-node subsets S, computed
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FIG. 4. (a) Mean observability condition number of scale-free network, as a function of four-member observation subsets S.
Round markers (dashed lines) denote nodes sorted by descending degree; diamond markers (solid lines) denote nodes sorted by
descending closeness centrality. (b) Same for Erdős-Renyi network.

along the periodic trajectory of Fig. 5(b). For each three-node subset, a simulation was used to compute κS,X fir each
network node X, and the mean was calculated over all nodes X. This calculation was averaged over 10 realizations
and the mean and standard error are plotted in the figure. On the horizontal axis, the subsets S are shown, sorted
by the value of κS,X .

Upon carrying out this numerical exploration, it became obvious that there were two distinct classes of subsets. In
particular, Fig. 6(a) shows a clear discontinuity; there is a noticeable gap between the values of κS,X for the leftmost
35 subsets compared to the remainder . Closer analysis (see Supplemental Material, Fig. 1 for details) shows that
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each group in the leftmost set contains node 8 or 16, which correspond to reactants Rorc and RORc, respectively.
From this striking plot, we can conclude at least that Rorc and RORc are key observables in the system.

Fig. 6(b) shows the sorted observability condition numbers for 100 subsets of six nodes. The same separation is
apparent as in the three-node subset case; the subsets to the left of the gap turn out to contain either node 8 or 16
(see Supplementary Material, Fig. 2), similar to Fig. 6(a).

Interestingly, a group of six nodes were isolated in [24] to satisfy the hypotheses of a theorem guaranteeing good
control and observability properties. The theorem refers to a “reduced feedback vertex set,” which is a set of nodes
such that deleting any one causes the network to lack the strong connectedness property. The subset chosen in [24]
contains the reactants PER1, PER2, CRY1, CRY2, RORc and CLK/BMAL1, which correspond to nodes numbered
9, 10, 11, 12, 16, and 21. This special subset has node 16 in common with our results, and is included (non-randomly)
in Fig. 6(b). However, it is 37th from the left in the plot (see Supplementary Material), meaning that it is not
particularly distinguished as an observing subset from the point of view of observability condition number. This
underlines another advantage of our approach compared to the otherwise very interesting theorem in [24], in that
κS,X can be computed for an arbitrary subset of interest, without satisfying the very specific hypotheses in that result.

The emergence of the importance of nodes 8 and 16 is not obvious from any other technique known to us. This
striking result shows how the concept can be directly useful in the choice of observers in a relevant regulatory network.

IV. DISCUSSION

To conclude, we note that special care must be taken to carry out the Gauss-Newton iteration

zk+1 = zk − (DRTDR)†(DR)TR(zk),

that minimizes the sum (6). where R = [R1, . . . , Rn] and R1(z)2 + . . . + Rn(z)2 It is a central tenet of uncertainty
quantification that the accuracy of the solution of the iteration will be dependent on the condition number (see [20], for
example) of the Gauss-Newton problem, in this case the (conventional) condition number C of the matrix (DR)TDR,
where DR denotes the Jacobian. Since the errors added are of size σ << 1, the residuals Ri can be expected to be
on the same order. Thus one may run out of correct significant digits if C/σ > ε−1mach ≈ 1016 for double precision
computations.

In Fig. 7 we explore this issue. For simplicity, we consider a discrete stochastic map that multiplies by a random
2 × 2 matrix at each step. We observe at both phase variables, so that the system is completely observable and
κS,X = 1. Each marker represents a calculation of κS,X where S is both variables, i.e. completely observed, and X
is one of the variables. As shown above, in this case κS,X = 1. The markers correspond to trajectories of length
between 20 and 240, going from bottom to top, with input noise σ. The vertical axis denotes the condition number
C of (DR)TDR. The color of the marker corresponds to the observability condition number κS,X . The dashed line
is drawn at C/σ = 1016. Note that as the trajectories become longer, C becomes larger and when the dashed line is
passed, κS,X is incorrectly determined (in some cases by a factor of more than 1000), due to lack of significant digits
caused by ill-conditioning. To avoid this difficulty, the length of trajectories must be limited to the safe area below
the dashed line. Alternatively, computations beyond double precision could be used.

In this article, we have introduced the concept of observability condition number κX,S that has a consistent asymp-
totic definition in the limit of long ergodic trajectories and the limit of small noise. We have shown that the definition
in relatively straightforward to compute in multidimensional systems. This settles a fundamental, long-standing prob-
lem in network dynamics, namely where to locate a minimal set of sensors to measure remote dynamics. Computation
of κS,X allows a direct comparison of all options. In particular, an exhaustive enumeration among subsets S to find
the minimum mean or maximum over the network is feasible for moderate-sized networks, and establishes a guiding
principle for large networks where exhaustive search may not be feasible.
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FIG. 5. (a) Network diagram represents 21-variable differential equation of circadian rhythm model described in [23]. (b) The
21 traces show a periodic trajectory of the 21 variables of the regulatory network in (a).
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FIG. 6. Mean observability condition number κS,X for 21-node regulatory network of [23], for the trajectory in Fig. 5(b). (a)
A total of 100 subsets S of 3 nodes, chosen randomly, are compared in the plot. The subsets are sorted from left to right by
increasing κS,X . There is a noticeable gap after the first 35 subsets. All subsets to the left of the gap contain either node 8 or
16; corresponding to reactants RORc and Rorc, respectively. None of the subsets to the right of the gap contain either RORc
or Rorc. (b) Average observability condition number κS,X for 6-node subsets S along the horizontal axis. See Supplementary
Material for identification of the 3-node and 6-node subsets, respectively.
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FIG. 7. Markers are shaded by estimate of κS,X and plotted versus input noise and the condition number C of the Gauss-
Newton iteration, for completely observed network of random 2 × 2 matrices. Trajectory lengths vary from 20 (lower points)
to 240 (upper points). Calculations below the dashed line C = 1016σ are reliable.


