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Collections of self-propelled particles that move persistently by continuously consuming free energy
are a paradigmatic example of active matter. In these systems, unlike Brownian “hot colloids”, the
breakdown of detailed balance yields a continuous production of entropy at steady state, even for an
ideal active gas. We quantify the irreversibility for a non-interacting active particle in two dimensions
by treating both conjugated and time-reversed dynamics. By starting with underdamped dynamics,
we identify a hidden rate of entropy production required to maintain persistence and prevent the
rapidly relaxing momenta from thermalizing, even in the limit of very large friction. Additionally,
comparing two popular models of self-propulsion with identical dissipation on average, we find that
the fluctuations and large deviations in work done are markedly different, providing thermodynamic
insight into the varying extents to which macroscopically similar active matter systems may depart
from equilibrium.

What is irreversible in active matter? These systems
are driven out of equilibrium by the continuous and sus-
tained consumption of free energy at the microscopic
scale [1–3], but quantifying such irreversibility is chal-
lenging. The persistent motion of E. coli performing
run and tumble [4, 5] or of synthetic active colloids pro-
pelled by auto-phoresis [6, 7] are classic examples of mo-
tion that breaks microscopic detailed balance by virtue
of self-propulsion [8], yet is diffusive on large scales. The
detailed balance violations due to persistence often don’t
survive coarse-graining (even in the presence of weak ex-
ternal fields). This restores an effective equilibrium pic-
ture on large scales, thereby allowing a dilute gas of self-
propelled particles to be essentially treated as a gas of
“hot colloids” [9] with an effective temperature [10–13].
In characterizing detailed balance violations on a coarse-
grained scale, even manifestly non-equilibrium phenom-
ena, such as condensation in the absence of attraction
[14, 15], may then be understood by comparing it to the
“nearest” equilibrium like model at the same scale [16].

To quantify irreversibility of an ideal active gas, we
examine here the microscopic dynamics of an individ-
ual active particle and evaluate the entropy production
rate 〈∆ṡ〉 in two popular simple models of self-propelled
particles in 2d: Active Brownian Particles (ABP) where
the propulsive force has fixed magnitude and its direc-
tion is randomized by rotational noise, and Active Orn-
stein Uhlenbeck Particles (AOUP) where self-propulsion
is modeled as a Gaussian colored noise. Entropy pro-
duction provides a direct measure of the breakdown of
time-reversal symmetry (TRS) at steady state. We show
below that it crucially hinges on whether the propulsive
force is treated as even under TRS [17, 18], appropri-
ate for active phoretic colloids, vibrated rods or swim-
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〈∆ṡ〉 Overdamped Underdamped

TRS odd propulsion 0
v20γDR

T (γ +DR)

TRS even propulsion
v20γ

T

v20γ
2

T (γ +DR)

TABLE I: A summary of the average entropy production rate
〈∆ṡ〉 for various cases, applicable to both non-interacting
ABP and AOUP (using Ta = v20γ/2DR). The difference
between the results obtained with underdamped and over-
damped dynamics represents the hidden entropy production.

ming bacteria, where the direction of motility encodes a
physical asymmetry of the microscopic active unit, or as
odd under TRS [19–21], corresponding to the so-called
conjugated dynamics [22]. Previous work has used both
prescriptions, as well as techniques that leave the sign un-
der TRS unspecified [23–26], all with differing and some-
times conflicting notions of dissipated heat and its rela-
tion to entropy production. Additionally, a single active
particle has often been found to have vanishing entropy
production [21, 23–26] seemingly suggesting equilibrium
behavior. We show that some of these issues can be clar-
ified by using underdamped dynamics along with thermal
noise and taking the large friction limit only at the end,
because for both TRS prescriptions the fast momenta
degrees of freedom are responsible for a finite hidden en-
tropy production [27–30], thereby demonstrating that a
single active particle is thermodynamically irreversible.
This is most evident for the case of conjugated dynamics
where the hidden 〈∆ṡ〉 is the only contribution, while it
is subdominant at large friction for TRS even propulsive
forces (see Table I). If, in contrast, inertia is neglected
from the outset, a single active particle behaves like a
passive colloid pulled by an external force (TRS even
propulsion) or as a colloid moving at the velocity of the
solvent in a sheared fluid [21, 31] (propulsion here is the
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solvent velocity, which is TRS odd), with 〈∆ṡ〉 = 0. This
result holds for both ABP and AOUP, thereby not dis-
tinguishing the two models on the average.
We then show that the non-equilibrium nature of ac-

tive particles becomes evident in the fluctuations of ther-
modynamic quantities. By comparing the ABP and the
AOUP models, we find that even though they have the
same long-time dynamics and dissipate identically on av-
erage, their work fluctuations are vastly different. We
demonstrate in a precise fashion that the AOUP gas is
always further away from equilibrium compared to the
ABP gas, for the same motility and persistence. Specif-
ically, the variance of the cumulative work done to pro-
pel the particles, corresponding to the Fano factor, is
strongly enhanced by activity over its linear response
value for the AOUP, but not for the ABP. Our work
can be extended to thermodynamic quantities of inter-
acting active systems along with their fluctuations that
are beginning to be accessible experimentally [32–36].
a. The Models. We consider an underdamped active

particle and set the mass and Boltzmann factor to unity.
The particle velocity ṙ = p obeys a Langevin equation,

ṗ = −γp+ fp +
√

2Tγ ξ(t) , (1)

where γ is the friction, T the temperature of the en-
vironment providing a heat bath, and ξ(t) a delta-
correlated gaussian white noise. For ABP the propulsive
force fp = γv0ê has fixed magnitude, with v0 the self-
propulsion speed, and direction randomized by rotational
noise, 〈ê(t) · ê(0)〉 = e−|t|DR . For AOUP the propul-

sive force is an Ornstein-Uhlenbeck process – D−1
R ḟp =

−fp+
√
2γTaη(t) (η(t) white noise and Ta an active tem-

perature), so that 〈fp(t) · fp(0)〉 = 2γTaDRe
−|t|DR . Both

types of particles are diffusive at long times, with diffu-
sivity D = (T + Ta)/γ, where for ABP Ta = v20γ/(2DR).
It has been shown that the large-scale phenomenology of
the two models is similar even in the presence of strong
interactions [37, 38] where they both exhibit motility-
induced phase separation. Yet, as we shall show below,
their thermodynamic fluctuations are markedly different
even at the single particle level.
b. Mean entropy production. Irreversibility can be

quantified through dissipation and entropy production,
which can be calculated within the framework of stochas-
tic thermodynamics [22]. At steady state, the total en-
tropy production of the system equals the entropy flux
to the environment (also called entropy production of the
medium [39]). For a time interval [0, t], it is given by [40]

∆s(t) = ln

(

P [x(t)|x(0)]
P †[x†(t)|x†(0)]

)

, (2)

where x = {r,p, fp} and P [x(t)|x(0)] is the conditional
probability of starting at x(0) at time τ = 0 and reaching
x(t) at time τ = t along a given trajectory x(τ). The †
denotes time reversal. The conditional probability for ob-
serving a forward trajectory x(τ) (τ ∈ [0, t]) is formally

written as P [x(t)|x(0)] ∝ e−A
∏t

τ=0 δ(∂τr − p), where

A[x(τ)] is the Onsager Machlup functional [41] (neglect-
ing unimportant additive constants [55]), given by

A =
1

4Tγ

ˆ t

0

dτ [∂τp+ γp− fp]
2 . (3)

For non-interacting particles, the Hamiltonian of the sys-
tem only involves the kinetic energy (H = p2/2) and the
first law takes the form (in Stratanovich convention) [42]

dH = p · dp = d̄w − d̄q , (4)

where d̄w is the propulsive work done and d̄q is the
heat dissipated into the reservoir. The sign convention
used is that both heat dissipated into the bath and work
done by the environment on the system are taken to
be positive. Requiring the Clausius relation, we equate
d̄q(t) = T∆s(t), which as we will see below is consistent
with Sekimoto’s [42] definition of heat only for the TRS
even case. It is clear from Eq. 2 that, as discussed in the
introduction, entropy production depends on whether the
propulsion is treated as a force (hence TRS even) or as
a velocity (hence TRS odd). We discuss both cases here,
although the TRS even prescription is more directly rele-
vant to physical realizations. Also, the calculation of the
mean entropy production is outlined here for ABP. The
result turns out to be the same for AOUP.
TRS odd propulsion. The prescription of conjugated

dynamics (r†(τ) = r(t − τ), p†(τ) = −p(t − τ) and
f†p (τ) = −fp(t − τ) on a time interval τ ∈ [0, t], see
Fig. 1(a)) most clearly illustrates the importance of re-
taining the fast momenta degrees of freedom and the
associated hidden entropy production. Considering from
the outset overdamped dynamics and treating motility as
a TRS odd velocity seems to lead identically to ∆ṡ = 0,
in the absence of interactions [21, 23], wrongly suggesting
that the system is in equilibrium [56]. Working instead
with the underdamped equations, we obtain the entropy
production rate to be ∆ṡ = −ṗ · (p− v0ê)/T . Averaging
over noise, in steady state, we get

〈∆ṡ〉 = v20γDR

T (γ +DR)
=

v20
T
DR +O

(

DR

γ

)

. (5)

This demonstrates a hidden entropy production in ac-
tive matter arising from the entropic cost to maintain a
finite persistence and evade thermalization of the fast
momentum. By taking the overdamped limit at the
very outset, i.e., t ≫ γ−1, the momentum is implicitly
assumed to have relaxed to the equilibrium Maxwell-
Boltzmann distribution, but this is simply not true on
time scales of O(D−1

R ) due to the persistence of mo-
tion. As the momentum of the active particle is effec-
tively slaved to the motility, on short time scales (∼ γ−1)
it relaxes to the stationary non-equilibrium distribution
Pss(p|ê) ∝ exp(−|p − v0ê|2/2T ) [43]. On time scales
∼ D−1

R (> γ−1), the polarization direction decorrelates,
but it also forces the momentum to do the same in tan-
dem, an act that requires work to be done and dissipated
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FIG. 1: A cartoon of the trajectories under (a) time conjugated dynamics (fp is TRS odd) and (b) time-reversed dynamics (fp
is TRS even) for a polar self-propelled particle.

irreversibly. For γ/DR ≫ 1, one can also view 〈∆ṡ〉 as
the symmetrized relative entropy (or the symmetrized
Kullback-Leibler divergence [44])

∆srel = −
ˆ

dê

2π

ˆ

d2p [Peq(p)− Pss(p|ê)] ln
(

Pss(p|ê)
Peq(p)

)

,

(6)
dissipated to the bath in a rotational correlation time
D−1

R , with Peq(p) ∝ exp(−p2/2T ). For DR = 0, the
system behaves as if it were in a background steady de-
terministic flow and 〈∆ṡ〉 vanishes.
TRS even propulsion. If motility is treated as a TRS

even non-conservative force (Fig. 1(b)), a single active
particle is then analogous to a driven colloid. In this
case r and p transform as before under time reversal,
but f†p (τ) = fp(t − τ). Using Eqs. 3 and 2, the entropy

production rate is identified as ∆ṡ = p·(γp−
√
2Tγξ)/T .

The rate of heat dissipated q̇ = T∆ṡ is as expected with
p = ṙ [42] and the rate of work done (from Eq. 4) is
given by ẇ = v0γê ·p, which is the power injected by the
propulsive force fp. At steady state, the average rate of
dissipation is

〈q̇〉 = 〈ẇ〉 = v20γ
2

γ +DR
≃ v20γ

[

1 +O
(

DR

γ

)]

. (7)

For γ ≫ DR the mean dissipation rate is the same as
for a particle dragged by a constant force v0γ. Starting
from the outset with overdamped equations yields iden-
tically 〈q̇〉 = 〈ẇ〉 = v20γ. Therefore when self-propulsion
is treated as a TRS-even force all hidden entropy contri-
butions only appear at sub-leading order in DR/γ.
The mean entropy production rate for the various com-

binations considered here is summarized in Table I [57].
Identifying Ta = v20γ/2DR relates the AOUP model to
the ABP, highlighting that both models have the same
mean dissipation rate at steady state. So the two models
are thermodynamically identical on average.
c. Work fluctuations. The difference between the

two models and true non-equilibrium nature becomes ap-
parent in their fluctuations. We compute the variance of

the cumulative work ∆w(t) =
´ t

0 dτ ẇ(τ) done in pro-
pelling the active particle for a time t. In this section we
consider only the physically relevant TRS-even case. At
long times (t → ∞), we have

〈∆w(t)2〉 − 〈∆w(t)〉2 = 2Tw〈∆w(t)〉 , (8)

where Tw (the Fano factor) is an effective temperature for
work fluctuations (distinct from the active temperature
Ta). One can compute Tw through a Green-Kubo like
formula, relating it to the time auto-correlation of the
power input,

Tw =
1

〈ẇ〉

ˆ ∞

0

dt
[

〈ẇ(t)ẇ(0)〉 − 〈ẇ〉2
]

. (9)

As Tw quantifies the relative fluctuations of ẇ, a cur-
rent, it obeys a universal bound at steady-state, Tw ≥
T , first conjectured for out-of equilibrium reaction net-
works [45] and later proven in a general stronger form
by Gingrich et al. [46]. A remarkable result, the uni-
versal bound provides an uncertainty relation between
current fluctuations and dissipation, generalizing equi-
librium fluctuation-dissipation theorems [47] to far from
equilibrium steady states.
For the underdamped ABP we find

TABP
w = T +

〈ẇ〉D2
R

γ(γ +DR)(γ + 2DR)
≃ T , (10)

where the second equality holds for negligible inertia
(γ/DR → ∞), i.e., the ABP saturates the universal dissi-
pation bound (Tw = T ) for arbitrary motility and persis-
tence. An important and surprising consequence of this
result is that a free overdamped ABP gas is always within
linear response regime from a steady state with detailed
balance, no matter what v0 or DR are. This is especially
counterintuitive given that for large v0 the velocity dis-
tribution is non-Maxwellian and bimodal (Fig. 2a). Since
the particle is linearly close to equilibrium, all higher cu-
mulants of work done vanish and one can easily compute
the large deviation functional for the work current Jt, at
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FIG. 2: The steady state probability distribution of the parti-
cle momentum is plotted for (a) the ABP model with v0 = 1
(blue) and v0 = 10 (red), and (b) the AOUP model with
v0 = 1 (blue) and v0 = 10 (red). As both px and py are iden-
tically distributed, they are plotted with the same color and
symbol. Parameters γ = 100, DR = 1 and T = 1 are chosen
common.

steady state for large friction, with the result (see Fig. 3a-
b)

lim
t→∞

−1

t
lnP

(

∆w(t)

t
= Jt

)

=
(Jt − 〈ẇ〉)2

4T 〈ẇ〉 . (11)

In other words the work distribution is Gaussian and
satisfies a fluctuation theorem 〈e−∆w/T 〉 = 1 [22, 39] In
Ref. [48], it was shown that overdamped 2d chiral active
Brownian particles also similarly saturate the dissipation
bound and are hence linearly close to equilibrium as well.
Doing the same, we compute the work fluctuations for

the AOUP, with the result

TAOUP
w = T + Ta +

〈ẇ〉
2(DR + γ)

. (12)

Unlike the ABP, the AOUP model does not saturate the
universal bound on dissipation in the limit of large fric-
tion. In fact, TAOUP

w ≃ T+Ta (for γ ≫ DR) [58], indicat-
ing that the system moves further way from the equilib-
rium steady state (and the linear response regime) with
increasing active temperature Ta. These enhanced work
fluctuations arise from the fact that the fluctuations of
the propulsive force fp are unbounded for AOUP and lead
to the power input being correlated on longer time-scales
∼ D−1

R (instead of (γ + DR)
−1 as for the ABP model).

Our results suggest that tracers in an active bath that
are usually thought to be well described as AOUP [49]
may be thermodynamically distinct from actual active
particles.
One can also compute the large-deviation function of

work done, for the AOUP model (see [54] for the deriva-
tion). We compute the cumulant generating function
F(λ) = − ln〈e−λ∆w(t)〉/t as an eigenvalue of a tilted
Fokker-Planck operator [40] using a gaussian ansatz for
the corresponding eigenfunction, with the result

F(λ)

γ
= −1−DR

γ
+

√

1 +
D2

R

γ2
+ 2

DR

γ

√

1 + 4Taλ(1 − Tλ) .

(13)
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FIG. 3: The large deviation function of work done in the ABP
[(a) v0 = 1, (b) v0 = 10] and AOUP [(c) v0 = 1, (d) v0 = 10]
models. The black lines in all four plots are the theoretical
predictions from Eq. 11 and Eq. 13 for the two models. The
other parameters are γ = 100, DR = 1 and T = 1.

This function has branch cuts outside the interval
[λ−, λ+], with λ± = [1 ±

√

1 + T/Ta]/(2T ) leading to
exponential non-gaussian tails in the work distribution.
The large-deviation function is then obtained by a Leg-
endre transform of F(λ) and is shown in Fig. 3c-d. A
Gallavotti-Cohen like symmetry [40] is realized here as
F(λ) = F(T−1−λ) and leads to a corresponding detailed
fluctuation theorem for P (∆w). Extreme rare fluctua-
tions in the AOUP model are far in excess than in the
ABP. As recent experiments have measured both Gaus-
sian and non-Gaussian large deviations in a self-propelled
particle [32], we expect our results can advise the ther-
modynamically appropriate modeling of such particles.
It would be interesting to see how these fluctuations
change when interactions are added in both models and
how these results will play out when extended to coarse-
grained scales. Some recent works [50, 51] have correlated
large deviations in work to clustering and phase separa-
tion in interacting active systems. Even from our single
particle treatment, we see that large fluctuations are con-
trolled by the statistics of persistence (that can be mod-
ified by interactions) and encodes the time correlation of
the power input 〈ẇ(t)ẇ(0)〉. A comparison including the
interaction time scale in the power auto-correlation is left
for future work.
d. Conclusions. To conclude, we have argued the

importance of including fast degrees of freedom in ther-
modynamic treatments of active matter and shown how
one may gain different notions of irreversibility from con-
jugated and time reversed dynamics. The presence of
hidden entropy production extends to other situations as
well, for example, in chiral active rotors [52, 53] one would
have to retain the fast angular-momentum as well. Addi-
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tionally, in cases where self-propulsion ultimately comes
from an underlying microscopic chemical reaction, the
chemical variable must be retained to obtain the physi-
cal dissipation experimentally measurable in the system.
By working within a Langevin framework as in Ref. [3]
we correctly reproduce [54] the recent results of Pietzonka
and Seifert [18], without having to introduce a discrete
lattice model. The claimed failure of the time-reversal
procedure at the level of stochastic trajectories [18] is
then seen to be a consequence of the hidden entropy pro-
duction. Finally, we emphasize the importance of going
beyond average quantities and look at fluctuations of the
work done in propelling two model active systems. Com-

paring the ABP and the AOUP models, we find that even
though they have the same long-time dynamics and dis-
sipate identically on average, their work fluctuations are
vastly different signalling their distinct nonequilibrium
features.
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