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We study the evolution of an open quantum system described by a dynamical semigroup 

having the Lindblad superoperator as a generator. This generator may have an eigenfunction with 

a zero eigenvalue referred to as a constant of motion (COM). An open quantum system has a 

unique stationary state if and only if it has no COMs. A system with multiple stationary states 

has a basis of COMs, any COM of the system is a linear combination of the basis COMs. The 

basis divides the space of system states into subspaces. In each subspace, its own stationary state 

is formed, and any stationary state of the system is a linear combination of these states. Usually, 

neither the basis of COMs nor even their number is known. We demonstrate that finding the 

stationary state of the system does not require looking for COMs. Instead, one can construct a set 

of “invariant” subspaces. If the system evolution begins from one of these subspaces, the system 

will remain in it, arriving at a stationary state independent of evolution in other subspaces. We 

suggest a direct way of finding the invariant subspaces by studying the evolution of the system. 

We show that the sets of invariant subspaces and subspaces generated by the basis of COMs are 

equivalent. A stationary state of the system is a weighted sum of stationary states in each 

invariant subspace; weighting factors are determined by the initial state of the system. 

I. INTRODUCTION 

 Recently, the applicability of the laws of thermodynamics to open quantum systems 

interacting with reservoirs has been actively discussed [1-13]. This issue is interesting not only 

from a fundamental point of view but is also important for practical purposes. Many applications 

require creating a system state with desired properties, e.g., quantum entanglement of a large 
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array of qubits for quantum computer elements [14-16], antibunched photons for quantum 

cryptography [17,18], and a coherent state of an electromagnetic field for nanoscale radiation 

sources [19-22]. Attaining as well as retaining desired states of an open system is a difficult 

problem because the system interacts with an external reservoir, and the outcome of this 

interaction is constrained by the laws of thermodynamics. First, the laws of thermodynamics 

determine possible system states. Second, according to thermodynamics, any state should relax 

to the stationary state determined by coupling with the reservoir. This significantly limits the 

number of desirable states. 

However, the applicability of the laws of thermodynamics to quantum systems is still not 

clear. Under the assumption that the density operators of the system and the reservoir are always 

separable, that the reservoir state does not change in time (the Born approximation), and that the 

system dynamics is local in time (the Markov approximation), one can obtain the master 

equation for the density matrix ( )ˆS tρ  of the system in the Lindblad-Gorini-Kossakowski-

Sudarshan (LGKS) form [23-27]: 

 ( )ˆ ˆ( ) / .S St t L tρ ρ∂ ∂ = ⎡ ⎤⎣ ⎦   (1) 

For any Hamiltonians of the system ˆ
SH , the reservoir ˆ

RH , and the interaction between them 

ˆ
SRH , the Lindblad superoperator L̂  should preserve the norm and positive definiteness of the 

operator ˆ ( )S tρ . It has been shown [25] (see also [28,29]) that these requirements are satisfied if 

the Lindblad superoperator L̂  has the following form:  

 ( ) ( )1 2 1 2 1 2 1 2

1 2

† †

, 1

1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( ) , ( ) , ( ) ( ), ,
2

N

S i i i i i i i i
i i

L A t i H A t F A t F F A t F
=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑   (2) 

where Â  is a positively defined operator, [ ],  denotes a commutator, and 
1 2î iF  are arbitrary 

operators. For a physical system, these operators are determined by the Hamiltonians ˆ
SH  and 

ˆ
SRH . We consider N-dimensional Hilbert space, where N  can be arbitrarily large. This is a good 

approximation for interacting quantum systems (see, e.g., [30]). Examples of such systems are 

interacting molecules that include two-, three-, or four-level subsystems and systems or 

interacting qubits [26,31,32].  
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Usually, it is assumed that the Hamiltonian of the interaction between the system and the 

reservoir has the form ˆˆ ˆ
SRH SRλ= h  [26,33,34], where Ŝ  and R̂  are dimensionless operators that 

only depend on dynamical variables of the system and the reservoir, respectively, and the 

interaction parameter λ  has the dimension of frequency. In such a case, the operators 
1 2î iF  are 

determined by the operator Ŝ  through the equality: ( )1 2 1 2 1 2 1 2

ˆ
î i i i i i i iF G k S k k kω= , where 

ik  are the eigenstates of the system Hamiltonian ˆ
SH , 

1 2 2 1i ii i k kω ω ω= − , and ( )G ω  is the 

reservoir correlation function. In Eq. (2), the summation is taken over all couples of eigenstates 

{ }1 2
,i ik k . For such a form of the interaction Hamiltonian, the first law and the second law in 

the Clausius form follow from Eq. (1) [6,26,28]. Whereas the zeroth law, which affirms that the 

stationary state of the system has a unique Gibbs distribution with the reservoir temperature 

(system thermalization), follows from LGKS Eq. (1) if and only if the system does not have 

constants of motion (COMs) [28,29,35]. 

A COM ( )Î t  is an eigenoperator of the evolution generator ( )ˆexp Lt , which eigenvalue 

is equal to unity (the eigenvalue of the generator L̂  is zero). It has been shown [29] that ( )Î t  

should be invariant under the action of the Lindblad superoperator (2). We assume that the 

dimension of the Hilbert space of the problem is finite. The interaction parameter λ  has the 

dimension of frequency. An operator ( )Î t  is a COM, if ( )ˆ ˆ 0L I t⎡ ⎤ =⎣ ⎦ . Below we show that in the 

model of evolution considered here, ( )Î t  commutes with both the system Hamiltonian and the 

operator Ŝ .  

Since a COM ( )Î t  commutes with SH , these two operators have a common set of 

eigenvectors, referred to below as basis vectors. Following the general theory [29], we need to 

find a basis of COMs, the linear combinations of which generates all possible COMs of the 

system. In Ref. [29], it has also been shown that the basis of COMs is mapped into the family of 

projection operators that divides the space of system state into subspaces. The existence theorem 

(see Ref. [29]) establishes that in each subspace, its own stationary state is formed and that any 

stationary state of the system is a linear combination of these states. In other words, the 
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determination of stationary states requires the knowledge of the COMs. However, there are no 

general recipes for finding COMs or even for determining their total number [36-41]. 

It seems that the only way for the implementation of this highly abstract theory is to run 

over all possible operators to find COMs. Since a COM is diagonal in the basis of eigenvectors 

of SH , a general form of a COM is a diagonal matrix containing n  ones and N n−  zeros that 

occupy arbitrary places, where N is the rank of system state space. The total number of such 

matrices is 2N . To choose COMs of 2N  matrices, one needs to make sure that they satisfy the 

equation ( )ˆ 0L I t⎡ ⎤ =⎣ ⎦ .  

The next step is to determine the basis COMs. If there is only one COM, then the states 

with a certain eigenvalue of this COM can be separated as a subspace. Thus, each COM leads to 

a division of the state space into subspaces. The division that corresponds to the basis COMs is 

the intersection of all subspaces of all COMs. Finally, the eigenvalues of SH , which correspond 

to the eigenvectors belonging to one of such subspaces, determine the partition function and the 

Gibbs distribution in the subspace. 

In this paper, we propose a way of determining stationary states of an open system of 

finite dimension. The developed approach only requires the knowledge of the Hamiltonians of 

the system and the system-reservoir interaction; it does not require knowing either COMs or their 

number. Moreover, the proposed method enables one to find all basis COMs. The method is 

based on the determination of invariant subspaces. These are such subspaces that if the system 

evolution begins from one of them, the system remains in this subspace reaching the stationary 

state. We also show that the sets of invariant and basis subspaces are equivalent. The behavior of 

the system inside a subspace is equivalent to the behavior of the system without COMs, and 

according to Ref. [29], its stationary state would be described by the Gibbs distribution.  The 

stationary state of the whole system depends on the projection of the initial state onto the 

subspaces. It is a weighted sum of the stationary states in each invariant subspace. The weighting 

factors are determined by the initial state of the system.  

 

II. MASTER EQUATION FOR OPEN QUANTUM SYSTEM 

Let us consider the finite-dimension system S  with nondegenerate spectrum described 
by the Hamiltonian SĤ . The system interacts with the reservoir R  having the Hamiltonian 
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RĤ via the interaction Hamiltonian ˆˆ ˆ
SRH SRλ= h  discussed above. The dynamics of the system 

and the reservoir is described by the von Neumann equation for the density matrix ρ : 

 ( ) ( ) ˆ ˆ ˆ, S R SR

d t i t H H H
dt
ρ

ρ⎡ ⎤= + +⎣ ⎦h
.  (3) 

One can eliminate the reservoir degrees of freedom and reduce Eq. (3) to master LGKS equation 

(1) that describes the dynamics of the system density matrix S RTrρ ρ=  [6,23,26,28]: The 

operator ( )ˆSL tρ⎡ ⎤⎣ ⎦  from Eq. (1) may be presented in the following form:  

 ( ) ( ) ( ) ( )( )1 2 1 2 1 2 1 2 1 2

1 2

2 † †

,

ˆ ˆ ˆ ˆˆˆ ˆ ˆ ˆ, , , .S S S k k k k S k k k k S k k
k k

iL t H G S t S S t Sρ ρ λ ω ω ρ ρ⎡ ⎤ ⎡ ⎤⎡ ⎤= − + − +⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑
h

  (4) 

In Eq. (4), the operators 
1 2 1 2 1 2

ˆ
k k k kS S k k=  are connected to operator Ŝ  as,  

 
1 2

1 2

1 2
,

ˆ ,k k
k k

S S k k= ∑   (5) 

where ik  ( 1i ,...,N=  ) are non-degenerate eigenstates of the system Hamiltonian SĤ , 
ikω  are 

eigenfrequencies corresponding to these states, and the function  

 ( )ˆ ˆ ˆ( ) exp( )Tr ( ) ( )R RG i R t R t dω ωτ τ ρ τ
∞

−∞

= +∫   

is the Fourier transform of the reservoir correlation function  

 ( ) ( ) ( )ˆ ˆ ˆ ˆexp / exp / .R RR t iH t R iH t= −% h h   

Note that if the reservoir has the temperature T , i.e. 

 ( ) ( )ˆ ˆˆ exp / / Tr exp / ,R R RH kT H kTρ = − −   

then the Kubo-Martin-Schwinger condition,  

 ( ) ( ) ( )exp /G kT Gω ω ω= −h   (6) 

is satisfied.  

Now we show that a COM commutes with both ˆ
SH  and Ŝ . By definition, a COM, say Î , 

should stay invariant under the action of the Lindblad superoperator, i.e., ˆ ˆ 0L I⎡ ⎤ =⎣ ⎦ . This means 

that ˆ /d I dt  should be equal to zero.  

The dynamics of the expected value of the operator Î  is governed by the equation 
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( )( )1 2 1 2

1 2

1 2 1 2 1 1 2 2

1 2

1 2

2

2 2 2 2
,

ˆ ˆTr Tr

1 Tr 2 ,
2

S S S k k k k S
k k

k k k k S k k k k kk S
k k k k

d dI I iI k k
dt dt

S I k k I k k I k k

ρ ω ω ρ

γ ρ

⎛ ⎞= = −⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞+ − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑

∑ ∑ ∑
  (7) 

where ( )1 2 1 2

2 0k k k kGγ λ ω ω= − ≥  and time evolution of the density matrix is governed by Eq. (1). 

Since Î  is a COM, we have ˆ / 0d I dt =  at any moment, including the initial moment. At the 

initial moment, we may arbitrarily choose ˆSρ . In particular, at initial moment, we choose the 

system to be in a pure state kα , then the density matrix has a form ˆ k kα αρ =  and the 

equality of the right hand side of Eq. (7) to zero reduces to  

 ( )1 1 1 1

1

2
0, 1,..., .k k k k k k k k

k

S I I N
α α α α

γ α− = =∑   (8) 

Equations (8) holds for arbitrary kα . Thus, we have a system of N equations. Since the operators 

in Eqs. (8) do not depend on time, this system is valid at any time.  

Now we prove that term in the sum in each equation of system (8) is zero. Since N is 

finite, quantities 
ak kI

α
 can be ordered as 

1 1 2 2
...

a a aN Nk k k k k kI I I
α α α

≤ ≤ ≤ . First, we consider the 

equation from system (8) for 1α α= , i.e., 
1 1k kI

α α
is the smallest. Because 

1
0k kα

γ ≥ , all the terms in 

Eq. (8) are non-negative and this equation is valid only if each term is equal to zero  

 ( )1 1 11 1 1

2
0k k k k k kS I I

α α α
− =   (9) 

for arbitrary 1k . As a result, all the terms with 1α α=  drop out from system (8). Then, we repeat 

the procedure for 
2 2k kI

α α
. This excludes terms with 1 2k α= . After N  iterations, we obtain that for 

all diagonal terms ( )
2 1 2 2 1 1

2
0k k k k k kS I I

α α α α α α
− = . 
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Now we show that all non-diagonal 
ak kI

β
 are zero. If at the initial moment we choose 

( )( )ˆ a k b k a k b kα β α βρ ∗ ∗= + + , then from Eqs. (7) and (8) we obtain 

 
1 1 1 1

1 1

1 1 1 1

1 1

2 2

2 2

( )

( ) 0.

k k k k k k k k k k k k
k k

k k k k k k k k k k k k
k k

ab I i S S

a bI i S S

β α α β β β α α

α β β α β β α α

ω ω γ γ

ω ω γ γ

∗

∗

⎛ ⎞
− − −⎜ ⎟

⎝ ⎠
⎛ ⎞

+ − − − =⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑
  (10) 

Because the coefficients a  and b  and the eigenstates kα  and kβ  are arbitrary, it follows 

from Eq. (10) that 

 
1 1 1 1

1 1

2 2
( ) 0k k k k k k k k k k k k

k k
I i S S

β α α β β β α α
ω ω γ γ

⎡ ⎤
− − − =⎢ ⎥

⎣ ⎦
∑ ∑   (11) 

for any non-diagonal element 
ak kI

β
 of the operator Î . Note, that each term, 

1 1

2

k k k kS
β β

γ , in the 

sums in Eq. (11) is real. Since we consider the Hamiltonian ˆ
SH , which spectrum is non-

degenerate, then ( ) 0k ki
α β

ω ω− ≠ . Thus, in Eq. (11), the expression in the brackets has a nonzero 

imaginary part and, consequently, Eq. (11) holds only if 0
ak kI

β
= . This means that the operator 

Î  is diagonal in the basis of the eigenvectors of ˆ
SH , ˆ

kk
k

I I k k=∑ . Thus Î  and ˆ
SH  

commute.  

Using the diagonal representation of the operator Î , ˆ
kk

k

I I k k=∑ , the commutator of 

Î  and Ŝ  may be expressed as 

 
( )

1 2 1 2

1 2 1 2

1 2 1 1 2 2

1 2

1 2 1 2
, ,

1 2
,

ˆˆ,

.

kk k k k k kk
k k k k k k

k k k k k k
k k

I S I k k S k k S k k I k k

S I I k k

⎡ ⎤ = −⎣ ⎦

= −

∑ ∑ ∑ ∑

∑
  (12) 

Using Eq. (9) we arrive at the commutativity of the operators Î  and Ŝ , ˆˆ, 0I S⎡ ⎤ =⎣ ⎦ . Thereby, the 

COM Î  commutes with both ˆ
SH  and Ŝ ; analogously, one can obtain that any operator that 

commutes with ˆ
SH  and Ŝ  is a COM. 
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 It can be shown that Eqs. (1) and (4) ensure that the first and the second laws of 

thermodynamics are satisfied [6,23,26,28]. Usually, it is assumed that if a system has a COM, 

the zeroth law of thermodynamics is violated. It implies that there are many stationary states of 

the system. Below we show how to construct these stationary states.  

 

III. SUBSPACES GENERATED BY SYSTEM-RESERVOIR INTERACTION AND 

CONSTANTS OF MOTION 

 If in the basis vectors sk , the matrix Ŝ  defined by Eq. (5) has a block-diagonal form, 

then the whole space of the system states is a direct sum of subspaces corresponding to blocks of 

the matrix Ŝ . If the initial system state belongs to one of such a subspace, then the system does 

not leave this subspace during the evolution. Indeed, using Eqs. (1) and (4) for diagonal and non-

diagonal elements of the density matrix, we obtain 

 ( ) ( ) ( )1 1 2 2 1 1

2 1 2 1 1 2 1 2

2 2

2 2

1 1

,
N N

k k k k k k
S k k k k S S k k k k

k k

S Sρ γ ρ ρ γ
= =

= −∑ ∑&   (13) 

 ( ) ( ) ( ) ( )1 2 1 2 1 2

1 2 1 1 2 2

2 2

1

1( ) .
2

N
k k k k k k

S k k S kk kk kk kk S
k

i S Sρ ω ω ρ γ γ ρ
=

= − − − +∑&   (14) 

From Eq. (14) one can see that any non-diagonal element ( )1 2k k
Sρ  decays exponentially and does 

not interact with other elements. Equation (14) shows that diagonal elements ( )1 1k k
Sρ  interact only 

with other diagonal elements ( )2 2k k
Sρ  for which 

2 1
0k kS ≠ . This means that only intra-subsystem 

transitions that are determined by the matrix elements related to a given subspace are possible. 
Thus, it is the form of the matrix of the operator Ŝ  that determines the subspaces, in which the 
system evolves.  

 In 1937, Krylov [42] developed a special algorithm to construct the subspaces generated 

by an operator Ŝ . A direct application of this algorithm, however, is not suitable for our purpose, 

because it includes the transition to new basis vectors. Since the LGKS equation implies the use 

of the basis vectors sk  of ˆ
SH , then to reveal the block-diagonal form of the operator Ŝ , we 

can only rearrange these vectors. Below, we modify Krylov’s procedure in a way that the same 

basis vectors can be retained. This modification rearranges the basis vectors for the matrix of the 

operator Ŝ  making it block-diagonal.  
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To construct the first subspace, we have to find the set of the basis vectors { }1 1iB k= , 

forming the first block of the matrix Ŝ . The set B1 should be constructed in a way that if some 

basis vector ik  belongs to 1B , then 0
i jk kS =  for any 1jk B∉ . The number of vectors in B1 we 

denote as 1N N≤ , where N  is the dimension of the whole space. We need to renumber the 

basis vector to place the vectors of 1B  at the beginning of the basis. This creates the first block in 

the upper-left corner of the matrix 
j ik kS . Then, we have to repeat this procedure for the remaining 

basis vectors to create the next block and continue doing this until the whole matrix becomes 

block-diagonal. 

To implement this recursive procedure, we start with some eigenvector 1k  of the 

Hamiltonian ˆ
SH  and construct the vector 1Ŝ k . Since ˆ

SH  and Ŝ  do not commute, the vector 

1Ŝ k  may not be an eigenvector of ˆ
SH . In this case, 1Ŝ k  can be represented as 

1

11
1

ˆ
i

n N

k k i
i

S k S k
<

=

= ∑  with 
1

0
ik kS ≠ . This sum is a linear combination of 1n  basis vectors 

corresponding to non-zero elements in the 1k -th colomn of the matrix 
1ik kS . These 1n N≤  

vectors form the set 1B . On the next step, we decompose each vector ik  of the set 1B  as 

1

ˆ
j i

N

i k k j
j

S k S k
=

=∑ . If in the decompositions, vectors jk , which do not belong to 1B , arise, 

then we should add them to 1B . The procedure is repeated until on some step no new vectors 

arise in the decompositions. This completes the construction of the set 1B  containing 1N  vectors. 

Then, we should rearrange the basis vectors in a way that all vectors of 1B  take the first 1N  

positions in the basis. As a result, in the upper-left-corner of the matrix 
j ik kS , we form a diagonal 

block.   

If 1N N= , then the dimension of this block is equal to the dimension of the whole space. 

If 1N N< , then the above procedure should be repeated with the vector 
1 1Nk +  in the rearranged 

basis. We obtain the next block and so on. This construction ensures that in the rearranged basis, 
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the matrix of the operator Ŝ  has a block-diagonal form. By construction, this decomposition of 

the system state space is invariant.  

Now we show that the constructed subspaces determine all possible COMs. First, we show 

that for any subspace 
0l

C , the operator  

 0 0 0 0

0
( )0

0

( ) ( ) ( ) ( )ˆ ˆ ,
l

i l

l l l l
i i S l

k B

I I k k I P
∈

= =∑   

where 0( )lI  is some c-number, is a COM. For this, we have to prove that Î  commutes with both 

ˆ
SH  and Ŝ . Note that 

0l̂
P  is the projection operator onto the 0l -th subspace, i.e., it is a unitary 

operator in 
0l

B  and is zero in other subspaces. Because Î  is diagonal in the basis of eigenvectors 

of ˆ
SH , then ˆ ˆ, 0SI H⎡ ⎤ =⎣ ⎦ .  

Next, in the rearranged basis, the operator Ŝ  is block-diagonal, therefore 

1 2 1 2
( ) ( )

21

( ) ( )
,

,

ˆ
l l

lii

l l
i i i i

l k k B

S S k k
∈

=∑ ∑ . Then 

 0 0 0

0 1 2 1 2
( ) ( )0 0

01 2

( ) ( ) ( )
,

,

ˆ ˆˆ, 1 , 0.
l l

li i

l l l
l i i i i

k k B

I S I S k k
∈

⎡ ⎤
⎡ ⎤ ⎢ ⎥= =⎣ ⎦ ⎢ ⎥⎣ ⎦

∑   (15) 

Thus, 0

0

( )ˆ ˆl
lI I P=  is a COM. As a consequence, any operator, which can be decomposed as 

 ( )ˆ ˆ ,l
l

l

I I P=∑   (16) 

where ( )lI  are arbitrary c-numbers, which are fixed for a given subspace, is also a COM as a 

linear combination of COMs. 

Now, we show that there are no other COMs apart from those having the from (16). Let 

us assume the contrary: a COM, Î ∗ , which cannot be expressed in the form (16), exists. Since Î ∗  

is a COM, it commutes with ˆ
SH  and Ŝ . Because the operator Î ∗  commutes with ˆ

SH , it is 

diagonal in the basis k  of ˆ
SH  eigenvectors. Next, due to the commutativity of Î ∗  and Ŝ , Eq. 

(12) must be satisfied. According to our assumption, Î ∗  cannot be presented in the form (16). 

Hence, in some subspace, vectors having different eigenvalues, say ( ) ( )j ik kI I∗ ∗≠ , must exist. 

From Eq. (12) it follows that if vectors ik  and jk  have different eigenvalues, then 0
i jk kS = . 
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This means that it is possible to combine the vectors with identical eigenvalues into new 

subspaces so that the operator Ŝ  takes a block-diagonal form inside the initial block. This 

contradicts the fact that invariant subspaces constructed above cannot be divided into invariant 

subspaces of lower dimensions. Therefore, there are no COMs apart from those that have the 

form (16). Moreover, this means that during the system evolution, no values of COMs change. 

Thus, this division corresponds to the basis family of COMs. By construction, during evolution, 

starting at any point in an invariant subspace, the system visits all points of this subspace. 

   

IV. STATIONARY SOLUTIONS OF THE MASTER EQUATION AND CONSTANTS 

OF MOTION 

 Now, we can find the stationary solution of the master equation. For Eqs. (1) and (4) along with 

the Kubo-Martin-Schwinger condition (6), the stationary solution is the Gibbs distribution: 

 ( ) ( )ˆ ˆˆ exp / / Tr exp / .th
S S SH kT H kTρ = − −   (17) 

This can be verified by the direct substitution of Eq. (17) into Eq. (1). However, this stationary 

solution may not be unique. If there are invariant subspaces, then the Gibbs distribution over the 

states of a given invariant subspace is also a stationary solution. Then, any state of the form  

 
( )

( )
ˆ ˆ ˆexp /

ˆ , 1, 0 1,
ˆ ˆ ˆTr exp /

j jst
S j j j

j jj j

P HP kT

P HP kT
ρ λ λ λ

−
= = ≤ ≤

−
∑ ∑   (18) 

is stationary. Because LGKS Eq. (1) conserves the trace and { } 1 1

1 1

( )

1,
j j

l l j
l l

j
i i N N N

k − −

= =

= + +∑ ∑
 are invariant 

subspaces, the quantity ( )Trj S tρ  does not change in time. Therefore, ( )ˆ ˆ=Tr Tr 0
j j j

st
N N S N Sλ ρ ρ= . Thus, 

in each invariant subspace, the system state evolves to the Gibbs distribution over the states of the 

subspace with the partition function ( )ˆ ˆ ˆTr exp /
j jN NP HP kT− . In each invariant subspaces, there are no 

non-trivial COMs. As shown in Refs. [28,29,35], this condition is necessary and sufficient for the 

uniqueness of a stationary solution. Thus, Eq. (18) determines all possible stationary solutions. 

 In a particular case, when the operator Ŝ  commutes with the Hamiltonian ˆ
SH , all the 

nondiagonal elements of Ŝ  in the basis of the eigenvectors of ˆ
SH  are equal to zero, and each subset lC  

includes only one eigenstate ( 1jN =  for each j ). Then, any operator that is diagonal in the basis of the 

eigenstates of the Hamiltonian ˆ
SH  is a COM. In particular, the Hamiltonian ˆ

SH  itself is a COM; 
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therefore, the energy of the system does not change in time. The system does not have the Gibbs 

distribution, and the distribution depends on the initial state. An example of such a situation is a dephasing 

reservoir (see Ref. [27]). 

 

V. EXAMPLE: INTERACTING TWO-LEVEL SYSTEMS 

 To illustrate the results obtained above, we apply the developed procedure to a system of two 

interacting two-level subsystems (TLSs) which relax into a dephasing reservoir. We begin with 

considering non-interacting TLSs. 

A. Non-interacting TLSs 
 Suppose that the transition frequencies of TLSs are iω , we denote excited and ground states as 

ie  and ig  and the transition operators between excited and ground states of each TSL as ˆiσ , 1, 2i = . 

The total Hamiltonian of the system is 

 † †
1 2 1 1 1 2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆSH H H ω σ σ ω σ σ= + = +h h ,  (19) 

with eigenstates 1 2 1 2 1 2 1 2, , , , , , ,e e e g g e g g  and eigenvalues 1 2 1 2, , ,0ω ω ω ω+ .  

 Suppose that the TLSs interact with the reservoir described by the Hamiltonian: 

 †ˆ ˆ ˆR k k k
k

H a aω= ∑h ,  (20) 

where kω  is the frequency of the k-th reservoir mode, and the interaction Hamiltonian is 

 ( ) ( )† †
1 1 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆk z k z
SR k k k k

k k

H a a a aγ σ γ σ= + + +∑ ∑h h .  (21) 

where 1
kγ  and 2

kγ  are the interaction constants between the first and the second TLSs and the k-th 

reservoir mode, respectively, and †ˆ ˆ ˆ,z
i i iσ σ σ⎡ ⎤= ⎣ ⎦  is the operator of the population inversion of the i-th 

TLS. For simplicity, we assume that 2 1
k kaγ γ= , where the constant a  does not depend on k . Then, 

 ( )( )†
1 1 2

ˆˆ ˆˆ ˆ ˆ ˆk z z
SR k k

k

H a a a SRγ σ σ λ= + + =∑h h , (22) 

where { }1max kλ γ= , ( ) ( )†1

1

ˆ ˆ ˆ
max

k

k kk
k

R a aγ
γ

= +∑ , and 1 2
ˆ ˆ ˆz zS aσ σ= + . Such a reservoir describes phase 

relaxation of the system. Indeed, the operator 1 2
ˆ ˆ ˆz zS aσ σ= +  commutes with the system Hamiltonian 

ˆ
SH , and the energy of the system is conserved; thus, the reservoir is purely dephasing. According to Sec. 

IV, in this case, each invariant subspace consists of only one system eigenstate.  
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 To show this explicitly, we follow the procedure developed in Sec. III. Acting by the operator Ŝ  

on the eigenstates of ˆ
SH , we obtain 

 ( ) ( )1 2 1 2 1 2 1 2
ˆ ˆ, 1 , , , 1 ,S e e a e e S g g a g g= + = − + , (23) 

 ( ) ( )1 2 1 2 1 2 1 2
ˆ ˆ, 1 , , , 1 ,S g e a g e S e g a e g= − + = − . (24) 

In action on each eigenvector, no new eigenvectors appear. Thus, each eigenvector forms invariant 

subspace with the dimension one. 

 The corresponding COMs are projections over each invariant subspaces, namely, 

1 1 2 1 2
ˆ , ,P e e e e= , 2 1 2 1 2

ˆ , ,P g g g g= , 3 1 2 1 2
ˆ , ,P e g e g= , and 4 1 2 1 2

ˆ , ,P g e g e= . These COMs 

are basis COMs, and any linear combination of them is also a COM. Since ˆˆ 1i
i

P =∑ , out of four COMs, 

only three are linear independent.  

 In this simple example, we can construct linear combinations that have clear physical meanings. 

The first one is 

 
( ) ( )

1 3 4 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

† †
1 1 2 2

ˆ ˆ ˆ ˆ2 1 1 0 2 , , 1 , ,

1 , , 0 , ,

, , , , , , , ,

ˆ ˆ ˆ ˆ

P P P P e e e e e g e g

g e g e g g g g

e e e e e g e g e e e e g e g e

σ σ σ σ

+ + + = +

+ +

= + + +

= +

 (25) 

This operator describes the number of excitations in the system. Indeed, 1̂P  corresponds to the state in 

which both TLSs are in the excited states, and there are two excitations in the system, 2̂P  corresponds to 

the state in which both TLSs are in the ground state, and there are no excitations in the system. 3̂P  and 4̂P  

correspond to the subspaces in which only one of TLSs is excited, and there is only one excitation. Thus, 

the operator † †
1 3 4 2 1 1 2 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 1 1 0P P P P σ σ σ σ+ + + = +  has the eigenvalue which is the number of excitations.  

 The second linear combination is  

 
( ) ( )
( ) ( )

1 2 3 4 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2

ˆ ˆ ˆ ˆ2 2 0 0 2 , , 2 , ,

, , , , , , , ,

, , , , , , , ,

ˆ ˆ .z z

P P P P e e e e g g g g

e e e e e g e g g e g e g g g g

e e e e g e g e e g e g g g g g

σ σ

− + + = −

= + − +

+ + − +

= +

 (26) 

The operator 1 2ˆ ˆz zσ σ+  describes the total population inversion of the system. Indeed, in the first subspace, 

the state 1 2,e e  corresponds to two excited TLSs with the population inversion of 2, in the second 
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subspace, the state is 1 2,g g  and the population inversion is –2, in subspaces 1 2,e g  and 1 2,g e , the 

population inversion is zero. 

 The third linear combination of basis COMs is the total energy of the system: 

 

( ) ( )

( ) ( )

1 2 1 1 2 2 3 4 1 2 1 2 1 2

1 1 2 1 2 2 1 2 1 2 1 2 1 2

1 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2

† †
1 1 1 2 2 2

ˆ ˆ ˆ ˆ0 , ,

, , , , 0 , ,

, , , , , , , ,
ˆˆ ˆ ˆ ˆ S

P P P P e e e e

e g e g g e g e g g g g

e e e e e g e g e e e e g e g e

H

ω ω ω ω ω ω
ω ω

ω ω

ω σ σ ω σ σ

+ + + + = +

+ + +

= + + +

= + =

 (27) 

Note that the total energy of the system, as well as energies of each TLSs, are conserved. For this reason, 

the reservoir with Hamiltonian (20) and interaction (21) may be called dephasing.  

 These three COMs, the number of system excitation, the total population inversion, and the total 

system energy, fully characterize the final state of the system. 

B. Interacting TLSs 
 Now suppose that there is a dipole-dipole interaction between TLSs so that the interaction 

between them is described by the Hamiltonian ( )( )( ) 3
1 2 1 2

ˆ ˆ ˆ ˆ ˆ3 /V r= ⋅ − ⋅ ⋅d d d n d n , where r  is the 

distance between TLSs, n  is the normal unit vector directed from one TLS to another. Using the 

expression for TLS dipole moment, ( )†ˆ ˆ ˆeg
i i i iσ σ= +d d  ( eg

id  is the matrix element of the dipole 

transition), the interaction Hamiltonian in the rotating-wave approximation can be rewritten as 

( )† †
1 2 2 1ˆ ˆˆ ˆRV σ σ σ σΩ += h , where ( )( )( ) 3

1 2 1 23 /eg e
R

g eg eg rΩ ⋅ − ⋅= ⋅d d d n d n  is the Rabi constant of the 

interaction. The Hamiltonian of the system may be written as  

 ( )† † † †
1 2 1 1 1 2 2 2 1 2 2 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆS RH H H V ω σ σ ω σ σ σ σ σ σ= + + = + + Ω +h h h .  (28) 

Eigenstates of ˆ
SH  are 

 1 1 2 2 1 2

3 1 2 1 2 4 1 2 1 2

, , , ,

cos , sin , , sin , cos , ,

e e g g

e g g e e g g e

ψ ψ
ψ ϕ ϕ ψ ϕ ϕ

= =

= + = − +
   (29)  

where 

 ( )1 2 2tan / 4 / 2 /R Rϕ ω ω− ⎡ ⎤= Δ + Ω − Δ Ω⎢ ⎥⎣ ⎦
.  (30) 

The eigenvalues of eigenstates (29) are 
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 1 1 2E ω ω= + , 2 0E = , ( ) 2 2
3,4 1 2 / 2 / 4 RE ω ω ω= + ± Δ + Ω . (31) 

Note that the interaction between TLSs results in mixing of states 1 2,e g  and 1 2,g e  [see Eq. (29)].  

 Now, we follow the procedure developed in Sec. III. Equation (23) holds as before, because the 

first two eigenvectors, 1ψ  and 2ψ , are equal to 1 2,e e  and 1 2,g g , respectively. Since the 

interaction operator V̂  mixes the states 1 2,e g  and 1 2,g e , instead of Eq. (24), the action of the 

operator Ŝ  on the states 3ψ  and 4ψ  should be considered. As a result, we have  

 ( ) ( )2 2
3 3 4

ˆ cos sin cos sin 1S a aψ ϕ ϕ ψ ϕ ϕ ψ= + + − .  (32) 

We can see that 3ψ  is no longer an eigenvector of Ŝ . The result of the action of Ŝ  on 3ψ , in addition 

to  3ψ , contains another basis vector, 4ψ .  Now, we should act by the operator Ŝ  on this vector: 

 ( ) ( )2 2
4 3 4

ˆ cos sin 1 sin cosS a aψ ϕ ϕ ψ ϕ ϕ ψ= − + + .  (33) 

There are no new basis vectors in Eq. (33). Thus, the subspace spanned by the basis vectors 3ψ  and 

4ψ  is an invariant subspace with the dimension of two. Thus, the number of invariant subspaces is 

reduced from four to three. The projection operator on the invariant subspace spanned by the basis vectors 

3ψ  and 4ψ  is  

 

( )( )
( )( )
( ) ( )
( ) ( )

3 3 4 4 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

2 2 2 2
1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2

ˆ cos , sin , cos , sin ,

sin , cos , sin , cos ,

cos sin , , sin cos , ,

cos sin sin cos , , sin cos cos sin , ,

,

P e g g e e g g e

e g g e e g g e

e g e g g e g e

e g g e g e e g

e g e

ψ ψ ψ ψ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

= + = + +

+ − + − +

= + + +

+ − + −

=

%

1 2 1 2 1 2 3 4, , , .g g e g e P P+ = +

.  (34) 

It should be emphasized that neither 3̂P  nor 4̂P  is a COM, but their combination P̂%  is.  

 In this case, there are two linear independent COMs. The linear combinations that have physical 

meaning are the number of excitations, † †
1 1 2 2 1 2

ˆˆ ˆˆ ˆ ˆ ˆ 2 1 0P P Pσ σ σ σ+ = + +% , and the total population 

inversion, 1 2 1 2
ˆ ˆ ˆ ˆ2 2 z zP P σ σ− = + . Due to the interaction between TLSs, the system Hamiltonian is no 

longer a COM. This means that the reservoir ceases to be purely dephasing; now, it causes the energy 
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relaxation in the invariant subspace spanned by the basis vectors 3ψ  and 4ψ . It remains dephasing, 

however, in the subspaces with vectors 1ψ  and 2ψ . 

 Using the obtained COMs and Eq. (18), we may write possible stationary solutions of the 

corresponding LGKS equation: 

3 4
1 1 1 2 2 2 4 4 3 3

3 4

ˆ exp ,
1 exp

st
S

E E
E E kT

kT

λρ λ ψ ψ λ ψ ψ ψ ψ ψ ψ⎛ − ⎞⎛ ⎞= + + + −⎜ ⎟⎜ ⎟−⎛ ⎞ ⎝ ⎠⎝ ⎠+ −⎜ ⎟
⎝ ⎠

 (35) 

where λ , 1λ , and 2λ  are determined by the initial density matrix ( )ˆ 0ρ : 

 ( )1 11 0λ ρ= , ( )2 22 0λ ρ= , ( ) ( )33 440 0 .λ ρ ρ= +  (36) 
Note that in the invariant subspaces with dimension 1, the stationary and initial states are the same. In the 

invariant subspace with dimension 2, the stationary solution is the Gibbs distribution.  

 In Fig. 1, the dependences of the matrix elements ( )33 tρ  and ( )44 tρ  on time obtained by 

computer simulation of the Eq. (13) are shown. One can see that they indeed converge to the Gibbs 

distribution. 

 

0 1 2 3
0

0.8

1.6

2.4

exp��E�T�

Γt

p 3
�
p 4

 
Fig. 1. The dependence of the diagonal matrix elements of the density matrix 3 33p ρ=  and 4 44p ρ=  on 

time obtained from LGKS Eq. (13) for the different initial condition: ( )3 0 0.7p = and ( )4 0 0.3p =  (the 

solid red line), ( )3 0 0.7p =  and ( )4 0 0.3p =  (the blue dashed line), ( )3 0 0.1p =  and ( )4 0 0.9p =  (the 

green dot-dashed line); 3 4 1E E E T= − = = , 34 1γ = , ( )43 34 exp /E Tγ γ= − , t  is expressed in the units 

of 34γ .  
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VI. CONCLUSION 

 In this work, we consider stationary states of an open quantum system interacting with a thermal 

reservoir in a system that has COMs. We show that stationary states retain the memory of the initial state 

of the system. To be specific, using the basis of eigenfunctions of the system Hamiltonian SH , we have 

shown that the Hamiltonian of the interaction between the system and the reservoir SRH  determines the 

splitting of the space of system states into a set of subspaces. In each of the subspaces, the system behaves 

as if there are no COMs. This means that, if the initial state of the system belongs to one of these 

subspaces, the system evolves inside this subspace reaching the Gibbs distribution after thermalization. 

Hence, each such an invariant subspace can be linked to a COM by assigning some eigenvalue to this 

COM (say, unity, in one invariant subspace and zeros in the others). Consequently, each subspace 

determines its own COM that has a fixed eigenvalue in this subspace and zeros in others. If there are N 

subspaces, then it is possible to define N–1 COMs because, in each subspace, COMs with identical values 

are trivial and do not lead to non-uniqueness of the stationary state. Thus, the algorithm developed in the 

paper allows one to find all invariant subspaces and all COMs. 

 The eigenvalues of existing COMs determine neither the stationary state in each subspace 

nor the stationary state of the whole system. In any subspace, the Gibbs distribution is 

determined by the temperature of the reservoir and by the set of eigenfunctions of SH , which 

construct this subspace. To find the stationary state of the whole system, one must know the 

initial state of the system. The projection of this state onto subspaces provides the weight factors 

for Gibbs distributions characterizing each subspace. The weight factors determine the 

corresponding stationary state of the whole system as a weighted sum of the Gibbs distributions 

over the subspaces.  

Thus, as an open quantum system with COMs interacting with a reservoir evolves, it 

reaches one of many possible stationary states. Though this state is thermalized with the 

temperature of the reservoir, it is determined by the initial state of the system.  

A.A.L acknowledges the support of the National Science Foundation under Grants No. 

DMR-1312707. 
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