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When a swollen, thermoresponsive polymer gel is heated in a solvent bath, it expels solvent and
deswells. When this heating is slow, deswelling proceeds homogeneously, as observed in a toroid-
shaped gel that changes volume whilst maintaining its toroidal shape. By contrast, if the gel is
heated quickly, an impermeable layer of collapsed polymer forms and traps solvent within the gel,
arresting the volume change. The ensuing evolution of the gel then happens at fixed volume, leading
to phase-separation and the development of inhomogeneous stress that deforms the toroidal shape.
We observe that this stress can cause the torus to buckle out of the plane, via a mechanism analogous
to the bending of bimetallic strips upon heating. Our results demonstrate that thermodynamic
instabilities, i.e. phase transitions, can be used to actuate mechanical deformation in an extreme
thermodynamics of materials.

The term “extreme mechanics” is often used in refer-
ence to mechanical structures with prescribed instabil-
ities that enable large deformations and configurations
that are hard to achieve by other means [1]. An exam-
ple of this is Euler buckling, which refers to the case
of a straight, slender, homogeneous elastic rod that is
compressed at its ends by an applied stress [Fig. 1(a)]
[2]. Below a critical stress, τc, there is a stable energy
minimum corresponding to the deflectionless equilibrium
configuration of a straight rod [Fig. 1(b), dashed curve].
In contrast, above τc, the energy minimum becomes a
maximum and the straight rod configuration becomes un-
stable, with two new minima describing the stable, bent
configuration of the rod [Fig. 1(b), solid curve]; this de-
formed state is thus achieved via a mechanical instability
above τc.

Experimentally, shape actuation is often realized with
polymeric materials, such as polymer gels, which are
crosslinked polymer networks immersed in a solvent
[3]. These respond to external stimuli by swelling or
deswelling and equilibrate when the total free-energy,
consisting of a polymer-solvent mixing contribution and
the entropic elasticity of the polymer network, is mini-
mized [4]. In a so-called thermoresponsive gel, the inter-
play between these two contributions to the free energy
can be adjusted via temperature. Interestingly, if there
are inhomogeneities in the polymer distribution within
the gel, striking swelling patterns [5] can be achieved;
these are oftentimes similar to the topographical fea-
tures observed in soft tissues [6–8]. This strategy has
also proven useful in the design of tunable surface pat-
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FIG. 1. (a) Elastic rod that is compressed at its ends by a
tension τ . Left: straight rod; right: two examples of buckled
rods. (b) Total energy of a compressed rod as a function of de-
flection for values of tension τ less than (dashed) and greater
than (solid) a critical tension τc. (c) Free-energy density of
a polymer gel as a function of polymer volume fraction φ for
temperatures below a transition temperature T ∗, where the
gel is in the swollen phase at low φ, and above T ∗, where it
can be forced into a phase coexistent state.

terns [9] and self-folding origami [10]. Importantly, in all
these instances, the gel swells quasistatically and is thus
equilibrated with the surrounding solvent bath through-
out the process.

However, polymer gels can also exhibit discontinu-
ous phase transitions between polymer-solvent mixed
and segregated phases, corresponding to swollen and
deswollen states. Furthermore, they can also exhibit
phase coexistence where different parts of the gel are
either solvent-rich or solvent-poor [3, 11]. In thermore-
sponsive gels below a threshold temperature, T ∗, the sys-
tem is in an equilibrium swollen state, where the free en-
ergy is minimum [Fig. 1(c), dashed curve]. In contrast,
above T ∗, the gel can exhibit phase coexistence and be
characterized by a free energy with two minima [Fig. 1(c),
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FIG. 2. (a) Quasistatic deswelling of a toroidal gel equilibrated at 25.1, 30.7, 33.5 ◦C. Scale bar: 1mm. (b) Temperature-
dependence of the ring radius, R, and the tube radius, a, for a torus of initial aspect ratio (R/a)i = 3.0. (c) R vs a for tori
with an (R/a)i of (N) 1.6, (�) 3.0, and (•) 5.9 undergoing quasistatic deswelling. The solid lines are linear fits to the data.
The intercepts of the fits are, from top to bottom (in mm): (0.02 ± 0.06) mm, (−0.037 ± 0.015) mm, and (0.042 ± 0.011) mm;
these are all close to zero, consistent with deswelling happening at constant ξ. The slopes m of these fits are shown in (d)
as a function of (R/a)i. The closed symbols are the results obtained in computer simulations. The solid line corresponds to
m = (R/a)i. (e) Simulation snapshots of a toroidal gel that is deswelling quasistatically.

solid curve]. Importantly, due to the gel’s shear rigidity,
this last equilibrium arrangement of coexistent phases
must additionally minimize the free-energy cost associ-
ated with the inhomogeneous distribution of the polymer
network. Swelling equilibria thus depend on and influ-
ence the shape of the gel; the order parameter associated
to the phase transition then couples to the shape, poten-
tially affecting it in what we could call an extreme ther-
modynamics of materials. Unlike the mechanical case of
Euler buckling, in this case, a thermodynamic instability
is exploited to achieve large-scale material deformations.

In this Letter, we explore this idea using thermorespon-
sive gels made of poly-N-isopropylacrilamide (pNIPAM)
and shaped as a toroid. First, we demonstrate the ac-
tuation of volume changes at fixed toroid shape. Next,
we discuss our observations that after rapid heating, the
toroid undergoes large shape changes and buckles out of
the plane. We find that the toroid undergoes internal
phase-separation at constant volume, leading to a po-
larized arrangement of solvent and polymer within its
cross-section that results in a substantial internal stress
difference. Through simulation and analytical modeling,
we demonstrate that the observed arrangement is respon-
sible for the toroid’s buckling, confirming the notion of
extreme thermodynamics as a means to achieve shape ac-
tuation.

We fabricate toroidal gels by first forming toroidal
droplets of a precursor NIPAM solution, which is then
UV-polymerized [12–14]. When heated past the lower
critical solution temperature (LCST), pNIPAM gels en-
ter a deswollen, polymer-rich phase, characterized by a
small volume. Snapshots of the quasistatic evolution of
a toroidal gel are shown in Fig. 2(a). Both the ring ra-
dius, R, and the tube radius, a, decrease with increasing
temperature, as shown in Fig. 2(b). The rate of decrease
is highest at 32.5◦C, which corresponds to the LCST of
pNIPAM [15]. Above this temperature, both R and a
remain essentially constant, as also shown in Fig. 2(b);
at these temperatures the gel is deswollen and optically

opaque, as seen in the rightmost image in Fig. 2(a).

Since the gel remains isotropic and homogeneous dur-
ing the quasistatic heating process, any change in the
polymer matrix brought about by changes in φ must oc-
cur uniformly throughout the gel. Thus, all macroscopic
lengths are expected to rescale by the same amount, im-
plying that the aspect ratio of the torus, ξ ≡ R/a, re-
mains unchanged. To test this, we plot R as a function
of a for all tori as they deswell, and find that they are
linearly related, as shown for three representative exam-
ples in Fig. 2(c). We also find there is a one-to-one cor-
respondence between the slopes, m, obtained from the
linear fits of the data, and the aspect ratio of the tori
measured before deswelling. This is shown in Fig. 2(d),
and confirms our expectations. We also perform dissipa-
tive particle dynamics (DPD) computer simulations to
further test our results [12]. Representative snapshots of
a simulated gel as it deswells are shown in Fig. 2(e). Con-
sistent with the experimental results, R is linearly related
to a, with a slope that corresponds to the aspect ratio
before deswelling; the associated data points are shown
in Fig. 2(d) with closed symbols.

In striking contrast with these observations, when we
rapidly raise the temperature from the swollen phase at
∼ 10◦C to the deswollen phase at 40.0◦C, the gel buck-
les, adopting a “PringleTM”-like shape, as shown for a
torus with ξ = 3.3 in Fig. 3(a,b). This state persists
over time scales from minutes to hours, depending on the
overall dimensions of the torus, and eventually evolves
while developing other characteristic features, as shown
in Figs. 3(c,d). In spherical and cylindrical pNIPAM
gels subjected to abrupt temperature changes, there is
a “plateau period” over which the gel retains its original
volume, followed by the formation of surface patterns [16]
that are reminiscent of those we observe for tori at long-
times [Figs. 3(c,d)]. The origin of this non-quasistatic
evolution is the formation of a deswollen, collapsed-
polymer layer, leading to extremely slow deswelling of
the bulk of the gel, which, as a result, essentially main-
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FIG. 3. Evolution of toroidal gels after rapid heating. The experimental image pairs (a,b), (g,h), and (k,l) are taken (a,g,k)
0s, (b) 104s, (h) 158s, and (l) 201s after heating. Pairs (e,f), (i,j), and (m,n) are simulations for gel shells; images on the left
correspond to the initial state, while images on the right correspond to the final state. The initial aspect ratio of the tori are:
(a) 3.3, (e) 3.0, (g) 4.8, (i) 5.3, (k) 1.7, and (m) 2.4. Images (c,d) correspond to the long-time evolution of the toroidal gel in
(a,b). (c) is 3 min and (d) is 10 mins after the abrupt temperature change. Scale bars: 1mm.

tains a constant volume [17, 18]. The long-time patterns
seen in our toroidal gels suggest that a similar situation
occurs in our case and that the evolution we observe af-
ter rapid heating essentially happens at constant volume;
this is supported by the observation that the time over
which the toroid buckles is much shorter than the plateau
period. Hence, after rapid heating, the gel is out of equi-
librium with the solvent bath and is thus not constrained
to maintain a constant osmotic pressure Πbath, but rather
a constant volume. In this situation, a swollen gel is
not allowed to change its total polymer volume fraction.
However, since the swollen gel has been brought to a
temperature above the LCST of pNIPAM, the homoge-
neously mixed state of the gel becomes unstable to sep-
aration into solvent-rich and solvent-poor regions. We
then postulate that the shape transformation observed
in experiment is due to this phase-separation at constant
volume.

As the boundary of the torus already consists of a
collapsed-polymer layer, we expect that the solvent-poor
region grows from this layer inward into the bulk, in a
manner akin to heterogeneous nucleation. Furthermore,
since a gel is a contiguous medium, the interface between
solvent-rich and solvent-poor regions is laminated. This
interface frustrates the homogeneity of the polymer ma-
trix and leads to a residual stress. We therefore expect
that the phase-coexistent state adopted by the gel will
tend to minimize this inhomogeneity. In the case of a
sphere, the result is a solvent-poor skin of uniform thick-
ness over the surface. The non-constant curvature of the
toroidal surface, however, leads to a skin of non-uniform
thickness. Since the toroidal gel has higher ring curva-
ture on its interior surface than on its exterior, we ex-
pect that a thicker polymer layer will form near the axis
of revolution of the torus, as illustrated in the rightmost
schematic in Fig. 4(a). This is indeed seen in experiment
and is particularly clear at long-times, where the solvent-
poor skin has clearly thickened and appears opaque, as
shown in Figs. 3(c,d).

To confirm our interpretations, we consider that,
within the torus, a fraction f of the gel is solvent poor
and undergoes a volume change relative to its initial vol-
ume, up < 0. The remaining fraction (1 − f) of the
gel is solvent-rich and increases its volume by a factor
ur > 0. The total volume constraint yields a “lever
rule” fup + (1 − f)ur = 0, which is a general fea-
ture in phase-separation with a conserved order param-
eter [19, 20]. Using the Flory-Rehner theory of polymer
gels [12] and considering a cylindrical geometry, which
amounts to neglecting ring curvature for now, we can
determine equilibrium values for the strain ur and up
and the fraction f ; from this, we confirm that phase-
coexistent equilibria exist for temperatures T above the
LCST at constant volume and that the polymer volume
fraction for the solvent-poor region is much larger than
that of the solvent-rich region [12]. We then incorporate
perturbatively the toroid’s ring curvature on the phase-
coexistence and find that it is favorable for the solvent-
poor region to be thicker near the axis of revolution of
the torus and thinner away from the axis [12], further
confirming our previous assertions. Interestingly, the re-
sultant configuration is reminiscent of a bimetallic strip
composed of two metals of differing thermal expansion
coefficients that are laminated together, as illustrated in
the leftmost schematic in Fig. 4(a); under heating, the
strip bends, increasing curvature due to the torque that
results from the differing thermal stresses in the two met-
als [21]. In our case, the laminated coexistent phases of
the gel have a similar stress differential. We then fo-
cus on the ring-shape of the gel, ignore fine details of
the cross-section, and develop a long-wavelength elastic
model where the polymer matrix in the two laminated co-
existent gel regions are each at fixed polymer volume frac-
tions. Within this coarse-grained view of the gel, the net
compressive stress, σ, exerted by the outer, solvent-poor
shell on the inner, solvent-rich region is: σ = E(ur−up),
where E is the gel’s effective Young’s modulus.

To describe buckling, we balance the stress σ against
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the rigidity of the torus. In general, toroidal bending
is described by three-dimensional elasticity. However, in
our simplified model we treat the torus as an elastic rod
defined by a circular centerline of length L. This cen-
terline is characterized at each point by its curvature κ
and torsion τ , which are determined by the rotation rate
of the Frenet-Serret frame; see inset in Fig. 4(b). We
consider an effective inextensible rod elastic free-energy
H [2], in which the centerline degrees of freedom are en-
coded in changes in curvature ∆κ and changes in torsion
∆τ at fixed length:

H =

∫ L

0

ds

(
1

2
B∆κ2 +

1

2
C ∆τ2 + ∆κ b̂ ·M

)
. (1)

The first two terms in Eq. (1) represent a rod with
Hookean response to bending (and bending rigidity B)
and twisting (and torsional rigidity C). The third term
in Eq. (1) is associated to the swelling torque M acting
on the centerline. This model becomes strictly applicable
in the limit ξ � 1. However, since the extensile rigidity
remains much larger than the bending or torsional rigidi-
ties for significantly smaller ξ [22], it still applies down to
the experimental values of ξ where buckling is observed.

Right away, we see that our simple model indicates
that the torus experiences swelling stresses that act to
increase the ring curvature, reminiscent of the thermal
stresses that bend bimetallic strips. Owing to the rela-
tively high energy cost of length changes, the torus is un-
able to attain a uniformly increased curvature whilst re-
maining planar, because any deformation that preserves
both the length and winding number of a closed planar
loop also leaves the integrated curvature for that loop
unchanged [23]. To overcome this, the torus buckles out
of the plane, which is what we observe experimentally.

To find the buckling threshold and modes, we perform
a linear stability analysis [12, 24] of Eq. (1). This analysis
depends on two dimensionless numbers: the rigidity ra-
tio C/B and the stress ratio M/(Bκ), where M ≡ |M|.
We find that the torus is unstable to buckling above a
threshold value of M/(Bκ) at fixed C/B, as shown in
Fig. 4(b). This is seen in experiments, where tori with
ξ . 3 do not buckle; see Fig. 3(k,l) for a representative
example. Note that “Pringling” is the first of the buck-
ling modes that is accessible upon increasing M/(Bκ)
at fixed C/B. For even larger M/(Bκ), higher modes
become unstable [Fig. 4(b)].

Let us now estimate the quantities in Eq. (1) and
further compare to experiments. The swelling torque
M = −fxπa2σ b̂ can be estimated as the cross-product
of the lever arm fx n̂ with force πa2σ t̂. Here, f is a
good approximation of the fraction of the cross-sectional
area occupied by the solvent-poor region, and x is the
center-of-area of the surface skin within the cross-section,
which measures the imbalance of skin thickness due to
surface curvature. Note that x > 0 because the shell is
thicker closer to the axis of revolution of the torus. To
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FIG. 4. (a) Schematic of a bimetallic strip before (top
left) and after (bottom left) heating. A slice through the
cross-section of a phase-separated toroid is shown on the right
with centerline (dashed red), cross-sectional radius a, polar-
ized arrangement of solvent-rich (blue) and solvent-poor (or-
ange) regions with corresponding strains ur and up, and the
swelling moment M. (b) Prediction of instability from lin-
ear stability analysis in terms of dimensionless measures of
the swelling moment, M/(B κ), and the ring rigidity, C/B.
The inset schematically shows the Frenet-Serret frame in an
unperturbed ring, as well as the “Pringling” and the next-
two-lowest modes. Note that for uniform incompressible tori
with a circular cross-section, elasticity theory dictates that
C/B ≈ 2/3.

estimate the rigidities we consider that a uniform rod
of circular cross-section radius a has B ≈ 1

4πa
4E and

C/B ≈ (1 + ν)−1, with ν the Poisson ratio. Crucially,
since the gel is in the plateau period where the volume re-
mains constant, we may regard it as rubber-like and hence
incompressible; thus we take ν ≈ 1/2 and C/B ≈ 2/3.
We then find that M/(Bκ) ≈ 4fξ, where we have used
that x ≈ a, due to the highly polymer-dense region at
the toroidal surface, and that |up| ≈ 1, since this region
contains very little solvent [12]. Theoretically, the buck-
ling threshold for C/B = 2/3 is M/(Bκ) ≈ 1.4. Con-
sidering that buckling is seen above ξ ≈ 3, this implies
that f ≈ 0.1. We can test this expectation by consid-
ering the ratio of deswollen to swollen gel volumes in
the quasistatic experiments (see Fig. 2); in all cases, we
obtain f ≈ 0.1, consistent with the theoretical expecta-
tions. Moreover, as M/(Bκ) ∼ ξ, the theoretical predic-
tions of the buckling modes shown in Fig. 4(b) relate well
to the experiments. Specifically, increasing ξ in the ex-
periments results in a transition from tori that are stable
against buckling to ones that “Pringle,” and subsequently
to tori that deform via more complicated shapes, which
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are reminiscent of the higher buckling modes predicted
by the linear-stability analysis.

To further confirm that a swollen interior surrounded
by a dense shell that is thicker near the axis of revolu-
tion results in buckling, we perform DPD simulations of
toroidal shells having a nearly constant volume. Since
we model the toroidal shell by a 4-coordinated mesh of
harmonic bonds [12], the curvature of the shell ensures
that the effective rigidity of the portion closer to the axis
of revolution is greater than the portion away from the
axis, simulating the variable thickness observed in ex-
periments. Remarkably, the simulations reproduce the
“PringleTM”-like shape seen experimentally, as shown for
a torus with ξ = 3.0 in Figs. 3(e,f). Furthermore, the
data can be fit to the hyperbolic paraboloid shape char-
acteristic of Pringles [12]. Our simulations confirm that
buckling is indeed related to the heterogeneous structure
of our gels, in which a solvent-poor layer is forced to
coexist with a solvent-rich bulk, and that in the pro-
cess the volume of the gel remains essentially constant.
We also note that we also find modes other than “Prin-
gling.” These are seen for higher values of ξ; an example
is shown in Figs. 3(i,j), which compares well with the ex-
perimental result shown in Figs. 3(g,h). In addition, for
sufficiently small ξ, no buckling is observed, consistent
also with our experiments and theory, and buckling oc-
curs only for ξ & 3, also consistent with our experimental
findings.

We have shown that rapidly heated tori composed of
polymer gel can undergo constrained phase separation to
form solvent-rich and solvent-poor regions and that the
polarized arrangement of these regions within the torus
can result in out-of-plane deformations. Our theoretical
analysis also predicts that thin, curved pNIPAM gel rods
would buckle when f & 0.35 ξ−1, where in general f is
the volume fraction of solvent-poor gel and ξ−1 = κa
is the product of rod curvature κ and the tube radius.
While the shapes attained in our experiments are typ-
ical for rings that buckle due to mechanical instability,
we emphasize that our results are entirely due to a ther-
modynamic instability. Thus, our work is suggestive of
an “extreme thermodynamics” where shape actuation is
achieved by passage through a phase transition.
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