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The mechanisms underlying cascading failures are often modeled via the paradigm of self-
organized criticality. Here we introduce a simple network model where nodes self-organize to be
either weakly or strongly protected against failure in a manner that captures the trade-off between
degradation and reinforcement of nodes inherent in many network systems. If strong nodes cannot
fail, any failure is contained to a single, isolated cluster of weak nodes and the model produces
power-law distributions of failure sizes. We classify the large, rare events that involve the failure of
only a single cluster as “Black Swans”. In contrast, if strong nodes fail once a sufficient fraction of
their neighbors fail, then failure can cascade across multiple clusters of weak nodes. If over 99.9% of
the nodes fail due to this cluster hopping mechanism, we classify this as a “Dragon King”, which are
massive failures caused by mechanisms distinct from smaller failures. The Dragon Kings observed
are self-organized, existing over a wide range of reinforcement rates and system sizes. We find that
once an initial cluster of failing weak nodes is above a critical size, the Dragon King mechanism kicks
in, leading to piggybacking system-wide failures. We demonstrate that the size of the initial failed
weak cluster predicts the likelihood of a Dragon King event with high accuracy and we develop a
simple control strategy that can dramatically reduce Dragon Kings and other large failures.

PACS numbers: 89.75.Da 02.30.Yy 05.65.+b

I. INTRODUCTION

Many natural and engineered systems exhibit rare,
catastrophic events that lead to widespread failure of the
system [1–13]. Two categories for these large failure cas-
cades have been proposed: Black Swans, which are tail
events in a power-law distribution, and Dragon Kings
(DKs), which are outliers involving mechanisms absent
in smaller events leading to more frequent failure than
a power-law would predict. The power-law distribution
necessary for Black Swans to exist is often explained by
self-organized criticality (SOC): a tug-of-war that poises
the system close to a critical point without any need for
tuning of external parameters [5–8, 14, 15].

In this paper, we demonstrate that a simple cascad-
ing failure model inspired by engineered systems self-
organizes to form DKs. Furthermore, the DKs occur for
almost any parameter chosen, but can be predicted and
controlled. We call this type of model a Self-Organized
Dragon King model, in contrast to SOC models in which
DK-size cascades occur as finite-size effects for super-
critical parameters. Furthermore, because DKs are less
common than small events, our model reveals that an
observer of the dynamics for short or moderately long
times might naively claim to be confident of the system’s
resiliency, and thus taken by surprise when a DK event
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inevitably occurs.

We model an idealized engineered system as a network
in which nodes self-organize to be “weak” or “strong”
(i.e., more susceptible or less susceptible to neighboring
failures), and failures spread between neighboring nodes.
The initial failure of a random weak node can then lead
to a very large cascade of subsequent node failures, i.e., a
failure cascade [16–19]. A weak node fails as soon as one
of its neighbors fails, and a failed weak node has small
probability, ε, to be reinforced and upgraded to a strong
node upon repair. This captures the common practice
of failure-based resource allocation in many engineered
systems [20, 21]. Strong nodes independently degrade
(i.e., become weak) at a slow rate.

If strong nodes cannot fail, we call the model the “inoc-
ulation” (IN) model [22]. This is akin to site percolation
because a failure is contained to an individual cluster of
adjacent weak nodes. Like other SOC models, the IN
model self-organizes to a critical state with a power-law
distribution in event sizes. Since failure is contained to a
single cluster no matter the size of the failure, the same
mechanism underlies all events and we classify the rare
events as “Black Swans”. If strong nodes fail as soon as
two of their neighbors fail, we call the model the “com-
plex contagion” (CC) model [23]. This CC model can
lead to self-amplifying failures that cascade across mul-
tiple clusters of weak nodes, and it is similar in spirit
to bootstrap percolation with two activation thresholds
[24, 25]. If the failure cascades across multiple clusters
of weak nodes and leads to the failure of over 99.9% of
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nodes in the system, we classify the event as a “Dragon
King”.

Surprisingly, the small modification from IN to CC,
allows this model to self-organize to a state that cre-
ates DKs. We will show that DKs are inevitable and
generic in the CC model. They are predicted to occur
for any finite-sized network and any non-trivial value of
the one tuning parameter, ε, which has been numerically
confirmed through extensive simulation. The CC model
is furthermore the simplest model we are aware of that
produces self-amplifying cascading failures, while the IN
model provides a SOC null model for baseline behavior.

Our model is also novel in that it allows us to quantita-
tively define a DK event and also allows us to accurately
predict and control DKs. Although DKs may be more
destructive than Black Swans, differences between DK
and Black Swan events allow for DKs to be predicted
and controlled in ways that Black Swans can not. At
best, Black Swans can be predicted a little better than
random chance [26, 27], but usually predicting them is
inherently difficult [28, 29] because they often have no
associated length- and time-scales. DK events, on the
other hand, can be predicted: there are typical places
and times when DKs will and will not occur. This has
been successfully applied to, for example, prediction of
material failure and crashes of stock markets [1]. Our
model allows us to predict DKs with a near-perfect true-
positive rate.

Even though Black Swans are not very predictable,
there are simple methods to push SOC systems away
from criticality, thus reducing the size of Black Swans
[8, 30, 31]. It has been an open problem, however, to
control DKs in many situations and to elucidate the
mechanisms underlying these often self-amplifying cas-
cades [2]. Recent advances in controlling DKs have been
based on low-dimensional models, such as coupled oscil-
lators [32]. We develop a simple targeted-reinforcement
control strategy, in which we turn a few fairly well-chosen
weak-nodes into strong nodes to decrease the likelihood
of DKs and other large failures by orders of magnitude.
Importantly, our strategy can significantly reduce both
large DK and non-DK events without changing the rein-
forcement rate.

Finally, we have an analytical understanding of DKs
in our model. The main reason DKs appear in the CC
model is because failure cascades hop from one weak clus-
ter to another if the initial weak cluster is large enough.
Once a sufficient number of nodes fail, there is a high like-
lihood for almost all nodes to fail, because each node will
likely connect to the failed portion of the network and
subsequently fail. We take advantage of this finding to
predict whether a small initial failure will cascade into a
DK event by showing the probability that a strong node,
which bridges weak-node clusters, will have two neigh-
bors in the initial failing cluster can be mapped onto a
generalization of the birthday problem [33]. The birth-
day problem considers that, given c people, what is the
probability that any of the people share the same birth-

day. Once the probability is significant for a strong node
to have two neighbors in the failing cluster, then fail-
ures are likely to spread from the first weak-node cluster
to subsequent weak-node clusters. More strong nodes are
then likely to fail by piggybacking off of the previous fail-
ures. We can make a qualitative analogy to the gas-water
phase transition in condensed matter, where droplets can
nucleate. In both our model and in droplet nucleation,
there is a critical size, above which the droplet or failed
cluster grows almost without bound [34], although in the
CC model, clusters of any size can form (i.e., there is no
analogous surface tension).

We organize the paper as follows. In Section II, we
discuss the model in detail. We discuss the mechanism
behind the CC model’s DKs in Section III. In Sections IV
& V, we discuss how the probability of DKs and large
events, respectively, vary with ε and N . In Section VI,
we discuss ways to predict DK events, and in Section VII,
we discuss how to control DKs with a simple algorithm,
before concluding the paper.

II. SELF-ORGANIZING MODELS

The dynamics of our models depend on two competing
mechanisms: degradation and reinforcement. Degrada-
tion, which represents the aging of infrastructure or an
increase of load placed on them, is modeled by slowly
converting strong nodes into weak ones. Conversely, rein-
forcement converts weak nodes that fail into strong nodes
at rate ε, representing the hardening of nodes in an at-
tempt to prevent future failures. This repair strategy
mimics modern-day power grid guidelines [20], where re-
sources are allocated to places were failures happen more
often. The trade-off between degradation and reinforce-
ment drives the system to an SOC state.

We consider dynamics on 3-regular random networks
with N nodes, where N is an even positive integer. The
motivation for this network is two-fold. First, complex
engineered systems, such as electrical grids, have low de-
gree (approximately degree 3) and low degree heterogene-
ity [19, 35]. Second, this is one of the simplest networks
we can create, which aids analytic understanding of the
dynamics. Repeated edges and self-loops are allowed,
but are rare when N is large. The system size N and the
probability ε are the model’s only parameters. We are
particularly interested in large-but-finite N and small ε
to simulate real systems, which may be large and expen-
sive to upgrade.

Both the CC and IN models follow the same algorithm.
We initialize all N nodes as weak and for each discrete
time step 0 ≤ t ≤ tstop, the model does the following.

Degradation: Select a node uniformly at random. If
that node is strong, make it weak and proceed to
the beginning of the Degradation step with t ←
t+ 1. If the selected node is already weak, then it
fails, and continue with the remaining three steps.
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FIG. 1. (Color online) Self-organizing behavior and failure size. Top row: Fraction of weak nodes p(t) vs. t for the (a) IN
and (b) CC models over individual network realizations for N = 106 and varying ε (ε = 1.0× 10−2, solid line; ε = 3.2× 10−3,
dashed line; ε = 1.0 × 10−3, dash-dot line; ε = 3.2 × 10−4, dotted line). Bottom row: Failure size distribution for the (c) IN
and (d) CC models, with the DK outliers labeled. Symbols denote results of simulations on random 3-regular graphs averaged
over ten network realizations and 15×N time steps.

Cascade: Apply the IN or CC failure-spreading mech-
anism until no more failures occur. Failed nodes
remain failed for the duration of the cascade.

Repair: All failed nodes are un-failed (strong failed
nodes become strong un-failed nodes, and weak
failed nodes become weak un-failed nodes).

Reinforcement: Each weak node that failed at this
time step has probability ε to become strong. Pro-
ceed back to the Degradation step with t← t+ 1.

The distinction between the two models is only in the
cascade step of the algotirhm. Specifically, under the CC
model, strong nodes fail if at least two of their neighbors
fail, whereas in the IN model, strong nodes cannot fail.
The IN model is similar to the SIRS model in epidemi-
ology [36], except that failed (i.e., infected) nodes can
directly become un-failed (i.e., susceptible) again. Many
choices for initial conditions are possible, but our inves-
tigations show that the steady state behavior is inde-
pendent of these choices (see Appendix XI). Because we
currently initialize all nodes as weak, the sizes of the first
few cascades are on the order of the system size, and nu-

merous node upgrades take place before the system equi-
librates. An important indicator that we have reached
the relaxation time is the proportion of nodes that are
weak at time t, p(t), shown in Fig. 1. We wait until well
after p(t) stabilizes (5×N timesteps) and then calculate
failure sizes for a subsequent 15N timesteps. As shown in
Appendix X, waiting longer, and varying the initial con-
ditions produces quantitatively similar results. For the
IN model, we find that p(t) is almost independent of ε
as ε→ 0, but in the CC model, the steady-state value of
p(t) depends on ε. Importantly, the dynamics imply cas-
cades occur before any reinforcement or repair, therefore
the models assume that failure cascades occur on shorter
time-scales than repair or reinforcement. This is similar
to real systems, such as electric grids, where blackouts
may occur over minutes, repairs occur over hours or days,
and reinforcement may occur over months or years. This
also motivates the small values of ε used throughout the
paper.

Importantly, we notice that p(t) is almost always above
pc = 0.5. If weak and strong nodes were distributed com-
pletely at random in the network, then there would be
a spanning cluster of weak nodes, because the fraction
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of weak nodes is above the critical percolation fraction
of 0.5 [37]. With a non-zero probability, the failure of a
weak node could lead to the failure of the spanning clus-
ter, and therefore O(N) failed nodes. The fact that we
do not see this (e.g., Fig. 1c) suggests non-trivial correla-
tions between weak and strong nodes. As we mentioned
previously, this model is similar to bootstrap percolation
with two thresholds. Importantly, however, bootstrap
percolation literature assumes a finite fraction of nodes
fail throughout the network before a first order transition
[24], while the CC model described here is for a more re-
alistic scenario in which a single failure, centered inside
a cluster that is small compared to the network size, can
create a near-total failure of the system. Furthermore,
because node failure thresholds are not randomly dis-
tributed in the system, we will not be able to analyze
this model using bootstrap percolation literature [24].

The failure size distribution, P (s), is illustrated in
Figs. 1c & 1d. The probability of large failures gener-
ally increases with decreasing ε for both the IN and CC
models because, if less nodes are reinforced, cascades can
more easily spread and affect larger portions of a network.
For small enough ε, we find that the cascade size distri-
butions for the IN and CC models exhibit a power-law
with exponential decay, however the CC model also has a
DK tail, where over 99.9% of nodes fail in each DK event
(cf. Fig. 1d). Furthermore, the IN and CC model appear
to have two different power-law exponents: α = −1.11
for the IN model and α = −1.24 for the CC model when
ε = 3.2 × 10−4 and N = 106 (traditional SOC models
yield α = −1.5 [38, 39]). In the following section, we will
explore why the DK events exist in the CC model.

III. DRAGON KING MECHANISM

In this section we will give an overview of our analysis
used to understand DKs in the network. Details of this
analysis are left in the appendix.

In order for a DK to occur, strong nodes that bridge
weak node clusters must fail. When the first weak-node
fails, intuitively, all of its weak-node neighbors, and those
neighbors’ neighbors fail as well. In this “zeroth order”
cascade, any weak node failure will trigger its connected
weak-node cluster to fail (see Fig. 2a). Clearly, for a DK
to occur, multiple clusters must fail, so there must also
exist at least one strong node that fails and bridges two
clusters, allowing for yet more clusters to fail (e.g., S1 in
Fig. 2a). This is what we call a first-order cascade. We
derive analytical arguments about the likelihood of an S1

node in Appendix X, which we summarize below.
We find through numerical simulations that the weak-

node cluster is approximately a tree. Intuitively, this
is because the likelihood for short cycles, such as trian-
gles, in a random network is very low [40]. The num-
ber of links, Lw,1, from the first weak-node cluster to
strong nodes is therefore approximately Cw,1 + 2, where
Cw,1 is the size of the weak-node cluster. Each link can
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FIG. 2. (Color online) DKs form by cascading failures of
weak-node clusters. (a) Weak-node clusters (circled) are sur-
rounded by strong nodes. If one such strong node (S1) has two
links connecting to the same weak-node cluster, the failure of
this cluster (with size Cw,1) will make the strong node fail,
which we call a first-order cascade. The cascade may spread
to other weak-node clusters (e.g., one of size Cw,2), and thus
other strong nodes (e.g., S2), which we call a second-order
cascade. The failure of subsequent strong nodes can eventu-
ally lead to a DK event. (b) A heat map of the probability a
DK occurs in the CC model conditioned on Cw,1, the size of
the weak-node cluster that first fails, versus N and Cw,1 for
ε = 10−3. Black dashed line is the simulation result for the
critical Cw,1 to create DKs, Ccrit,DK, while the solid lines are
the analytically derived critical Cw,1 to create a second-order
cascade (Ccrit,2, green line), and first-order cascade (Ccrit,1,
white line).

connect to a given strong node with a small probability
(∼ Lw,1/N), but if Cw,1 is large, there are many oppor-
tunities for such a link to occur (Lw,1). The probabil-
ity for two links to reach the same strong node is there-

fore ∼ Lw,1(Lw,1−1)
N . The probability for an S1-like node,

which we define as a strong node with two links in one
weak-node cluster and a third in a second cluster, is sim-
ilar but with N rescaled. Although there are more com-
plicated ways for a failure to spread between clusters, an
S1-like node is a simplest case. Interestingly, because the
probabiliy two links connect to a given node is the same
across all nodes, this problem can be exactly mapped
onto a generalized birthday problem [33]. Applying re-
sults from previous analysis of the birthday problem [41],
the probability that the failure of a weak-node cluster of
size Cw,1 creates a first-order cascade is

Ccrit,1 =
√

2log(2)Neff, (1)

where

Neff = N
(1− 〈p〉) 〈k〉2

6q
. (2)

In the above equation, q is the average fraction of strong
nodes with three weak-node neighbors and 〈k〉 is the aver-
age number of weak nodes a strong node connects to (see



5

100 101 102 103 104

Cw, 1

0.0

0.2

0.4

0.6

0.8

1.0

P
(S

1
|C

w
,1

),
 th

eo
ry

P
(C

w
,2
>

0|
C

w
,1

),
 s

im
ul

at
io

n

(a)

100 101 102 103 104

Cw, 1

0.0

0.2

0.4

0.6

0.8

1.0

P
(S

1
|C

w
,1

),
 th

eo
ry

P
(C

w
,2
>

0|
C

w
,1

),
 s

im
ul

at
io

n

(b)

100 101 102 103 104

Cw, 1

0.0

0.2

0.4

0.6

0.8

1.0

P
(S

1
|C

w
,1

),
 th

eo
ry

P
(C

w
,2
>

0|
C

w
,1

),
 s

im
ul

at
io

n

(c)

N
103

104

105

106

100 101 102 103 104

Cw, 1

0.0

0.2

0.4

0.6

0.8

1.0

P
(S

1
|C

w
,1

),
 th

eo
ry

P
(C

w
,2
>

0|
C

w
,1

),
 s

im
ul

at
io

n

(d)

FIG. 3. (Color online) The probability of failure spreading out from the initial failed weak-node cluster. Open markers
represent the probability that a failure spreads from the first weak-node cluster to any other weak-node clusters, based on
model simulations. Lines represent theoretical results of P (S1|Cw,1) (N = 103, solid line; N = 104, dashed line; N = 105,
dash-dot line; N = 106, dotted line), which is the simplest way a failure can spread between weak-node clusters. Standard
errors are smaller than marker sizes, except for N = 103 and ε = 1.0 × 10−3. We show results for (a) ε = 1.0 × 10−2;(b)
ε = 3.2× 10−3;(c) ε = 1.0× 10−3;(d) ε = 3.2× 10−4.

Appendix X for details of the derivation). Intuitively, we

only need Cw,1 ∼ N1/2 for
Lw,1(Lw,1−1)

N ∼ O(1), therefore
Cw,1 � N for there to exist a first-order cascade.

The exact value of Ccrit,1 is shown by the white line
in Fig. 2b. The line, however, is as much as an order
of magnitude smaller than the equivalent critical value
empirically found for DKs, Ccrit,DK, making it a poor
approximation for the DK mechanism. That said, we
compare the first-order cascade theory (Eq. (14)) to first-
order cascade simulations (Fig. 3), and find that theory
and simulation results match well. The underlying as-
sumptions of this theory are therefore valid.

Because this theory can be mapped onto the birth-
day problem, we also find that the number of S1-like

nodes is Poisson distributed with λ =
Lw,1(Lw,1−1)

Neff
(see

Appendix X). The initial cascade can therefore produce
first order cascades that increase quadratically with the
initial cascade size. Higher-order theory would predict
even larger cascades (and eventually DKs). Here we ex-
plicitly calculate the likelihood of second-order cascades,

in which weak-node clusters fail once a first-order cas-
cade occurs (S′1 in Fig. 4b). Second-order cascades are
only likely to occur when (a) a S′1-like node bridges the
first failed cluster and a neighboring failed cluster, or (b)
it connects one or two neighboring failed clusters (see
Fig. 5). The probability for a second-order cascade is
therefore one minus the probability that neither (a) or
(b) occurs. The details of the derivation are similar to the
first-order cascade theory (see Appendix X). The prob-
ability of a second-order cascade can only be found nu-
merically. We plot the size, Ccrit,2 when this probability
is 1/2 in Fig. 2b. Higher order theory is not analytically
tractable after this point, but once a sufficient number
of nodes fail, each node will likely connect to the failed
portion of the network and subsequently fail, which leads
to the failure of approximately N nodes (a DK event).
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FIG. 4. (Color online) How second-order cascades occur. (a)
Failures spread from a single weak-node to an entire connected
cluster of weak-nodes. Strong nodes are usually resistant to
failure, unless they connect to the same failed cluster (S1).
(b) Once enough weak-node clusters fail, there is a chance
that failures can spread to yet more clusters (of size Cw,3) via
strong nodes that bridge failed weak clusters (S′1).
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FIG. 5. (Color online) The probability of a second-order cas-
cade. This is 1 minus the probability there are no S′1 nodes
from the first-order cascade clusters (labeled “2”) to a subse-
quent weak-node cluster (labeled “3”) times the probability
there are no S′1 nodes with one edge in the initial weak-node
cluster (labeled “1”), the first-order cascade clusters, and a
subsequent weak-node cluster.

IV. HOW THE PROBABILITY OF DRAGON
KINGS VARIES WITH N AND EPSILON

We next consider how the probability of DKs varies
with N and ε. We approximate the weak-node cluster
size distribution, P (Cw), as:

P (Cw) ∼ C−ηw e−λCw . (3)

We fit these coefficients via maximum likelihood estima-
tion and find that η = 2.26± 0.03, when ε = 3.2× 10−4.
We also find that λ = (0.39 ± 0.01) × ε when N = 105

and 106 (cf. Appendix XII). This is consistent with our
hypothesis that, in the dual limit that N → ∞ and
ε → 0, the model approaches a self-organized critical
state, where the distribution of Cw,1 becomes a power-
law.

The probability for the size of the first weak cluster
that fails, P (Cw,1), is equivalent to picking a node in a
cluster of size Cw, leading to

P (Cw,1) =
CwP (Cw)

〈Cw〉
, (4)

10-4 10-3 10-2 10-1 100

ε

10-6
10-5
10-4
10-3
10-2
10-1
100
101

P(
D

K)

N
103

104

105

106

FIG. 6. (Color online) The probability of DKs as a function
of epsilon. Regardless of N, we find close agreement between
simulations-based probabilities of P (DK) (open symbols) and
theory (Eq. (9), N = 103, solid line; N = 104, dashed line;
N = 105, dash-dot line; N = 106, dotted line), especially for
moderate values of ε.

or

P (Cw,1) =
C1−η

w eλCw

Eη−1(λ)
, (5)

where

En(z) =

∫ N

1

e−zt

tn
dt. (6)

Furthermore, we can approximate P (DK|Cw,1) as a
step function,

P (DK|Cw,1) ≈ H(Cw,1 − Ccrit,DK). (7)

With these assumptions, we can approximate
P (DK|N, ε) as

P (DK|N, ε) =

∫ N

Ccrit,DK

P (Cw,1)dCw,1. (8)

If ε > 0, then we can further approximate the integral
limit as N →∞. This implies that

P (DK|N, ε) =

{
λη−1 Γ(1−η,Ccrit,DKλ)

Eη−1(λ) ε > 0
Nη(C2−η

crit,DK−N2−η)
Nη−N2 ε→ 0.

(9)

We notice two interesting findings. First, we see that
P (DK) varies non-linearly with ε: a slight increase in
repair frequency can dramatically reduce the number of
system-wide failures. Agreement is strongest when ε is
moderate, possibly because, when ε is too small for small
N , the largest values of Cw are O(N), therefore the model
under-estimates how many DKs are possible. When ε is
too large, however, we appear to underestimate P (DK)
again, potentially because the Heaviside approximation
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breaks down for small probabilities. We nonetheless find
good overall agreement with our simulations (see Fig. 6).

Another interesting implication of our model is that
for ε→ 0 and N →∞,

P (DK|N, 0) ∼ Cη−2
crit,DK −O(N2−η). (10)

Through simulations, we find that Ccrit,DK ∼ N0.59±0.03

(see Fig. 12), therefore

P (DK|N, 0) ∼ N−β −O(N2−η), (11)

where β = 0.59(2− η) = 0.15± 0.02. In other words, we
find that DK events are surprisingly common for finite
systems: P (DK) decreases by only a factor of 10 when
the system increases in size by ten million.

V. HOW THE PROBABILITY OF LARGE
FAILURES VARIES WITH N AND EPSILON

Figure 1 demonstrates that DKs in the CC model oc-
cur for various values of ε, and our analytic arguments
show DKs occur for all values of ε < 1 and any finite
system. We find a superficially similar failure size distri-
bution, with a bump of size O(N), for the IN model (see
Figs. 7a & 7b) but only when N and ε are sufficiently
small, e.g., N = 104 for ε ≤ 10−3. This is not due to cas-
cading failures, however, because in the IN model only a
single weak-node cluster fails. This bump exists because
there are weak-node clusters that are O(N), meaning we
are in a parameter regime where there are super-critical
percolating clusters.

This contrasts with the CC model, where we see over
99.9% of nodes fail almost independent of the values of
ε and N (see Figs. 7c & 7d). The difference is due to
cascading failures in the CC model, where the moment a
cluster greater than a critical size fails, strong nodes be-
gin to fail, which triggers more weak-node clusters to fail,
etc., until almost all nodes fail (a DK event). Because the
critical weak-node cluster size increases sub-linearly with
N , and because weak-node clusters can be any size less
than N , there is always a chance for weak-node clusters
larger than the critical size to fail, triggering a DK-size
event.

It is an open question in the field of DK theory how
to further classify events such as the bump in the IN
model, which has a heavier-than-power-law probabil-
ity, yet shares the same underlying mechanism as small
events (i.e., the mechanism being the failure of a single
cluster of weak nodes in the IN model.)

VI. PREDICTING DRAGON KINGS

DKs are, in contrast to Black Swans [26–28], relatively
predictable [1], although it may not be obvious what in-
dependent variables best indicate these events. For ex-
ample, we find little correlation in the time between DKs

(the autocorrelation is < 0.01 for N = 106, see Fig. 8),
therefore, knowing the time-series of DKs will not tell us
when another will necessarily occur. We analyze two dif-
ferent predictors. The first is the fraction of weak nodes
present in the network. The rationale is that more weak
nodes create larger initial failures, and therefore more
DKs. The second predictor is the size of the first weak-
node cluster, Cw,1. Both of these predictors are comple-
mentary, because the former would tell us when a DK
might occur, while the latter would tell us where a DK
might originate.

We model P (DK|p) versus p, and P (DK|Cw,1) versus
Cw,1, respectively, using logistic regression. Examples of
Receiver Operating Characteristic (ROC) curves are il-
lustrated in Appendix XIII. Unless ε is relatively large, p
is a poor predictor as based on the area under the ROC
curve (AUC, cf. Fig. 9) [42]. Thus, predicting when a
DK would occur is inherently challenging. In contrast, by
knowing Cw,1 alone, we can predict DKs with astounding
accuracy, almost independent of N and ε. The high accu-
racy is due to the characteristic size of the initial failure
that triggers a DK, Ccrit,DK. This is reminiscent of pre-
vious results on controlling DKs in a system of oscillators
where a trajectory straying past a particular threshold is
very likely to create a DK [32, 43]. Finding the weak-
node cluster size, Cw,1 (which is much smaller than the
system size), for each weak node requires only searching
locally in the network. Similarly, to “tame” DKs, we can
use a simple control mechanism that requires knowing
the size of just a few weak-node clusters, as seen in the
next section.

VII. CONTROLLING DRAGON KINGS

Because large weak-node cluster failures precede DKs,
we can reasonably ask whether breaking up these clus-
ters before they fail can reduce the prevalence of DKs.
Assuming that the rate of node upgrades is proportional
to the amount of money or effort allocated for repairing
nodes, we create control strategies where this rate is kept
the same on average as the non-controlled case, mean-
ing p(t) remains approximately constant. But, instead
of randomly reinforcing failed weak nodes, we upgrade
weak nodes in large clusters by picking r weak nodes and
finding the size of the weak-node clusters to which they
belong. Practically speaking, determining weak nodes
would be equivalent to finding “old” nodes or nodes sim-
ilar to those that failed in the past, indicating that this
type of control does not require that we create failures.
The largest of these weak-node clusters is selected and
with probability 1− p(t), a random node in that cluster
is reinforced.

We find that, when r = 1, more DKs occur than the
non-control reinforcement therefore random attempts to
reduce the size of failures could actually make the failures
substantially worse. The reason r = 1 is a poor control
protocol is that one node in a weak-node cluster is re-
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FIG. 7. (Color online) Failure size distribution for networks with different N and different reinforcement probability ε. (a) IN
model, ε = 1.0× 10−2; (b) IN model, ε = 1.0× 10−3; (c) CC model, ε = 1.0× 10−2; (d) CC model, ε = 1.0× 10−3.

inforced with a probability P (Cw,1) = CwP (Cw)
〈Cw〉 . In con-

trast, with non-controlled reinforcement, weak-node clus-
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FIG. 8. DK autocorrelation versus lag time. We find that,
regardless of the value of ε and regardless of the lag time, the
autocorrelation of DKs over 1.5 × 107 timesteps is very low,
especially as ε increases. We do not plot autocorrelations for
ε ≥ 1.0× 10−2 because there are few DKs for these values of
ε in the time frame studied. The network size is N = 106.

ters fail with a probability P (Cw,1), and approximately
εCw,1 of the first failed weak-node cluster is reinforced.

N

FIG. 9. (Color online) Predicting DKs. The area under the
receiver operating characteristic (AUC) for logistic models of
P (DK|p) (closed symbols and solid lines) and P (DK|Cw,1)
(open symbols and dashed lines) for varying N [42].
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FIG. 10. (Color online) Controlling DKs. (a) The probability a DK occurs over time versus ε in both the non-controlled
scenario (NC, pentagons), and in the controlled scenario with r weak-nodes chosen: r = 1 (circles), r = 3 (diamonds), r = 5
(squares) and r = 7 (triangles). Simulations are realized for N = 106, and standard errors are smaller than marker sizes. See
main text for details of the control method. (b) Failure size distributions for different control strategies and non-controlled
with ε = 3.2× 10−4.

This prioritizes reinforcement to large weak-node clus-
ters, which are more likely to create DKs, while keeping
the reinforcement rate fixed. Furthermore, larger r rep-
resents a better sampling of the cluster sizes, and more
heavily prioritizes reinforcement to large clusters, which
reduces the probability of DKs by orders of magnitude
(cf. Fig. 10a), as well as large failures that are not DKs
(cf. Fig. 10b). In Appendix XIII, we demonstrate that
varying r does not significantly change the average frac-
tion of weak nodes. Furthermore, the number of nodes
we have to search through is only r×〈Cw,1〉 � N on av-
erage, which makes this technique applicable in systems
where global knowledge of the network is lacking.

VIII. CONCLUSION

We have shown that DKs can self-organize in the CC
model via failures that cascade across distinct weak-node
clusters. Moreover, this mechanism allows for DKs to
be easily predicted and controlled. Surprisingly, we find
that reinforcing the network slightly more often, or selec-
tively reinforcing nodes (the control strategy with r > 1),
creates a significant percentage drop in the frequency
of DKs. In contrast, naively reinforcing nodes at ran-
dom (the control strategy with r = 1) dramatically in-
creases the frequency of DKs. We believe that this model
may describe many engineered systems which exhibit (1)
nodes that fail when neighbors do (2) node degredation
leading to a greater failure likelihood, and (3) failure-
based resource allocation [20]. Although our model is
highly idealized, it still makes practical suggestions to
reduce large cascades: (1) increase (even slightly) the
rate of repairs or (2) upgrade systems that are vulnerable
rather than upgrade systems that have recently failed.

Due to the simplicity of the mechanism, we also believe

this model may also explain other systems with DKs.

First, when extended to a directed network, the CC
model might explain failure cascades on fault trees, which
are used to explain the cause of failures on many com-
plex engineered systems [44, 45], such as in nuclear power
plants [9, 44], chemical processes, and aerospace systems
[44]. Namely, fault trees assume that failures are caused
by one or more effects (alike to the failure mechanism
in the CC model), and they can cause multiple effects
(common-cause failures [44, 45]). Failures therefore lead
to further failures thus creating a failure cascade. Our
model, however, is deterministic: the failure of a node
always causes its neighboring weak nodes to fail, when,
in reality, a failure might spread probabilistically. The
CC model therefore produces a worst-case scenario, al-
though even non-deterministic networks could still create
DKs, just at lower probabilities. Importantly, the model
assumes that components in the fault tree degrade (e.g.,
they may have failure rates that increase over some time-
scale) or are upgraded over time (based on whether they
have failed in the past), which we believe is realistic in
many scenarios.

Second, when extended to a social network this model
may instead describe financial draw-downs in markets.
Let us assume brokers buy or sell due to peer influence, a
reasonable assumption which has been observed in stock
market participation [46] and foreign exchange trading
[47]. This is in contrast to previous models to explain
large drawdowns (or drawups) in which agents make
choices strictly due to their past behavior [48]. Some bro-
kers will buy (sell) stock when any neighbor does (“weak”
brokers) [49], while others buy (sell) stock only after a
sufficient fraction of their neighbors do (“strong” brokers)
[50]. Brokers can further become “complex” at a rate ε
after they have adopted an idea (i.e. failed), which can be
interpreted as agents exhibiting greater stubbornness to
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new ideas. The CC model suggests that agents can self-
organize to a state in which global adoption (DKs) occurs
surprisingly often. This could explain, for example, why
large financial drawdowns in stock markets appear to be
DKs [1, 48].

Finally, there are several ways the CC model can be
explored more deeply in the future. First, it can provide
a concrete methodology to begin studying how DKs are
driven by the interplay of heterogeneity (for example the
variance of node degree and the diversity of thresholds
for strong nodes) and coupling (e.g., average node de-
gree) in a principled manner, which is still in its infancy
[1]. Second, the CC model can be analyzed for differ-
ent network topologies, such as assortative, clustered, or
heavy-tailed degree distribution networks. Incorporat-
ing these features also creates additional degrees of free-
dom. For example, the failure dynamics could depend on
a minimum number of neighboring agents failing [23], or
minimum fraction of neighboring agents failing [51]. This
distinction becomes especially important for heavy-tailed
degree distributions.
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X. APPENDIX A: FAILURE CASCADE
ANALYSIS

To establish a theoretical understanding of DKs, we
first note that a failure in any part of a weak-node cluster
makes that entire cluster fail. A necessary, but not suf-
ficient, condition for a DK to occur is that strong nodes
bridging the first failed weak-node cluster must also fail
(cf. S1 in Fig. 2a). We call the failure of weak-node clus-
ters due to failure of such strong nodes a first-order cas-
cade. If the initial weak-node cluster is large enough,
however, then a first-order cascade can lead to even more
strong nodes failing (cf. S2 in Fig. 2a). If weak-node clus-
ters fail due to S2-like nodes, then we call it a second-
order cascade. In the simplest case, only one strong node
bridges two weak-node clusters. We first analyze the

probability that the failure of a weak-node cluster, with
size Cw,1, will lead to the failure of at least one bridging
strong node, denoted by S1, and find that S1 nodes can
accurately model the probability of multiple weak-node
clusters failing (thus explaining how first-order cascades
occur). Subsequent analysis for second-order cascades,
however, gives us a much more accurate approximation
of DKs, although it is not a sufficient mechanism to pro-
duce DKs. Third-order and higher-order theory does not
appear to be analytically tractable, but we remark that
the number of failed weak nodes in a first-order cascade
scales as (Cw,1)2, therefore, once strong nodes fail, they
lead to large numbers of subsequent failures. Once a suf-
ficient number of nodes fail, each node will likely connect
to the failed portion of the network and subsequently fail,
which leads to the failure of ∼ N nodes (a DK event).

A. Mechanism for First-Order Cascades

We first present the mechanism behind first-order cas-
cades. We assume there are N nodes, and (1 − 〈p〉)N
strong nodes each of which may have between zero and
three weak-node neighbors. In addition, a failure begins
at a weak node within a weak-node connected cluster of
size Cw,1. Based on simulations, the weak-node cluster
is approximately a tree, therefore the number of links,
Lw,1, from the first weak-node cluster to strong nodes
should be Cw,1 + 2. Under an annealed network config-
uration model assumption, we sequentially connect links
from the weak-node cluster to strong nodes. After m
links are added, the probability that a subsequent link
connects to a strong node with three weak-node neigh-
bors, is

ρm,j =
3q(1− 〈p〉)N − j

(1− 〈p〉)N 〈k〉 −m

≈ ρ =
3q

〈k〉 ,
(12)

where q is the average fraction of strong nodes with three
weak-node neighbors, j is the number of links already
connected to strong nodes with three weak-node neigh-
bors and 〈k〉 is the average number of weak nodes a strong
node connects to. We assume m, j � (1−〈p〉)N 〈k〉, and
therefore drop second-order terms.

The probability for the m + 1th link from the weak-
node cluster to connect to any strong node that has three
weak-node neighbors with one neighbor already in the
same weak-node cluster is

P (new S1|m) =

m∑
j=0

[(
m

j

)
ρj(1− ρ)m−j

2j

(1− 〈p〉)N 〈k〉 −m

]
=

6mq

〈k〉
1

(1− 〈p〉)N 〈k〉 −m,

(13)
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where we average over j. The probability that two or
more links from the weak-node cluster connect to at least
one strong node with three weak-node neighbors (where
we again average over all j) is

P (S1|Cw,1) = 1−
Lw,1−1∏
m=1

(1− P (new S1|m))

≈ 1−
Lw,1−1∏
m=1

(
1− m

Neff

)
,

(14)

where Neff is Eq. 2.
Interestingly, the formula (14) is equivalent to a gener-

alized birthday problem, where Neff is the effective num-
ber of “days in a year” and Lw,1 = Cw,1 +2 is the number
of “people”. Following previous literature [41], the crit-
ical value of Cw,1, when the probability that S1 will fail
is 1/2, is Eq. (1).

B. Mechanism for Second-Order Cascades

Because a first-order cascade is a poor approximation
of the DK mechanism, we will analytically study the
probability of cascades producing yet more cascades. The
next simplest case that we can study are second-order
cascades.

In a second-order cascade, more strong nodes fail af-
ter an initial first-order cascade (for example, “S2” in
Fig. 2a). The probability of a second-order cascade acts
as an upper bound on the probability of DKs. The sim-
plest way this can occur is when a strong node with three
weak-node neighbors fails (see S′1 in Fig. 4b), because it
can bridge the failed cluster and a new weak-node cluster.
In order to find this probability, we will need to find the
probability that the S′1 node will connect to two failed
nodes. First, to determine how many nodes failed, we
first recall that the probability for the first strong nodes
to fail in the cascade, S1 in Fig. 4a, is a generalized birth-
day problem, therefore the probability for k nodes like S1

to fail is Poisson distributed, for large Neff and Lw,1:

PS1
(k) = e−λw,1

λkw,1

k!
, (15)

where

λw,1 =
Lw,1(Lw,1 − 1)

2Neff
. (16)

This finding implies that the size of secondary failures
increases quadratically with the size of the initial fail-
ure, therefore, initial failures lead to unexpectedly large
secondary failures. Intuitively, the statistics are Poisson
because each event (the failure of S1-like nodes) is sta-
tistically independent, and occurs with a low probability
(P (Cw,1 > Ccrit,DK) is small), and there are lots of op-
portunities for the event to occur (Neff is large). Let the

size of a cluster, i, be C
(i)
w,2, and let Cw,2 =

∑k
i=1 C

(i)
w,2,

then the probability Cw,2 > 0 is

P (S1|Cw,1) = 1− e−λw,1 . (17)

This can also be derived from Eq. (14), by taking

Lw,1−1∏
m=1

(
1− m

Neff

)
= e

log
(∏Lw,1−1

m=1

(
1− m

Neff

))

= e
∑Lw,1−1

m=1 log
(

1− m
Neff

)
≈ e−Lw,1(Lw,1−1)/(2Neff).

(18)

Using this approximation, we can directly solve for when
P (S1|Cw,1) = 1/2 (Eq. (1)).

Now that we know the distribution of weak-node clus-
ters that first fail (Eq. (15)), we need to know how many
nodes are in each weak-node secondary cluster fail. For

each cluster of size C
(i)
w,2, there are L

(i)
w,2 = C

(i)
w,2 + 2 edges

connected to strong nodes. Furthermore, we find em-
pirically that the size distribution of weak-node clusters
is

P (Cw) ∼ C−ηw , (19)

where η = 2.26 ± 0.03 (measured for ε = 3.2 × 10−4

and N = 106, see Appendix XII). Note, however, that

the size distribution of C
(i)
w,2 is not Eq. (19), because the

number of opportunities to connect to a node of size C
(i)
w,2

is proportional to the number of links emanating from

the cluster, which increases as L
(i)
w,2. Namely, S1 is a

strong node with three weak-node neighbors, and there

are on average qL
(i)
w,2 strong nodes with three weak-node

neighbors connected to a cluster of size C
(i)
w,2. Therefore,

the probability to connect to any cluster of size C
(i)
w,2,

Pw,2(C
(i)
w,2), is

Pw,2(C
(i)
w,2) =

P (Cw = C
(i)
w,2)qL

(i)
w,2

〈qL(i)
w,2〉

=
P (C

(i)
w,2)L

(i)
w,2

〈L(i)
w,2〉

.

(20)

This is intuitively similar to “excess degree” seen in ran-
dom network literature (Eq. (22) in [52]).
S′1-like nodes can only appear through one of two con-

ditions: (1) an S′1 node is created from two links in the
non-initial clusters (left probability in Fig. 5), or (2)
an S′1 node spans the initial weak-node cluster, and a
newer cluster (right probability in Fig. 5). Therefore
P (Cw,3 > 0|Cw,1) is 1 minus the probability that both
conditions do not occur.

Condition (1) is the simpler of the two to calculate,
because the derivation for the equation is very similar to
that of equation (17). For each secondary cluster, the
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number of links is L
′(i)
w,2 = C

(i)
w,2 +2−1, where we subtract

one because one link is used to connect to the initial
cluster, therefore L′w,2 =

∑k
i=1 L

′(i)
w,2 =

∑k
i=1 C

(i)
w,2 + k,

and

P (Cw,3 = 0|condition (1)) = e−λw,2 , (21)

where

λw,2 =
L′w,2(L′w,2 − 1)

2Neff
. (22)

To solve for condition (2), note that there are L′w,1 =
Cw,1 + 2 − 2k = Cw,1 − 2(k − 1) links available from
the initial cluster, because 2k links were used to connect
to S1-like nodes. There are qL′w,1 links from the initial
weak-node cluster to strong nodes with three weak-node
neighbors, therefore, there are 2qL′w,1 opportunities for
strong nodes with three weak-node neighbors to connect
to any secondary failed weak-node clusters. The proba-
bility for one link from the initial cluster to connect to
any of the secondary failed weak-node clusters is

P (1 link→ Cw,2) =
qL′w,2

qpN
, (23)

where the denominator is the total number of links from
weak-node clusters to strong nodes with three weak-node
neighbors. This implies that the probability at least one
strong node has a link in the initial and secondary clus-
ters is

P (Cw,3 > 0|Cw,1 ↔ Cw,2) = 1−
(

1− qL′w,2

qpN

)2qL′w,1

.

(24)
Similar logic from the perspective of the secondary

weak-node clusters suggests that

P (Cw,3 > 0|Cw,2 ↔ Cw,1) = 1−
(

1− L′w,1

pN

)2qL′w,2

.

(25)

We therefore have a paradox. We expect that the prob-
ability for a strong node to span initial and secondary
clusters should be independent of the order we choose to
connect them (the probability of the secondary clusters
connecting to the initial cluster should be the same as the
initial to the secondary clusters). However, if we make an
ansatz that 1 � L′w,1 � N and 1 � L′w,2 � N , we can
take the Taylor series of either equation and approximate
the sum as

P (Cw,3 > 0|Cw,1 ↔ Cw,2) ≈ P (Cw,3 > 0|Cw,2 ↔ Cw,1)

≈ 1− e−λw,1↔2 ,

(26)

or

P (Cw,3 = 0|condition (2)) ≈ e−λw,1↔2 , (27)
where

λw,1↔2 =
2qL′w,1L

′
w,2

pN
. (28)

This equation is also order-independent, as we expect.
We can therefore write P (Cw,3 > 0|Cw,1) as the proba-
bility that neither condition (1) nor condition (2) occurs
(i.e., Fig. 5). Recall that this is the probability that at

least one S′1-like node occurs over all values of C
(1)
w,2, C

(2)
w,2,

..., C
(k)
w,2. The probability of k different S1-like nodes is

PS1
(k), while Pw,2(C

(1)
w,2, C

(2)
w,2, ..., C

(k)
w,2) = Pw,2(C

(1)
w,2) ×

Pw,2(C
(1)
w,2)×...×Pw,2(C

(k)
w,2), where Pw,2(C

(i)
w,2) is Eq. (20).

Therefore, if we approximate C
(i)
w,2 as a continuous vari-

able, P (Cw,3 > 0|Cw,1) can be written as

P (Cw,3 > 0|Cw,1) =
∞∑
k=1

PS1(k)

∫ ∞
C

(1)
w,2=1

∫ ∞
C

(2)
w,2=1

...

∫ ∞
C

(k)
w,2=1

P (Cw,3 > 0|Cw,1, C
(1)
w,2, ..., C

(k)
w,2)Pw,2(C

(1)
w,2)× Pw,2(C

(1)
w,2)× ...× Pw,2(C

(k)
w,2),

(29)

where

P (Cw,3 > 0|Cw,1, C
(1)
w,2, ..., C

(k)
w,2) = 1− e−λw,2−λw,1↔2 . (30)

In Eq. (29), we notice that the lower bound of each integral is 1 simply because C
(i)
w,2 ≥ 1, i.e., there must be at least

one node. Using the above findings, Eq. (29) can be written more compactly as

P (Cw,3 > 0|Cw,1) =

∞∑
k=1

PS1
(k)

(
1−

∫ ∞
C

(1)
w,2,C

(2)
w,2,...C

(k)
w,2=1

e−λw,2−λw,1↔2

k∏
i=1

Pw,2(C
(i)
w,2)dC

(i)
w,2

)
. (31)
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FIG. 11. (Color online) Probability of first-order cascades, second-order cascades, and DKs versus Cw,1. Lines are the theoretical
probabilities of (a) first-order cascades and (b) second-order cascades (N = 103, solid line; N = 104, dashed line; N = 105, dash-
dot line; N = 106, dotted line), and plot markers are the simulation-based probabilities of DKs versus Cw,1 for ε = 1.00× 10−3.

As a sanity check, if λw,2 = λw,1↔2 → ∞, which is the
unrealistic condition that Cw,3 > 0 whenever Cw,2 > 0,
the equation reduces to Eq. (17). In this equation, we re-

call that C
(i)
w,2 are all independent, and λw,2 and λw,1↔2

are defined to be a function of
∑k
i=1 C

(i)
w,2. Sadly, how-

ever, this integral is not analytically tractable, therefore
we numerically determine the integral using Mathemat-
ica. For large k, we suffer from the curse of dimension-
ality, therefore we use a cutoff: we ignore any k where
PS1

(k) < δ, where δ = 10−4.

C. Comparison to Simulations

We compare the second-order cascade theory to simu-
lations of DKs in order to check how well the assumptions
approximate the DK mechanism. The first thing we no-
tice is that, as expected, the agreement with simulations
of DKs is not perfect, especially for large N (cf. Fig. 11b),
because the theory is still a necessary but not sufficient
condition for DKs (cf. Fig. 11a). This analysis can also
give us a much better understanding of the relationship
between Ccrit,DK, the critical value of Cw,1 such that the
probability of DKs is 1/2, and N . By understanding how
Ccrit,DK scales with N , we can determine whether DKs
exist in the thermodynamic limit.

We can define Ccrit,2 to be the critical values of Cw,1

when the probability of a second-order cascade is 1/2.
We find that Ccrit,1, Ccrit,2, & Ccrit,DK all appear to scale
differently with system size. As Eq. (1) shows, in the
first-order cascade theory, Ccrit,1 ∼ N b where b = 0.5,
while we find that, for second-order cascade theory, b =
0.55 ± 0.01, and for simulations of DKs, b = 0.59 ± 0.03
(cf. Fig. 12). To see more explicitly how second-order
and first-order cascade theory differ in their scaling, we
can look at Fig. 6, where it is clear that the second-
order cascade theory reaches probability 1/2 at larger

and larger values of Cw,1 as N increases, compared to
first-order cascade theory.

103 104 105 106

N

101

102

103

104

C
w
,D
K

Ccrit,DK

Ccrit, 1

Ccrit, 2

FIG. 12. (Color online) Scaling of Cw,1 critical values versus
N : Ccrit,DK (magenta circles), Ccrit,1 (blue diamonds), and
Ccrit,2 (red squares). We plot critical values for 3.2× 10−4 ≤
ε ≤ 1.0×10−1, and fit those values to the model a×Nb, where
b = 0.59 ± 0.03 for simulations, b = 0.49 ± 0.01 for the first-
order cascade theory, and b = 0.55±0.01 for the second-order
cascade theory.

Second-order cascades are a necessary, but not suf-
ficient, condition for DKs, therefore P (SO|Cw,1) >
P (DK|Cw,1), which implies that Ccrit,2 < Ccrit,DK,
where Ccrit,DK is the critical size of Cw,1 such that
P (DK|Cw,1) = 1/2. We find that these bounds agree
with what we see numerically (cf. Fig. 2b), and Ccrit,2 is
in much closer agreement than Ccrit,1 is to Ccrit,DK.
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XI. APPENDIX B: ALTERNATIVE INITIAL
CONDITIONS

We ask whether the steady state behavior of the IN
and CC models is independent of the initial conditions.
To check this, we calculate the equilibrium fraction of
weak nodes in the network, 〈p〉, and the probability of
a DK, across various initial conditions as we vary ε. In
Fig. 13, we demonstrate that the fraction of weak nodes
over time, p(t), stabilizes to a value, 〈p〉, after a time,
t, greater than trelax = 5 × N timesteps across several
different initial conditions in both models. To further
demonstrate this, in Fig. 14 we plot the average frac-
tion of weak nodes, 〈p〉, after trelax = 5×N for different
reinforcement probabilities ε and find no statistically sig-
nificant difference. Although we demonstrate that the
number of weak nodes does not appear to be affected by
the initial conditions, this does not guarantee that the
distribution of cascade failures is unaffected. As a simple
check for the CC model, Fig. 15 shows that pinitial has
little effect on the probability of DK, P (DK). In fact,
we find no statistically significant difference in P (DK)
across initial conditions. Overall, it does not appear as
though the dynamics are affected by initial conditions for
t > trelax.

XII. APPENDIX C: WEAK-NODE CLUSTER
SIZE DISTRIBUTION

In this section, we show that the weak cluster size dis-
tribution is a power-law tail with an exponential cut-off.
The power-law exponent is approximately 2.15 for the IN
model, and 2.26 for the CC model (see Fig. 16), which
differs considerably from what we would expect for SOC
systems, where the exponent should be 2.5 for percolat-
ing clusters [39]. Future work, however, is necessary to
determine whether the exponent is not equal to 2.5 in
the thermodynamic limit.

We also notice that the exponential cut-off of the clus-
ter distribution is approximately proportional to ε (Fig.
17). This agrees with our intuition that the weak-node
cluster sizes should be power-law distributed as ε → 0.
The reason it is directly proportional to ε, however, is
in part because large clusters shrink in size when they
fail. Nodes in the failed cluster are strengthened, which
reduces the size of the weak-node cluster. Clusters of
size Cw will not have any nodes strengthened with prob-
ability (1 − ε)Cw ≈ exp(−εCw). This suggests that the
probability a cluster is of size Cw is ∼ exp(−εCw), and
therefore gives us intuition as to why λ ∼ ε, although it
cannot explain why λ 6= ε.

XIII. APPENDIX D: RECEIVER OPERATING
CHARACTERISTICS AND CRITICAL VALUES

The ROC curve (Fig. 18) is created by plotting the true
positive rate (TPR) against the false positive rate (FPR)
as the discrimination threshold is varied [42]. Here, the
TPR indicates the probability of DKs being correctly pre-
dicted. The FPR is the probability of DKs being wrongly
predicted. We conclude that the second predictor, Cw,1,
is close to being an optimal predictor. Moreover, DKs
are predicted by Cw,1 with high accuracy, because DKs
are unlikely to occur for Cw,1 < Ccrit,DK, and due to the
power-law distribution of Cw,1 as shown in Fig. 19, most
initial failures lead to small cascades. For example, when
ε = 1.0 × 10−3, the probability P (Cw,1 < Ccrit,DK) is
99.986%.

Lastly, because nodes degrade at a fixed rate, the cost
of upgrades is therefore also approximately the same.
Our control strategy is able to upgrade nodes more intelli-
gently, and can reduce the size of large cascades without
the risk of upgrading more nodes than originally toler-
ated, as shown in Fig. 20.
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FIG. 13. (Color online) Fraction of weak nodes, p(t), over time for various initial conditions. We vary the initial fraction of
weak nodes, pinitial(0.25, solid line; 0.50, dashed line; 0.75, dash-dot line; 1.00, dotted line), from 0.25 to 1.0 for (a) the IN
model and (b) the CC model. The equilibrium value, 〈p〉, is not significantly different for various initial conditions after a time,
t, greater than trelax = 5×N timesteps. In this figure, we take one network realization with N = 106, ε = 3.2× 10−4.
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FIG. 14. (Color online) Average fraction of weak nodes after trelax = 5×N for different initial conditions (a) for the IN model
and (b) for the CC model. The results are averaged for N = 106 over 15×N timesteps and 5 network realizations.
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FIG. 15. (Color online) Probability of DK vs. ε for differ-
ent pinitial in the CC model for network size with N = 106.
Standard errors are smaller than marker sizes.
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FIG. 16. (Color online) Weak-node cluster size distribution, P (Cw), for N = 106 and 10 network realizations at t = 9 × N .
The parameter η is fitting exponent of the maximum likelihood power-law with exponential tail (ε = 1.0 × 10−2, solid line;
ε = 3.2× 10−3, dashed line; ε = 1.0× 10−3, dash-dot line; ε = 3.2× 10−4, dotted line).
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FIG. 17. The exponential cut-off parameter, λ, for the weak-
node cluster distribution, P (Cw), versus ε for the CC model
(cf. Fig. 16 for P (Cw)). The best-fit relation between λ and
ε is λ = 0.39× ε for N = 105 and 106.
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FIG. 18. (Color online) ROC curves for different N and different ε using two different predictors. Lines are the results predicted
by the fraction of weak nodes (ε = 1.0×10−2, solid line; ε = 3.2×10−3, dashed line; ε = 1.0×10−3, dash-dot line; ε = 3.2×10−4,
dotted line), and the open markers represent the results predicted by the size of the first weak-node cluster.



20

100 101 102 103 104 105

Cw

10-12

10-10

10-8

10-6

10-4

10-2

100
P

(C
w
,1

)

ε
3. 2× 10−3

1. 0× 10−3

3. 2× 10−4

FIG. 19. (Color online) The probability the first weak-node
cluster that fails is of size Cw, for N = 106 over 15 × N
timesteps and 1 network realization. The vertical lines show
the value of Ccrit,DK (ε = 3.2×10−3, solid line; ε = 1.0×10−3,
dashed line; ε = 3.2× 10−4, dash-dot line).
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FIG. 20. (Color online) The fraction of weak nodes averaged
over T timesteps with and without control for N = 106 and 10
network realizations. For the uncontrolled system, T = 5×N ,
while for the controlled system T = 10×N .



21

[1] D. Sornette, International Journal of Terraspace Science
and Engineering 2, 1 (2009).

[2] D. Sornette and G. Ouillon, Eur. Phys. J. Special Topics
205, 53 (2012).

[3] J. M. Carlson and J. Doyle, Phys. Rev. E 60, 1412 (1999).
[4] P. Bak, How Nature Works: the Science of Self-organized

Criticality (Copernicus, New York, 1996).
[5] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett.

59, 381 (1987).
[6] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. A 38,

364 (1988).
[7] B. A. Carreras, V. E. Lynch, I. Dobson, and D. E. New-

man, Chaos: An interdisciplinary journal of nonlinear
science 12, 985 (2002).

[8] H. Hoffmann and D. W. Payton, Chaos Soliton. Fract.
67, 87 (2014).

[9] S. Wheatley, B. Sovacool, and D. Sornette, Risk analysis
37, 99 (2017).

[10] J. Lorenz, S. Battiston, and F. Schweitzer, EPJ-B 71,
441 (2009).

[11] C. J. Tessone, A. Garas, B. Guerra, and F. Schweitzer,
Journal of Statistical Physics 151, 765 (2013).

[12] R. M. D’Souza, Science 358, 860 (2017).
[13] B. Podobnik, D. Horvatic, T. Lipic, M. Perc, J. M. Buld,

and H. E. Stanley, J. R. Soc. Interface 12, 20150770
(2015).

[14] X. Weng, Y. Hong, A. Xue, and S. Mei, Journal of Con-
trol Theory and Applications 4, 235 (2006).

[15] M. Perc, J. R. Soc. Interface 11, 20140378 (2014).
[16] A. Majdandzic, B. Podobnik, S. V. Buldyrev, D. Y.

Kenett, S. Havlin, and H. E. Stanley, Nature Physics
10, 34 (2014).
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D. J. Gauthier, Phys. Rev. Lett. 111, 198701 (2013).

[33] A. O. Allen, Probability, statistics, and queueing theory
(Academic Press, 2014).

[34] X. C. Zeng and D. W. Oxtoby, J. Chem. Phys. 94, 4472
(1991).

[35] G. A. Pagini and M. Aiello, Physica A 392, 2688 (2013).
[36] J. Mena-Lorca and H. Hethcote, J Math Biol. 30, 693

(1992).
[37] R. Cohen, K. Erez, D. Ben-Avraham, and S. Havlin,

Phys. Rev. Lett. 85, 4626.
[38] P. Alstrøm, Phys. Rev. A 38, 4905 (1988).
[39] K. Christensen, H. Flyvbjerg, and Z. Olami, Phys. Rev.

Lett. 71, 2737 (1993).
[40] D. J. Watts and S. Strogatz, Nature 393, 440 (1998).
[41] S. E. Ahmed and R. J. McIntosh, Crux Math 26, 151

(2000).
[42] C. D. Brown and H. T. Davis, Chemometrics and Intel-

ligent Laboratory Systems 80, 24 (2006).
[43] A. E. Motter, Physics 6, 120 (2013).
[44] W. S. Lee, D. L. Grosh, F. A. Tillman, and C. H. Lie,

IEEE Trans. Rel. 34, 194 (1985).
[45] J. K. Vaurio, IEEE Trans. Rel. 47 (1998).
[46] H. Hong, J. D. Kubik, and J. C. Stein, J. Finance 59,

137 (2004).
[47] W. Pan, Y. Altshuler, and A. Pentland, in Interna-

tional Conference on Privacy, Security, Risk and Trust
and 2012 International Conference on Social Computing
(IEEE, 2012) pp. 203–209.

[48] N. Johnson and B. Tivnan, Eur. Phys. J. Special Topics
205, 65 (2012).

[49] N. Hodas and K. Lerman, Sci. Rep. 4 (2014),
10.1038/srep04343.

[50] D. Centola, Science 329, 1194 (2010).
[51] D. J. Watts, Proceedings of the National Academy of

Sciences 99, 5766 (2002).
[52] M. Newman, SIAM Rev. 45, 167 (2003).

http://dx.doi.org/10.2139/ssrn.1596032
http://dx.doi.org/10.2139/ssrn.1596032
http://dx.doi.org/10.1140/epjst/e2012-01559-5
http://dx.doi.org/10.1140/epjst/e2012-01559-5
http://dx.doi.org/10.1103/PhysRevE.60.1412
http://dx.doi.org/10.1007/978-1-4757-5426-1
http://dx.doi.org/10.1007/978-1-4757-5426-1
http://dx.doi.org/10.1103/PhysRevLett.59.381
http://dx.doi.org/10.1103/PhysRevLett.59.381
http://dx.doi.org/10.1103/PhysRevA.38.364
http://dx.doi.org/10.1103/PhysRevA.38.364
http://dx.doi.org/ 10.1063/1.1505810
http://dx.doi.org/ 10.1063/1.1505810
http://dx.doi.org/10.1016/j.chaos.2014.06.011
http://dx.doi.org/10.1016/j.chaos.2014.06.011
http://dx.doi.org/10.1111/risa.12587
http://dx.doi.org/10.1111/risa.12587
http://dx.doi.org/10.1140/epjb/e2009-00347-4
http://dx.doi.org/10.1140/epjb/e2009-00347-4
http://dx.doi.org/ 10.1007/s10955-013-0723-y
http://dx.doi.org/ 10.1103/PhysRevLett.107.195701
http://dx.doi.org/10.1073/pnas.1110586109
http://dx.doi.org/10.1073/pnas.1110586109
http://arxiv.org/abs/http://www.pnas.org/content/109/12/E680.full.pdf
http://dx.doi.org/10.1086/521848
http://dx.doi.org/10.1086/521848
http://dx.doi.org/10.1103/PhysRevLett.102.078701
http://dx.doi.org/10.1103/PhysRevLett.102.078701
http://dx.doi.org/10.1109/HICSS.2012.508
http://dx.doi.org/10.1109/HICSS.2012.508
http://dx.doi.org/10.1126/science.275.5306.1616
http://dx.doi.org/10.1002/ieam.5630050223
http://dx.doi.org/10.1002/ieam.5630050223
http://dx.doi.org/10.1103/PhysRevE.81.015102
http://dx.doi.org/10.1103/PhysRevE.81.015102
http://dx.doi.org/10.1103/PhysRevLett.111.078701
http://dx.doi.org/10.1103/PhysRevLett.111.078701
http://dx.doi.org/10.1103/PhysRevLett.111.198701
http://dx.doi.org/10.1063/1.460603
http://dx.doi.org/10.1063/1.460603
http://dx.doi.org/10.1007/BF00173264
http://dx.doi.org/10.1007/BF00173264
http://dx.doi.org/10.1103/PhysRevA.38.4905
http://dx.doi.org/10.1103/PhysRevLett.71.2737
http://dx.doi.org/10.1103/PhysRevLett.71.2737
http://dx.doi.org/10.1016/j.chemolab.2005.05.004
http://dx.doi.org/10.1016/j.chemolab.2005.05.004
http://dx.doi.org/10.1111/j.1540-6261.2004.00629.x
http://dx.doi.org/10.1111/j.1540-6261.2004.00629.x
http://dx.doi.org/10.1109/SocialCom-PASSAT.2012.133
http://dx.doi.org/10.1109/SocialCom-PASSAT.2012.133
http://dx.doi.org/10.1109/SocialCom-PASSAT.2012.133
http://dx.doi.org/10.1038/srep04343
http://dx.doi.org/10.1038/srep04343
http://dx.doi.org/10.1126/science.1185231
http://dx.doi.org/10.1073/pnas.082090499
http://dx.doi.org/10.1073/pnas.082090499
http://dx.doi.org/10.1137/S003614450342480

	Self-Organization of Dragon King Failures
	Abstract
	Introduction
	Self-organizing models
	Dragon King Mechanism
	How the Probability of Dragon Kings Varies With N and Epsilon
	How the Probability of Large Failures Varies With N and Epsilon
	Predicting Dragon Kings
	Controlling Dragon Kings
	Conclusion
	Acknowledgements
	Appendix A: Failure Cascade Analysis
	Mechanism for First-Order Cascades
	Mechanism for Second-Order Cascades
	Comparison to Simulations

	Appendix B: Alternative Initial Conditions
	Appendix C: Weak-Node Cluster Size Distribution
	Appendix D: Receiver Operating Characteristics and Critical Values
	References


