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Properties of a sinusoidally-driven thermostat

Y. Zhao and G. J. Morales
Physics and Astronomy Department, University of California Los Angeles, CA 90095

This analytical and numerical study explores, from a deterministic perspective, the response of a
particle in contact with a heat bath to an external force that varies sinusoidally in time. The heat
bath is represented as a deterministic Nosé-Hoover thermostat. Such an idealized model encompasses
features found in a variety of physical problems in which the coherent influence of an external agent
competes against the thermalization tendencies of the surrounding medium, e.g., a charged particle
in a thermal plasma that is acted by a powerful electromagnetic wave. It is found that, independently
of the coupling strength to the thermostat, average power can only be extracted from the sinusoidal
force when the oscillatory velocity exceeds the thermal velocity. It follows from this property that
candidate heat baths whose temperature is raised solely through the application of a sinusoidal force
(e.g., radio-frequency heating), reach, in a finite time, a unique final temperature determined by the
force parameters. The transition boundary separating the two domains of power transfer is shown
to be dominated by chaotic behavior. The combined response to a sinusoidal force and a DC force
are also considered and the relevant regions of power transfer are delineated.

PACS numbers: 05.70.Ln, 74.40.De, 05.45.Ac, 74.40.Gh

I. I. INTRODUCTION

A.

1.

The competition between the coherent response to a
sinusoidal force and the randomization associated with
the simultaneous coupling to a heat bath is a basic pro-
cess encountered in a wide variety of physical environ-
ments. The topics in which the coherent/thermal compe-
tition arises, range broadly from the thermodynamics of
a driven colloidal particle [1], to the motion of a charged
particle in a thermal plasma that is irradiated by a pow-
erful electromagnetic wave.

Many of the key underlying issues in this general area,
and the seeds for numerous applications, can be traced
to Kramers’ pioneering study [2] of Brownian motion in
a field of force and the diffusion model of chemical reac-
tions. The basic concepts related to the ergodic proper-
ties of Brownian motion of a particle exposed to external
periodic modulations have been elucidated by Jung and
Haenggi [3] using methods based on stochastic differential
equations. Goychuck et al. [4] explored the possibility of
controlling electron transfer rates in condensed media by
studying the coupling to a heat bath of a two-level sys-
tem driven by a strong periodic field. Sinusoidal forcing
of an oscillator in contact with a thermostat was investi-
gated experimentally by Dourche et al. [5] and found to
result in surprising time responses that were explained in
terms of work fluctuation theorems. Van Zon and Cohen
[6] found that an extension of the fluctuation theorem
to a system with deterministic and stochastic compo-
nents indicates that, for large fluctuations, the particles
absorb rather than supply heat. The competition and
cooperation between thermal noise and a external driv-
ing force have been investigated by Bao et al. [7] to

demonstrate the transport properties of a particle in a
flashing ratchet. Guantes and Miret-Artes [8] combined
deterministic chaotic dynamics driven by a periodic force
with a model of Gaussian noise to demonstrate the ac-
tive control of self-diffusion. Significantly, at the present
time there is much excitement among condensed matter
researchers to explore new phases of matter made possi-
ble by the periodic driving of thermal quantum systems
[9] and the associated concept of time-crystals [10].

Motivated by the many applications and the vigor-
ous activity surrounding this subject, the present inves-
tigation explores some of the simplest non-trivial ques-
tions that arise when the coherent/thermal competition
is viewed from a deterministic perspective. For exam-
ple, what is the response of a particle in contact with
a deterministic thermostat when an external sinusoidal
force is applied? Are there hidden resonances due to the
nonlinear coupling to the heat bath? Does the particle
extract energy from the sinusoidal driver for all frequen-
cies? What is the role of large amplitude drivers? How
does the energy extracted modify the thermostat? Are
there chaotic regimes of behavior?

To obtain concrete answers to the previous questions,
the present study uses the simplest deterministic ther-
mostat, namely the Nosé-Hoover model [11-14], based
on Hamiltonian dynamics. Future, detailed investiga-
tions guided by the results obtained in the present study
should consider more elaborate thermostat models [15,
16]. For completeness, it should be mentioned that Es-
posito and Monnai [17] previously studied the connection
between nonequilibrium thermodynamics and the Nosé-
Hoover thermostat by considering the correlations that
arise between the system-reservoir under external forc-
ing.

The major feature identified in this study is the key
role played by the ratio of the average oscillatory ve-
locity to the thermal velocity, i.e., F/

√
2mvω, where F

is the amplitude of the sinusoidal force having angular
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frequency ω, m is the mass of the particle, and v the
corresponding thermal velocity. It is found that, inde-
pendently of the coupling strength to the thermostat,
average power can only be extracted from the sinusoidal
force when the oscillatory velocity exceeds the thermal
velocity. It has been concluded from this property that
candidate heat baths whose temperature is raised solely
through the application of a sinusoidal force (e.g., radio-
frequency heating), reach, in a finite time, a unique final
temperature determined by the force parameters. The
transition boundary separating the two domains of power
transfer is found to be dominated by chaotic behavior.
The manuscript is organized as follows. Section II de-

scribes the basic equations of the model and reviews the
relevant aspects of the Nosé-Hoover thermostat that im-
pact the present investigation. Section III implements
approximate analytic descriptions that capture the major
features of the underlying dynamics. Numerical results
are presented in Sec. IV and comparisons are made to
the analytic predictions. Conclusions are given in Sec.V.

II. II. FORMULATION

To provide a reference point for the exploration of the
sinusoidally-driven system it is first useful to review the
properties of a free particle interacting with a classic
Nosé-Hoover thermostat [11-14]. The equation of mo-
tion for a particle with mass m and velocity v in one-
dimension, and the time variable denoted by t, is

m
dv

dt
= −γ(t)mv, (1)

with γ the self-consistent damping coefficient represent-
ing the coupling to the heat bath, and evolving according
to

dγ

dt
= t−2

0

[

(v

v

)2

− 1

]

, (2)

where t0 is the effective coupling time between the par-
ticle and the reservoir, and v the thermal velocity. The
natural scaling of this system results in the scaled vari-
ables used later in the numerical study,

u =
v

v
, τ =

t

t0
, Γ = γt0, η =

x

vt0
, (3)

in which x is the physical position (e.g. in cm) and η
the scaled position. The corresponding scaled, dynamical
system becomes

du

dτ
= −Γu, (4)

dΓ

dτ
= u2 − 1. (5)

This simple system has three built-in constraints: two
conserved quantities, and the preservation of the initial
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FIG. 1. Behavior of an initially fast particle with u(τ = 0) =
10 interacting with the heat reservoir. Top panel a) shows
the scaled phase-space orbit (Γ, u), and bottom panel b) the
temporal evolution of the scaled velocity. Only one pulse from
the periodic orbit is shown. Γ is the scaled damping coefficient
and u the scaled velocity, as given by Eq. (3).

sign of the scaled velocity u. The conserved quantities
U0 and K take the form

K = u exp θ; θ =

∫

dτΓ(τ), (6)

and

U0 =
u2

2
+

Γ2

2
+ θ. (7)

The associated nonlinear orbits are closed in the (Γ, u)
phase-space with a scaled period τp given by

τp = 2

∫ ut

0

du

u
√

2U0 − u2 + 2 ln (u/K)
, (8)

where ut is the turning velocity corresponding to the zero
of the square root.
The simplest orbit corresponds to sinusoidal oscilla-

tions about the fixed point at u = ±1; it has a scaled
angular frequency w0 =

√
2. For initial velocities u0

significantly different from |1|, the orbits consist of peri-
odic pulses with algebraically decaying tails (faster than
Lorentzian). Figure 1 illustrates the typical behavior for
an initially fast particle with u0 = 10. The top panel
displays the (Γ, u) phase-space trajectory and the bot-
tom panel exhibits the temporal behavior of the scaled
velocity; only one pulse is shown. What is remarkable
about this simple thermostat model is that, indepen-
dently of the initial conditions, the time–average of the
scaled squared velocity is 1, i.e., 〈v2〉 = v2. For the
particular orbit shown in Fig. 1 it is seen that this ther-
malization is achieved by the particle spending most of
the time at very small velocities and punctuated by short
flights through the large velocity intervals.
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FIG. 2. Dependence of the scaled, angular frequency of non-
linear periodic orbits on initial scaled velocity u(τ = 0). The
highest frequency corresponds to w0 =

√
2, associated with

sinusoidal oscillations about the thermal velocity, i.e., v = v.
Note that this is not the frequency of the external force pre-
sented in other figures.

Figure 2 illustrates the dependence of the scaled angu-
lar frequency of oscillation on the initial scaled velocity
obtained from Eq. (8), and also verified from direct nu-
merical solution of Eqs. (4) and (5). It is seen that the
largest frequency corresponds to the linear oscillations
about the fixed point, i.e.,

√
2. This figure also provides

a useful reference for results presented later in which the
frequency of the external driver is varied.
The simplest external perturbation to a free particle in

contact with the heat reservoir consists of the application
of a constant (DC) force F0. This is also of relevance
to the present study since it corresponds to the special
case in which the frequency of the sinusoidal driver is
zero. The response to the DC force is simple: every
particle, regardless of its initial velocity, quickly settles to
a velocity equal to the thermal velocity. The stationary
point has the scaled values u = 1, Γ = f0, where f0 =
F0t0
mv is the scaled DC force. Small perturbations in Γ
and u about this point exhibit a characteristic response
proportional to exp (sτ) with s the complex frequency
given by

s = −f0
2

±
√

f2
0 − 8

2
. (9)

In the limit of vanishing DC force Eq. (9) recovers the
oscillations about the thermal velocity at a scaled fre-
quency w0 =

√
2. This Eq. also gives an example, for

the simple orbits close to the thermal velocity, of how
an external force destroys (here for f0 >

√
8) the pe-

riodic energy exchange between a particle and the heat
reservoir. Analogous, but more complex modifications
are also at work for particles of arbitrary initial velocity;
the consequence is the destruction of the periodic, pulsed

orbits of the type shown in Fig 1. The steady power de-
livered by the DC force is P0 = F0v, independently of the
coupling strength between the particle and the thermo-
stat. The particle acts as a mediator that transfers this
power from the source of the force to the reservoir.
Next the effect of a sinusoidal force F sin (ωt) is con-

sidered. The scaled dynamical Eq. (4) becomes

du

dτ
= A sin (wτ) − Γu, (10)

where A = Ft0
mv is the scaled amplitude of the AC force

and w = ωt0 is the corresponding scaled angular fre-
quency.

III. III. APPROXIMATE DESCRIPTION

In this section approximate analytic solutions of Eqs.
(10) and (5) are considered. Predictions extracted from
these approximations are later compared in Sec. IV to
the numerical solutions.
The starting point in the approximation scheme is

the ansatz that Γ = 〈Γ〉 + δΓ, in which 〈Γ〉 is time-
independent, and δΓ is a small fluctuating quantity that
in lowest-order does not contribute significantly to the
strong constraint posed by the thermostat, namely that
〈u2〉 = 1. The concept is to solve for the time-dependent,
scaled velocity u assuming that 〈Γ〉 is known. Then by
demanding that 〈u2〉 = 1, the self-consistent value of 〈Γ〉
is determined. Once this information is known, the solu-
tion for δΓ can be obtained by iteration. The procedure
yields the time evolution of the (Γ, u) phase-space orbit,
and the average power transferred from the sinusoidal
force to the system. The implementation of this logic
results in

u = −
√
2 cos (wτ + θ), (11)

δΓ =
1

2w
sin (2wτ + 2θ), (12)

tan θ =
〈Γ〉
w
, (13)

〈Γ〉 =
√

A2

2
− w2, (14)

with the corresponding scaled, average power transferred
〈Ps〉 = 〈Γ〉. It is seen from Eq. (14) that power trans-
fer is expected to occur only for sufficiently large force
amplitudes such that A >

√
2w (this feature is later as-

sessed in Figs. 3-5). Physically, this corresponds to the
average sloshing velocity, or oscillatory velocity driven
by the sinusoidal force, being larger than the thermal ve-
locity. From Eqs. (11) and (12) it is deduced that the
phase-space trajectory is closed, and has a characteristic
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number-eight-shape (this property is later examined in
Fig. 6). In the net power-transfer regime the sloshing
velocity of the particle is independent of the amplitude
of the applied force; its time-average is always equal to
the thermal velocity.
In terms of explicit physical parameters, the average

power transferred takes the form

〈P 〉 = ωT

[

F 2

2mω2T
− 1

]1/2

, (15)

in which T is the temperature of the reservoir (in eV). It
is also the case that for the sinusoidal force, the power
transfer is independent of the coupling strength to the
reservoir. In the limit of very large forces, or low tem-
peratures, Eq.(15) reduces to 〈P 〉 → Fv/

√
2, which is

analogous to the result obtained for a DC force, but with
the strength of the force now replaced by the appropriate
RMS value.
Because of the seemingly universal form of Eq. (15)

it is instructive to ask: what would be the behavior if
the reservoir itself were to be heated by the action of
the external AC force? Clearly, from Eq. (15) there is a
maximum temperature

Tf =
F 2

2mω2
, (16)

beyond which the external force does not energize the
reservoir. Assuming that the reservoir has a heat capac-
ity C, and that there are N -particles driven by the AC
force that are coupled to the reservoir, then the temper-
ature evolves according to

C
dT

dt
= NωT

√

Tf
T

− 1. (17)

Defining the scaled temperature ξ and a new, slow scaled-
time ψ as

ξ =
T

Tf
, ψ =

Nωt

C
, (18)

yields

ψ(ξ) =

∫ ξ

0

ds
√

s(1− s)
, (19)

in which s is now a dummy variable, and whose solution
is

ξ = sin2
(

ψ

2

)

. (20)

This result implies that the action of an external sinu-
soidal force can bring the reservoir to the final temper-
ature Tf in a finite time tf = πC/Nω, independently of
the amplitude of the force, and of the coupling strength
to the reservoir.

It is worth mentioning that if the free particle also ex-
periences an additional drag force Fd = −νmv, with ν
the constant drag coefficient, and unrelated to the heat
reservoir, then the power extracted from the sinusoidal
force remains unchanged, i.e., it is given by Eq. (15).
The reservoir adjusts by decreasing the value of 〈Γ〉 by
an amount νt0. The consequence is that the reservoir
receives less power from the sinusoidal force, and accord-
ingly the final temperature that it could attain, if ener-
gized by coupling through N -particles, is reduced, i.e.,

Tf → Tf

1 +
(

ν
ω

)2
. (21)

The approximation methodology used in obtaining the
results summarized in Eqs. (11)-(15) can be extended
to incorporate an arbitrary number of sinusoidal forces,
each having scaled amplitude Aj and scaled frequency
wj . The increased complexity is that now 〈Γ〉 admits
the mathematical possibility of achieving multiple val-
ues resulting from the thermalization condition 〈u2〉 = 1,
which takes the form

∑

j

A2
j/2

w2
j + 〈Γ〉2 = 1, (22)

and with the scaled, average power transferred from all
the oscillating forces still being given by 〈Ps〉 = 〈Γ〉.
For the case of two oscillating forces, Eq. (22) can be

solved in closed form to obtain

〈Γ〉2 =
1

2

{

(x1 + x2)±
[

(x1 − x2)
2 +

A2
1A

2
2

4

]1/2
}

,

(23)
where

xj =
A2

j

2
− w2

j , for j = 1, 2, (24)

and from which only the plus sign yields a real, physical
root. The effect of an additional oscillatory force is to in-
crease the frequency domain over which a net transfer of
power can be achieved for a fixed amplitude. Physically,
this behavior can be interpreted as a boosting of the to-
tal sloshing velocity by the second force. This feature is
made more transparent by deducing from Eq. (22) what
is the threshold frequency beyond which the particle does
not extract energy from the forces, i.e., 〈Γ〉 = 0. Refer-
encing the parameters of the second oscillatory force in
terms of the first by A2 = αA1, and w2 = βw1, yields
the threshold frequency

wth = A1

√

1 + (α/β)2

2
, (25)

from which it is seen that, for a fixed amplitude, the
addition of a second force of much lower frequency, i.e.,
β ≪ 1, significantly increases the range of frequencies
over which the first force can transfer power to the driven
particle.
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Motivated by this finding it is then natural to ex-
plore the extreme case when both a DC force and a si-
nusoidal force are simultaneously applied. To describe
this situation, the ansatz previously made for the behav-
ior of the scaled damping coefficient needs to extended
to the scaled velocity, i.e., u = 〈u〉 + δu, with 〈u〉 a
time-independent, average velocity to be determined self-
consistently, analogous to 〈Γ〉, and δu a fluctuating ve-
locity. The thermalization constraint now becomes

〈

(〈u〉+ δu)2
〉

= 1, (26)

from which the unknown 〈Γ〉 is obtained. Again, in this
case the same relation for the scaled, total power trans-
ferred to the particle is found, i.e., 〈Ps〉 = 〈Γ〉. And with
the clarification that this expression includes the power
transferred by the DC force, i.e., f2

0 /〈Γ〉.
Implementing the outlined procedure results in

〈u〉 = f0
〈Γ〉 , (27)

δu = −
[

2

(

1− f2
0

〈Γ〉2
)]1/2

cos (wτ + θ), (28)

δΓ = − 2

w

[

2

(

1− f2
0

〈Γ〉2
)]1/2

〈u〉 sin (wτ + θ)

+
1

2w

[

1− f2
0

〈Γ〉2
]

sin (2wτ + 2θ), (29)

〈Γ〉2 =
1

2

(

A2

2
+ f2

0 − w2

)

+
1

2

[

(

A2

2
+ f2

0 − w2

)2

+ 4w2f2
0

]1/2

, (30)

tan θ =
〈Γ〉
w
, (31)

where f0 is the scaled, DC force defined earlier in Sec.
II.
Eqs. (28) and (29) indicate that the characteristic

number-eight shape of the (Γ, u) phase-space orbit is dis-
torted (stretched in the direction of the force) by the ap-
plication of the DC force, which by itself would drive the
particle towards the fixed point u = 1. Eq. (30), anal-
ogous to Eq. (23), predicts that the frequency domain
over which power can be extracted from the sinusoidal
force is increased by the application of the DC force (this
behavior is illustrated later in Fig. 12).
The procedure used to obtain the previous approxi-

mate results fails for weak oscillatory forces, i.e., A <√
2w. In this parameter regime the particle orbit is over-

whelmingly determined by time-dependent, energy ex-
changes with the heat bath, i.e., 〈Γ〉 = 0 (shown later

in Fig. 9). Now there is a zero-order velocity, u0(τ),
and a corresponding damping coefficient, Γ0(τ), of the
type illustrated in Fig. 1. The weak external force in-
duces small oscillations δuw, at scaled frequency w, on
both of these quantities. In principle, these oscillations
can be calculated by developing a perturbation theory
that expands around the (presumably) known nonlinear
orbits. The general implementation of such a procedure
is lengthy, and the answer a bit unwieldy, and not very
useful. In here the simplest case is reported to illustrate
the underlying important features. The numerically cal-
culated orbits for this regime are shown later in Sec. IV.
For the case of a particle exhibiting small velocity oscil-

lations about the thermal velocity, with scaled frequency
w0 =

√
2, and scaled damping-coefficient amplitude a,

u0 = 1 +
a

w0

cos (w0τ), Γ0 = a sin (w0τ). (32)

This yields the equation for the modified velocity

dδu

dτ
+ (a sin (w0τ))δu = A sin (wτ), (33)

which can be solved exactly to extract the driven oscil-
lation

δuw = wA

∞
∑

n=0

(−1)nI2n(a)

(nw0)2 − w2
cos (wτ), (34)

with In the modified Bessel function of order n. The sig-
nificant consequence that follows from Eq. (34) is that in

this frequency-amplitude regime, A <
√
2w, the external

force does not transfer energy to the particle because the
response is out-of-phase.
In terms of physical quantities, Eq.(34) yields the gen-

eralization of the sloshing velocity induced by an oscil-
lating force to a thermal particle in contact with a deter-
ministic thermostat,

vosc →
Fω

m

∞
∑

n=0

(−1)nI2n(a)

2
(

n
t0

)2

− ω2

. (35)

Eq. (35) indicates that, in principle, a deterministic
thermostat allows for internal thermal resonances when
driven externally (this property is illustrated later in
Figs. 15 and 16), and also that in the limit a → 0, the
usual free-particle result, leading to the ponderomotive
force, is obtained.
The valuable insight extracted from the previous ap-

proximate analysis is the identification of a boundary, in
the amplitude-frequency space (F, ω), that separates two
different domains: one in which power can be extracted,
and another in which inertial oscillations modulate the
intrinsic thermal motion, without power transfer. How-
ever, the assumptions made in the approximate analysis
cannot be used to address the issue of what is the width
of the transition region across the boundary (this is illus-
trated later in Figs. 7 and 8). In reality, the boundary
is fuzzy and exhibits complex chaotic dynamics that are
explored numerically in the following section.
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FIG. 3. Color contour of 〈Ps〉 the scaled, average power ex-
tracted from the sinusoidal force, shows the dependencies on
the scaled amplitude A and the scaled frequency w. Dark blue
represents zero power transfer, and the bright yellow region,
large power transfer. A sharp boundary separates these two
different power-absorption domains.

0 1 2 3 4 5 6 7 8 9 10

Scaled Driving Angular Frequency

0

1

2

3

4

5

6

7

8

S
c

a
le

d
 A

v
e

ra
g

e
 P

o
w

e
r

FIG. 4. Line-projection of the color contour of Fig. 3 along
the direction of constant scaled force, A = 10, shows the de-
pendency of 〈Ps〉 on scaled frequency w. Discrete symbols are
the numerical results for three different initial, scaled veloci-
ties, u(τ = 0) = 10−4, 0.5, 8. Solid curve is Eq. (14).

IV. IV. NUMERICAL RESULTS

This section presents results obtained by solving the
scaled Eqs. (5) and (10) using a fourth-order Runge-
Kutta method with a typical time-step ∆τ ≤ 10−3, as
is characteristic of studies with the Nosé-Hoover thermo-
stat. All cases reported have an initial reservoir damping
Γ(τ = 0) = 0.

The color contour display in Fig. 3 corresponds to the
scaled, time-average power transferred by the sinusoidal
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FIG. 5. Line-projection of the color contour of Fig. 3 along a
direction of constant scaled frequency, w = 1, shows the de-
pendency of 〈Ps〉 on scaled amplitude. Discrete symbols are
the numerical results for three different initial, scaled veloci-
ties, u(τ = 0) = 10−4, 0.5, 8. Solid curve is Eq. (14).
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FIG. 6. Characteristic (Γ, u) phase-space orbit for a particle
in the power-absorbing domain, A >

√
2w, for a choice of

A = 30, w = 1. Discrete symbols are obtained numerically
and the red solid curve is the prediction of Eqs. (11) and (12).
Γ is the scaled damping coefficient and u the scaled velocity, as
given by Eq. (3). A is the scaled amplitude, defined following
Eq. (10).

force, 〈Ps〉, for a wide range of values of the scaled am-
plitude of the force, A, and the scaled frequency, w. The
dark blue region represents zero power transfer from the
sinusoidal force, and the bright yellow region, large power
transfer. It is evident that a sharp boundary separates
these two different power-absorption domains. Barely
visible in Fig. 3, there are some faint patches (not fully
dark blue) that surround the boundary. These structures
actually exhibit small power transfer and are separately
examined later in Fig. 7.
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FIG. 7. Enhanced view of the transition region corresponding
to the faint patches seen in Fig. 3. To enhance visualization
here the dark blue color in Fig. 3 is now white, and all points
in the power absorption region are forced to be also white.
The power transfer in this transition region is very small, but
finite. The red cross is the point chosen for the display in Fig.
8.

Fig. 4 shows a line-projection of the color contour of
Fig. 3 along the direction of constant force, A = 10,
i.e., it illustrates the dependence of 〈Ps〉 on the scaled
frequency. The discrete symbols are the numerical re-
sults obtained for three different initial, scaled velocities,
u(τ = 0) = 10−4, 0.5, 8, that span a wide range. The
solid curve is Eq. (14). The complementary dependency
on amplitude, for fixed frequency, w = 1, is shown in
Fig. 5, with the solid curve again being the prediction
of Eq. (14). These comparisons indicate that the predic-
tions of the approximate analysis of Sec. III give a good
account of the numerical results. In addition, it is ascer-
tained that the average power transfer is independent of
the initial velocity of the particle.
A characteristic (Γ, u) phase-space orbit for a particle

in the power-absorbing domain, A >
√
2w, is displayed

in Fig. 6 for a choice of A = 30, w = 1. The discrete
symbols are obtained numerically and the solid curve is
the prediction of Eqs. (11) and (12). Again, it is seen
that the approximate analysis captures well the dynamics
in this domain. Note from Fig. 6 that in this domain
〈Γ〉 6= 0 and 〈u〉 = 0, as is assumed in that analysis.
Figure 7 is an enhanced display of the finite transition

region separating the two different domains of power ab-
sorption identified in Fig. 3. It corresponds to the faint
patches in that figure. They are visualized by reversing
the color scale, i.e., forcing the dark blue color in Fig. 3
to now be white, and also by arbitrarily setting all points
in the power absorption region to be white. In this tran-
sition region, of frequency width ∆w < w0 =

√
2, the

net power absorption is relatively small, but finite. The
topology associated with the phase-space orbits is very
sensitive to the (A,w) values, and causes the approximate

FIG. 8. Poincare map in the (Γ, u) phase-space for the red
cross point in the transition region shown in Fig. 7. Sampling
time is equal to the period of the sinusoidal force. Γ is the
scaled damping coefficient and u the scaled velocity, as given
by Eq. (3).

FIG. 9. Typical trajectory in the (Γ, u) phase-space in the
domain where no power transfer occurs, A <

√
2w, for A = 2,

w = 8. Here 〈Γ〉 = 0, and 〈u〉 6= 0, as expected from the
analysis in Sec. III. Γ is the scaled damping coefficient and
u the scaled velocity, as given by Eq. (3). A is the scaled
amplitude, defined following Eq. (10).

analysis of Sec. III to fail. Physically, in this transition
region the sloshing velocity is equal to the thermal veloc-
ity, i.e., the particle is equally influenced by the coherent
force and by the heat bath. The resulting effect is that
the particle motion displays chaotic behavior.
The rich structure of the chaotic motion in the transi-

tion region is illustrated in Fig. 8 for the case A = 2.5,
w = 2.1, corresponding to the red cross in Fig. 7. Shown
is a Poincare map for the trajectory in the (Γ, a) phase-
space of a particle with initial scaled velocity u(τ = 0) =
0.5, with sampling time equal to the oscillating period of
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FIG. 10. Path in the (T , A) Tarnopolski plane for the scaled
velocity associated with two cases, as the subsampling scale
is increased. The red curve corresponds to a case where there
is net power transfer, (A = 9, w = 1), and the black curve
to a case in the transition region, (A = 2.5, w = 2.1). The
Abbe value A is one-half of the ratio of the mean square
of successive differences to the variance given by Eq. (36).
T is the number of times the derivative attains a zero-value
divided by the total number of points in the time series. For
a large, random series of numbers its value is 2/3 ≈ 0.7. A is
the scaled amplitude, defined following Eq. (10), and w the
scaled frequency.

the force 2π/w.
A typical trajectory in the (Γ, u) phase-space in the

domain where no power transfer occurs, A <
√
2w, is

shown in Fig. 9 for a case A = 2, w = 8. A complex
pattern is formed from a mixing of the intrinsic, periodic
exchange with the heat bath and the modulation imposed
by the sinusoidal force. Note from Fig. 9 that in this case
〈Γ〉 = 0, and 〈u〉 6= 0 as expected from the analysis in
Sec. III.
To quantify the nature of the dynamics underlying the

behavior in the different domains identified in Figs. 3 and
7, and illustrated by Figs. 6, 8, and 9, the Tarnopolski
plane [18] analysis is applied with the perspective illus-
trated in the study by Zunino et al. [19]. This is a rela-
tively simple methodology that allows the identification
of coherent, chaotic, or stochastic dynamics. There are
two quantifiers used: the Abbe value A, and the turning-
number probability T . The Abbe value is conventionally
defined as one-half of the ratio of the mean square succes-
sive difference to the variance, i.e., for a discrete sequence
of N -numbers xi with 1 : i : N

A =
N

2(N − 1)

∑N−1

1
(xi+1 − x)2

∑N
1
(xi − x)2

, (36)

where x is the mean value of the sequence xi.
T is simply the fraction of maxima encountered in a

given set of discrete points, or alternatively, the number
of times the derivative attains a zero-value divided by
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1

FIG. 11. (T , A) path followed in the Tarnopolski plane by a
particle in the region of zero power transfer for a case (A = 9,
w = 9). Reversal of directions in the (T , A) paths is a mani-
festation of the competition between two different frequencies,
one related to the coupling to the heat bath, and the other to
the external force. The Abbe value A is one-half of the ratio
of the mean square of successive differences to the variance
given by Eq. (36). T is the number of times the derivative at-
tains a zero-value divided by the total number of points in the
time series. For a large, random series of numbers its value
is 2/3 ≈ 0.7. A is the scaled amplitude, defined following Eq.
(10), and w the scaled frequency.

N . For a large, random series of numbers its value is
2/3 ≈ 0.7. As pointed by Zunino et al. [19] for a time
series, what is of significance is the path in the (T , A)
plane as the series is sequentially subsampled, so that the
various embedded scales are probed.

Fig. 10 shows the path in the (T , A) plane for the
scaled velocity associated with two cases. The red curve
corresponds to a case where there is net power transfer,
(A = 9, w = 1), and the black curve to a case in the
transition region, (A = 2.5, w = 2.1). It is seen that the
red curve remains limited to the small (T , A) values as
the scale of the subsampling is increased, implying that
the dynamics is coherent, as expected from the analysis in
Sec. III. But the black curve corresponding to the transi-
tion region increases steadily from the coherent region of
small (T , A) values towards the stochastic region, as the
scale of the subsampling is increased. This is the charac-
teristic behavior followed by the classic models of deter-
ministic chaos, as documented previously by Tarnopolski
[18] and by Zunino et al. [19], and also anticipated by
the Poincare map shown in Fig. 8.

The (T , A) path followed by a particle in the region
of zero power transfer covers a wide range, thus it is dis-
played separately in Fig. 11. This case corresponds to
(A = 9, w = 9). The first leg of the path starting at the
origin gives a first impression that this case is another
example of deterministic chaos, something that perhaps
may be suggested by a blurry look at Fig. 9. But, in fact,
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FIG. 12. Situation in which a DC force and an oscillatory
force are simultaneously applied. Shown is the frequency de-
pendence of the time-averaged, total power (AC+DC) trans-
ferred to the particle, for a fixed value of the DC force and
a fixed amplitude of the sinusoidal force; A = 7, f0 = 5,
u(τ = 0) = 0.1. The solid red curve is the prediction of Eq.
(30) and the discrete symbols are the numerical results. A is
the scaled amplitude, defined following Eq. (10), and u the
scaled velocity.

as the subsampling scale is increased the path passes be-
yond the stochastic value. Further larger subsampling
returns the path towards low (T , A) values, character-
istic of coherent dynamics. This reversal of directions
in the (T , A) paths is a manifestation of the competi-
tion between two different frequencies, one related to the
coupling to the heat bath, and the other to the external
force.

Fig. 12 examines the situation in which a DC force and
an oscillatory force are simultaneously applied. Shown
is the frequency dependence of the time-averaged, total
power (AC+DC) transferred to the particle, for a fixed
value of the DC force and a fixed amplitude of the sinu-
soidal force; in this case A = 7, f0 = 5, u(τ = 0) = 0.1.
The solid red curve is the prediction of Eq. (30) and the
discrete symbols are the numerical results. Close agree-
ment is obtained for w > 5, corresponding to the region
where the sinusoidal force alone does not transfer power.
It is seen that the combined effect of the DC and AC
forces is to boost the DC-power transfer by an amount
A2/2 at the lower frequencies, and to extend the fre-
quency range of AC-power transfer beyond the threshold
value, eventually asymptoting for very large frequencies
to the pure DC-power transfer 〈Ps〉 → f0, or in physical
units, F0v. As expected from the comparison shown in
Fig. 12, the approximate analysis also reproduces well
the phase-space trajectories, within 0.5%, and thus are
not shown for brevity.

A surprising behavior appears for low-frequency forc-
ing, in a regime in which the system can be expected to
behave adiabatically, i.e., w ≪ 1. It is found that the
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FIG. 13. Behavior for low-frequency forcing. Shown is time
dependence of scaled velocity u for a case A = 1.95, w = 0.09,
and initial velocity u(τ = 0) = 0.5. Long periods of adiabatic
balance between the slow, external force and the heat bath
are broken by sharp pulses during which the particle acquires
several times the thermal energy. Red arrow indicates pulse
shown in Fig. 14. A is the scaled amplitude, defined following
Eq. (10).
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FIG. 14. Expanded view of pulse indicated by red arrow in
Fig. 13. Solid red curve is the prediction of Eq. (39) and
discrete symbols correspond to the numerical solution.

particle experiences relatively long periods of adiabatic
balance between the slow, external force and the heat
bath, during which the near-stationary conditions

Γ = A sin (wτ), u2 = 1 +Aw cos (wτ), (37)

are well satisfied. But, sharp, transient transfers of en-
ergy from the reservoir are triggered during which the
particle acquires several times the thermal energy. The
behavior is illustrated in Fig. 13 in which the tempo-
ral evolution of the scaled velocity is shown for a par-
ticle with initial scaled velocity u(τ = 0) = 0.1, and



10

0 50 100 150 200 250 300 350 400
0

1

2

0 50 100 150 200 250 300 350 400

0.95

1

1.05

0 50 100 150 200 250 300 350 400

Scaled Time

0.8

1

1.2

S
c

a
le

d
 V

e
lo

c
it

y

b)

c)

a)

FIG. 15. Illustration of thermal resonance for a particle with
u(τ = 0) = 0.95. The three panels display the time evolution
of the velocity for the same scaled amplitude of the external
force, A = 0.05, but each corresponds to a different driver
frequency. The red curve in the top panel corresponds to the
fundamental resonance, w = w0 =

√
2, the blue curve in the

middle panel to an off-resonance frequency, w = 1.5w0, and
the black curve in the bottom panel to the second harmonic,
w = 2w0. A is the scaled amplitude, defined following Eq.
(10), and w is the scaled frequency.

A = 1.95, w = 0.09. The nearly flat portions of the veloc-
ity curve correspond to the adiabatic behavior described
by Eq. (37). The sharp pulses, reminiscent of avalanche
events, are well-resolved numerically, with each encom-
passing several hundred computation steps and verified
by using different, stiff differential-equation solvers. The
pulse width is approximately about one-half of the pe-
riod associated with a pure thermal orbit (of the type
illustrated in Fig. 1). The shape of individual pulses can
be captured by a model that assumes that over the small
time interval, centered at τ = τp, the force is constant,
of strength Fp, and the scaled damping coefficient rises
linearly, i.e., locally

du

ds
= Fp − asu, with s = τ − τp, (38)

which has a closed-form, analytic solution in terms of the
imaginary error function erfi,

u = Fp

√

π

2a
exp

(

−as
2

2

)

erfi

(
√

a

2
s

)

+ C exp

(

−as
2

2

)

, (39)

with C a constant, representing the contribution from
the homogeneous solution. Fig. 14 shows a comparison of
the prediction given by Eq. (39), for suitable parameters,
and the pulse identified by the arrow in Fig. 13, which is
now shown in an expanded time-scale. For completeness,
it should be mentioned that the near-adiabatic behavior,
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FIG. 16. Temporal evolution of the velocity for external forc-
ing at the fundamental resonance, w = w0 =

√
2, of a particle

with u(τ = 0) = 0.95, as in Fig. 15. Each panel corresponds
to a different amplitude of the driving force. The red curve
in the top panel a) is driven at A = 0.1 the blue curve in
the middle panel b) at A = 0.01, and the black curve in the
bottom panel c) at A = 0.001. A is the scaled amplitude,
defined following Eq. (10), and w is the scaled frequency.

typified by Fig. 13, requires that the scaled amplitude
of the external force be sufficiently large to overcome the
zero-order, energy exchange with the reservoir. For the
case shown in Figs. 13 and 14, A ≥ 0.5 is necessary.
The thermal resonance suggested by Eq. (35) is illus-

trated in Fig. 15 for a particle with initial scaled velocity
u(τ = 0) = 0.95. The three panels display the time evo-
lution of the velocity for the same scaled amplitude of the
external force, A = 0.05, but each corresponds to a differ-
ent driver frequency. The red curve in the top panel cor-
responds to the fundamental resonance, w = w0 =

√
2,

the blue curve in the middle panel to an off-resonance
frequency, w = 1.5w0, and the black curve in the bot-
tom panel to the second harmonic, w = 2w0. It is seen
that driving at the second harmonic causes the amplitude
to grow secularly, while driving at w = 1.5w0 does not.
Driving at the fundamental frequency is seen to result
in relatively large velocity increases, comparable to the
thermal velocity v (note the numerical scale is larger in
the top panel). But the time series shows periodic satura-
tions in the secular growth caused by energy loses to the
heat bath when the velocity starts to deviate significantly
from v. To better appreciate the nature of this satura-
tion, Fig. 16 shows the temporal evolution of the velocity,
for driving at the fundamental resonance, w = w0 =

√
2,

but each panel now corresponds to a different amplitude
of the driving force. The red curve in the top panel is
driven at A = 0.1, the blue curve in the middle panel at
A = 0.01, and the black curve in the bottom panel at
A = 0.001. It is seen that at the lowest amplitude the
velocity grows linearly in time, while at the larger ampli-
tudes the thermal saturation comes into play, with the
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consequence that driving at larger amplitude results in
shorter intervals of departure from thermal equilibrium.
Note that the velocity scale is different in the three pan-
els, and also that all the cases are in the regime in which
the average-power transfer is zero, i.e., A <

√
2w.

V. V. CONCLUSIONS

This study provides insight into the basic issue of how a
classical particle behaves when it is simultaneously sub-
jected to the competing tendencies of coherent driving
by a sinusoidal force, and coupling to a heat bath. The
perspective emphasized is that of deterministic dynam-
ics, which is implemented by explicitly using a classic
Nosé-Hoover thermostat. The value of the information
obtained by this exercise is that it illustrates the under-
lying dynamics that is averaged over, masked by suitably
chosen probability distribution functions, in the stochas-
tic studies of such a generic situation. The results found
in the present study are also useful for gaining insight
into complex nonlinear problems in which a piece of the
system, composed of deterministic elements, is modeled
as a heat bath, as may arise in turbulence models and
computer simulations.
The major feature identified in this study is the key

role played by the ratio of the average oscillatory velocity
to the thermal velocity, i.e., F/

√
2mvω. It is found that,

independently of the coupling strength to the thermostat,
average power can only be extracted from the sinusoidal

force when the oscillatory velocity exceeds the thermal
velocity. It has been concluded from this property that
candidate heat baths whose temperature is raised solely
through the application of a sinusoidal force (e.g., radio-
frequency heating), reach, in a finite time, a unique fi-
nal temperature determined by the force parameters. It
would be interesting to identify experimental situations,
perhaps in nano-scale systems, biological environments,
or microplasmas, where related issues could be studied.
Other features explored in the present work, such as the
combined application of AC+DC forces, could also lead
to features worth exploring in the laboratory.
The transition boundary separating the two domains

of power transfer has been found to define a wealth of
chaotic dynamics that may be exploited for useful appli-
cations in other studies. As an example, a recent study
[20] has used this region to construct chaotic versions of
deterministic thermostats that better approximate the
behavior of a heat bath.
In summary, new insights have been gained from a de-

terministic perspective on a generic topic of broad inter-
est. More extensive studies of similar situations to those
explored in this manuscript, but using other thermostat
models, seem worth pursuing.
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