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Abstract

Hierarchy of social organization is a ubiquitous property of animal and human groups, linked

to resource allocation, collective decisions, individual health, and even to social instability. Experi-

mental evidence shows that both intrinsic abilities of individuals and social reinforcement processes

impact hierarchies; existing mathematical models, however, focus on the latter. Here, we develop

a rigorous model that incorporates both features and explore their synergistic effect on stability

and the structure of hierarchy. For pairwise interactions, we show that there is a trade-off between

relationship stability and having the most talented individuals in the highest ranks. Extending this

to open societies, where individuals enter and leave the population, we show that important societal

effects arise from the interaction between talent and social processes: (i) despite positive global cor-

relation between talent and rank, paradoxically, local correlation is negative, and (ii) the removal

of an individual can induce a series of rank reversals. We show that the mechanism underlying the

latter is the removal of an older individual of limited talent, who nonetheless was able to suppress

the rise of younger, more talented individuals.
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Introduction. Hierarchy is a central organizing principle of complex systems, manifest-

ing itself in various forms in biological, social, and technological systems [1]. Therefore to

understand complex systems, it is crucial to quantitatively describe hierarchies [2–5] and to

identify their origins and benefits [6, 7]. Among the various forms of hierarchy, here we are

concerned with social hierarchies emerging through competition, including dominance and

status hierarchies or socioeconomic stratification [8, 9]. Ultimately, such hierarchy represents

a ranking of individuals based on social consensus: a high ranking individual is expected to

win a conflict against a low ranking one. This type of organization is present in societies

ranging from insects to primates and humans [3, 10–12], and has been linked to resource

allocation, individual health, collective decisions, and social stability [7, 13–15].

The prevalence of social hierarchies motivated a long history of theoretical research in

statistical physics and mathematical biology [6, 16–19]. The unifying theme in explaining

the emergence of hierarchies is positive reinforcement of differences known as the winner

effect: initially equally ranked individuals repeatedly participate in pairwise competitions,

and after an individual wins, the probability that they win later competitions increases.

Conditions for hierarchies to emerge under this mechanism and their structure has been

thoroughly investigated [9, 11, 18–20].

Yet, from experiments focusing on animal groups, we known that in addition to social

reinforcement, intrinsic attributes also play a critical role in hierarchy formation [9, 11]. The

relative strength of the two effects depends on context; however, it was observed that they

both affect hierarchies ranging from species with relatively simple social interactions, such

as cichlid fish [21], to species that form highly complex societies, such as primates [13, 22].

Despite the clear indication from experiments that both talent and reinforcement matter,

we are lacking general theoretical understanding of their synergistic impact [23, 24]. Here,

we develop a rigorous model incorporating both and show that this captures a much richer

landscape. For pairwise interactions, we show a trade-off between relationship stability and

having more talented individuals be the high-ranked leaders. We then extend the model to

open populations, where individuals enter and leave the group, and we characterize both the

global and the local structure of hierarchies.

Another pressing issue is to understand the response of hierarchical structure to perturba-
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tion, e.g., the effect of removing an individual. In particular, animal behavior experts must

often make strategic decisions to remove individuals from captive societies due to health

issues or in attempt to promote social stability, which sometimes lead to unanticipated re-

organization of hierarchy and even societal collapse [14, 25]. We show herein that if either

talent or social reinforcement dominate hierarchy formation, the associated models predict

smooth response and no rearrangement. It is only if their effects are equally important, that

removal of an individual can lead to a non-trivial series of rank reversals.

Model. Our starting point is a classic model by Bonabeau et al. that considers only social

reinforcement [6]. It describes a group with N members, where the rank of each member is

determined by its ability to defeat others in pairwise competitions. This ability is quantified

by a score xi(t), where the subscript indexes the individuals. The scores are initially identical

(xi(t = 0) ≡ 0) and they change through two discrete-time processes. First, through positive

feedback: In each time step, participants are randomly paired to compete with each other,

and the winner increases its score by δ. Individual i wins against j with probability

Qij(t) =
1

1 + exp[−β(xi(t)− xj(t))]
, (1)

where β is an inverse temperature-like parameter: for large β the outcome of the fight is

deterministic, for β = 0 both parties have equal chance to win. The second process is

forgetting: The effect of a fight wears off exponentially, i.e., xi(t) is reduced by µxi(t) (0 ≤

µ ≤ 1) in each time step. Describing the full process with the deterministic equation

xi(t+ 1) = (1− µ)xi(t) +
δ

N − 1

∑
j 6=i

Qij(t), (2)

it was shown that, depending on the relative strength of reinforcement and decay, the model

supports either egalitarian (xi ≡ 0) or hierarchical (xi 6≡ 0) steady state solutions [6, 26].

To introduce intrinsic attributes, we offset the score of each participant in Eq. (1) by base

abilities bi and bj:

Qij(t) =
1

1 + exp[−β(xi(t) + bi − xj(t)− bj)]
. (3)

Parameter b quantifies talents that are independent of social processes, yet are relevant

to conflict outcomes, such as strength or intelligence. This modification, although formally
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FIG. 1. Fairness and stability (N = 2). (a) Score difference as a function of ε, without (black)

and with difference in talent (red). If ∆b > 0, for large ε only one hierarchical solution exists corre-

sponding to the fair ranking, i.e., rank is determined by talent (solid); and through a discontinuous

transition at εc (vertical line) a new solution emerges corresponding to the opposite, unfair ordering

(dashed). (b) The probability Q that the dominant defeats the subordinate quantifies the stability

of a hierarchical relationship; as ε decreases, social stability increases. Shown for the fair (solid)

and unfair (dashed) states. (c) Critical point, εc as a function of ∆b̄.

simple, requires new mathematical description and leads to series of non-trivial behaviors

and unanticipated emergent properties.

Two individuals. To understand the consequences of intrinsic differences, it is insightful

to first investigate a population of N = 2. The deterministic equation describing the steady

state is

0 = −µ∆x+ δ

(
2

1 + exp [−β(∆x+ ∆b)]
− 1

)
, (4)

where ∆x = x1−x2 and ∆b = b1− b2 ≥ 0. Introducing dimensionless quantities ∆x̄ = β∆x,

∆b̄ = β∆b and ε = µ/(δβ) leads to

0 = −ε∆x̄+
2

1 + exp
[
−∆x̄−∆b̄

] − 1, (5)

meaning that the steady state is determined by the talent difference and a single parameter

ε measuring the relative strength of decay to social reinforcement [27].
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Systematically changing ε, we observe a transition at εc(∆b̄) separating regimes with one

and two stable solutions; the nature of the transition depends on the presence of intrinsic

differences. If ∆b̄ = 0 (Fig. 1a black line), we recover the original model: For ε > εc(0) we

find one solution, representing the egalitarian state ∆x̄ = 0, and at εc(0) two symmetric

hierarchical solutions (∆x̄1 = −∆x̄2 6= 0) emerge through a pitchfork bifurcation. If ∆b̄ > 0

(Fig. 1a red line): For ε > εc(∆b̄) we again find just one solution; this solution, however, is

not egalitarian (∆x̄ > 0), but it is “fair” in that the more talented individual outranks the

less talented. At εc(∆b̄) a new stable solution appears through a discontinuous transition

supporting the opposite order, which is “unfair”, meaning that the less talented outrank the

more talented. In other words, social reinforcement can outpace intrinsic abilities. We call

the ∆x̄ > 0 solution “fair” and the ∆x̄ < 0 one “unfair”, since high-ranked individuals tend

to have better access to resources, more impact on collective decisions, and higher chance to

foster offspring.

Figure 1c shows the dependence of εc on ∆b̄. In general, no closed-form solution is avail-

able; limiting cases, however, can be worked out analytically: for small differences we find

(εc − 1/2) ∼ ∆b̄2/3 and for large differences εc = ∆b̄
−1

. The latter indicates that increas-

ing talent difference or decreasing reinforcement pushes the system to a regime where only

the fair solution exists. Since the fair solution intuitively benefits society, this prompts the

question: what is the role of social reinforcement?

To answer this question, we quantify the stability of a dominant-subordinate relationship

with Q, the probability that the dominant wins a conflict, Q ≈ 1/2 indicates an unstable

relationship and Q ≈ 1 a well-defined relationship. Stable relationships reduce overall aggres-

sion and are positively associated with individual health [15]. Figure 1b shows that strong

social reinforcement (high δ and thus low ε) increases Q, revealing a fundamental trade-

off between stability and fairness: stable relationships require strong social reinforcement;

however, strong reinforcement allows for unfair hierarchical states. Similar trade-off was ex-

perimentally observed in rankings of products in a marketplace competing for the attention

of consumers: strong social reinforcement led to less accuracy in selecting the highest quality

product, and to larger differences in market share [28].
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Open populations. So far we focused on the relationship of two individuals, now we turn

our attention to larger, changing populations. We study groups of N individuals where the

talent of each individual is drawn randomly from a distribution p(b). We initially allow the

population to reach a stable ranking. Then in each step, we remove a random individual and

add a new member i to the bottom of the society, i.e., xi = 0, and again allow the population

to reach a stable ranking.

For simplicity we restrict our investigation to the β →∞ limit, in which case Qij becomes

a step function. This allows us to explicitly formulate the condition for two consecutively

ordered individuals to reverse ranks during the evolution of the hierarchy [29]:

b(k + 1)− b(k) > ∆x ≡ δ

µ(N − 1)
, (6)

where b(k) is the talent of the individual ranked kth (note that k = 1 is the top and k = N

is the bottom rank); and ∆x is the score difference of two consecutively ranked individuals

x(k)− x(k + 1) which turns out to be independent of their ranks [29]. Therefore, ∆x is the

additional talent needed to overcome the advantage of having higher rank. Parameters δ

and µ only effect the system through ∆x; therefore treating ∆x as a parameter completely

specifies the dynamics. The β → ∞ limit allows us to study a simplified representation

of the dynamics in Eqs. (2) and (3): We check each consecutively ranked individual and if

Eq. (6) is satisfied, we reverse their order; we repeat this until no more pairs are reversed.

In the Supplemental Material, we derive various properties of the hierarchy through exact

combinatorics and meanfield-like approximations [29].

The talent b of an individual represents an intrinsic ability or a combination of abilities

that influence the outcome of a fight. In our analysis we derive a number of properties

of social hierarchies for general continuous talent distribution p(b), including heavy-tailed

distributions. Whenever specific p(b) is necessary for calculations or simulations, we focus on

the standard normal distribution. Indeed, body size, intelligence, and other relevant abilities

are often normally distributed.

We now systematically investigate the structure of the emergent hierarchy as a function

of ∆x, the additional talent difference needed to overcome rank difference. We measure

correlation between rank and talent (τtal) and between rank and experience (τexp) using
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FIG. 2. Talent-rank correlation. (a) Kendall’s tau as a function of ∆x. Global talent-rank (red)

and experience-rank (green) correlation shows a crossover between talent and experience dominated

limiting cases. Counter-intuitively, we find that locally talent and rank are anti-correlated (blue) as

shown for local windows of increasing size w. (b) Local rank-talent anti-correlation. In the crossover

regime, the expected talent increases with rank (red), yet the probability that an individual’s

immediate superior is less talented is greater than 1/2 (green). In (a) and (b), results are shown for

populations of N = 100, continuous lines are analytical solutions [29]. Data points are simulations

of the dynamics defined in Eq. (6), representing an average of 10,000 independent samples and

error bars provide the 95% CI.

Kendall’s tau coefficient, where experience is the amount of time an individual has spent in
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the population. For example, τtal = 1 indicates talent completely determines rank and τtal = 0

indicates no correlation. Analytical calculations and simulations show that for large ∆x, rank

is dominated by experience, meaning that the only way to advance in the hierarchy is if a

higher ranking individual is removed; and for small ∆x rank is dominated by talent (Fig. 2a).

These two limiting cases are separated by a regime where both talent and experience matter,

theory predicts that the crossover point, where τtal = τexp = 1/2, is ∆xc ≈ 0.36 for N = 100.

Experimental measurement of τtal is challenging since it requires exact identification of

the relevant talents; determining τexp, however, is straight forward. Indeed, Tung et al. es-

tablished small captive groups of macaques by introducing animals one-by-one into an enclo-

sure and found that the Spearman’s correlation between rank and experience is ρexp = 0.61,

demonstrating that some real systems are in fact near the crossover point [13].

In addition to global correlations, we also quantify local orderedness by calculating τtal(w),

the talent-rank correlation averaged over a sliding window of length w. Counter-intuitively,

Fig. 2a shows that in the crossover regime τtal(w) is negative, meaning that locally rank and

talent are anti-correlated. Figure 2b provides an additional aspect of this paradox situation:

The expected talent 〈b(k)〉 of an individual ranked kth at a random time step monotonically

increases with rank; yet the probability that the (k − 1)th individual, the one immediately

outranking the kth, is less talented than the kth is greater than 1/2.

To understand the mechanism producing the local anti-correlation, first consider two

consecutive individuals forming an ordered pair with respect to talent, i.e., b(k) < b(k−1). If

a new individual arrives with talent b such that b(k)+∆x < b and b(k−1) < b < b(k−1)+∆x,

it can pass the kth individual, but cannot pass the (k− 1)th, lodging itself between the two

and creating an unordered pair. Once an unordered pair exists, i.e., b(k) > b(k − 1), any

individual passing the kth will necessarily pass the (k − 1)th too. Therefore an unordered

pair will remain unordered until one of the pair is removed. This asymmetry in creating

ordered and unordered pairs is responsible for the local anti-correlation.

Finally, we also investigate the effect of removing an individual. We find that in the

talent or experience dominated limiting cases the system’s response is trivial and no re-

organization happens. However, Figure 3 shows that prr, the probability that removal of

an individual induces rank reversals, is non-zero in the crossover regime. For N = 100,
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FIG. 3. Removal of a group member. In the limiting cases of talent and experience dominated

societies, removal has trivial effect, while in the crossover regime the removal of an individual

causes rank reversals with finite probability (red). The average number of rank reversals Ndiff peaks

near ∆xc (green). Results are shown for populations of N = 100, continuous lines are analytical

solutions [29]. Data points are are simulations of the dynamics defined in Eq. (6), representing an

average of 50,000 time steps and error bars provide the 95% CI.

both prr and the average number of these rank reversals Ndiff peak near, but not exactly

at, the crossover point ∆xc. For removal-induced rank reversals to happen, at least three

consecutively ranked individuals are needed in opposite order with respect to talent, i.e.,

b(k+ 1) > b(k) > b(k− 1). If the condition b(k+ 1)− b(k− 1) > ∆x is satisfied, the removal

of the kth individual allows the (k+ 1)th to pass the (k− 1)th, which can lead to a series of

rank reversals. In other words, the kth individual is not talented enough to further advance

in society, but is capable of holding back a younger, more talented contender.

Understanding the response of hierarchies to external perturbation is an important issue.

Particularly, removal of animals from primate groups can sometimes lead to large shifts

in hierarchy and instabilities endangering the group [14, 25]. Here we demonstrated that

traditional models of hierarchy formation, those only considering either intrinsic abilities or

social feedback, predict trivial response to removal, and that both effects have to be present

simultaneously to observe rank reversals.
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So far we have focused on populations of N = 100 individuals. In the Supplementary

Material, we extract the scaling behavior of various properties for large N [29]. Local quan-

tities, such as τtal(2) and prr, scale as τtal(2) = τ
(1)
tal (2, N∆x) and prr = p

(1)
rr (N∆x) for large

∆x; and are independent of N for small ∆x, i.e., τtal(2) = τ
(2)
tal (2,∆x) and prr = p

(2)
rr (∆x).

The location of their extreme value is at the crossover of these two regimes and in case of

normal talent distribution scales as ∼ (lnN)1/6/N1/3. We find universal bounds

τtal(2) ≥ −2 ln 2 + 1,

prr ≤ 0.294 . . . ,
(7)

for any continuous unbounded talent distribution, and these bounds are reached in the large

population limit. For global talent correlation, on the other hand, we find that τtal → 1

if
√
N∆x → 0 and τtal → 0 if

√
N∆x → ∞. Therefore, the crossover point where τtal =

τexp = 1/2 scales as ∆xc ∼ 1/
√
N . The average number of rank reversals Ndiff depends on

global correlations, and peaks near the crossover point ∆xc. Note that in the parametrization

of the model, provided in Eq. (6), ∆x = δ/[µ(N − 1)]; meaning that for N → ∞, global

correlation becomes talent dominated and local correlation may become negative depending

on the value of N∆x. Other scalings of ∆x are also possible through adjustment of δ or µ,

or if individuals do not randomly select opponents, but selectively compete with similarly

ranked ones. The properties we observed for finite hierarchies may become more pronounced

in the large population limit, for example, if N∆x→∞ but
√
N∆x→ 0, global correlation

τtal converges to one, while local correlation approaches its theoretical minimum. In Table I,

we provide detailed enumeration of possible behavior in the large population limit assuming

∆xNα = C, where C > 0 is constant.

Discussion. We studied the synergistic effect of talent and social reinforcement on the

structure of competitive social hierarchies, and we identified behaviors that cannot be ob-

served if either effect dominates. Although we derived our model assuming pairwise conflicts

and a winner effect, we believe that the results can be interpreted more generally: (i) The

mechanism behind both local talent-rank anti-correlation and removal-induced rank rever-

sals is that to pass someone in rank it is not enough to be more talented, but the talent

difference has to be sufficient to compensate for the advantage of being higher ranked – a
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In the limit of N →∞
τtal τexp τtal(2) prr Ndiff/N

1 < α 1 0 1 0 0

α = 1 1 0 τ
(1)
tal (2, C) p

(1)
rr (C) 0

1/2 < α < 1 1 0 −2 ln 2 + 1 0.294 . . . 0

α = 1/2 τtal(C) 1− τtal(C) −2 ln 2 + 1 0.294 . . . f(C)

0 < α < 1/2 0 1 −2 ln 2 + 1 0.294 . . . 0

0 = α 0 1 τ
(2)
tal (2, C) p

(2)
rr (C) 0

α < 0 0 1 0 0 0

TABLE I. Structure of hierarchy in the large population limit assuming ∆xNα = C. The

numerical values are valid for any continuous unbounded talent distribution, while the scaling func-

tions are specific to the talent distribution and are calculated in the Supplementary Material [29].

process relevant to many systems, examples might include rankings of scientists, best seller

lists, or sports rankings. (ii) We introduced parameter b to capture individual talents; how-

ever, it can be thought of as a proxy for support of kin or as a simplified model of reputation

received in exchange for non-adversarial social interactions.

Finally, our results prompt many research questions, both experimental and theoretical.

For example, local anti-correlation and removal-induced rank reversals are predictions that

are testable through experiments. Future theoretical work may investigate sources of com-

plexity not captured by our model, for example, the role of aging or slow deterioration of

talent, or non-linear hierarchies, where social tiers are occupied by multiple individuals.
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