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Abstract 

 The classic self-similar solutions of the non-stationary compressible Euler equations 

obtained for a blast wave propagation (Sedov, Taylor, von Neumann), a shock-wave implosion 

(Guderley, Landau and Stanyukovich), or an impulsive loading of a planar target (von Hoerner, 

Häfele, Zel’dovich) have all been derived for a polytropic ideal gas. None of them can be 

generalized for a fluid with an arbitrary equation of state (EOS), such as the van der Waals EOS 

of a non-ideal gas or a three-term EOS of a condensed material. We demonstrate here that the 

Noh accretion-shock problem is an exception. Its self-similar solutions exist in cylindrical and 

spherical geometry for fluids and materials with an arbitrary EOS. Such solutions for finite 

accretion-shock strength and non-uniform inflow velocity are constructed semi-analytically with 

a model three-term equation of state that includes cold, thermal ion/lattice, and thermal electron 

contributions to the pressure and internal energy. Examples are presented for aluminum and 

copper. Other material- and equation-of-state-specific semi-analytic solutions of the Noh 

problem can be easily constructed using the same method for any material that in the pressure 

range of interest can be approximated as a dissipation-free fluid with an arbitrary equation of 

state.  
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I. Introduction 

The classic Noh self-similar solution [1] describes a supersonic stagnation of a cold ideal 

gas streaming to the plane, center, or axis of symmetry in a strong accretion shock wave. The 

hydrodynamic flow modeled by this solution plays an important role in a wide range of physical 

phenomena, from astrophysics to high-energy-density physics (HEDP) and inertial confinement 

fusion (ICF).  

Spherical accretion shock fronts separating a cold infalling gas from the hot shocked 

plasma are encountered in a variety of astrophysical objects, from white dwarfs to core-collapse 

supernovae, see [2, 3] and references therein. Stagnation and shock heating of accelerated 

converging plasmas take place in many HEDP and ICF experiments. In laser-driven ICF, 

spherical stagnation constitutes the first stage of the hot spot formation, between the implosion of 

the leading shock wave in the fuel vapor at the target center and the moment when the shock 

wave reflected from the center reaches the converging dense DT shell. In cylindrical wire-array 

Z-pinch implosions, an almost uniform, low-density, cold precursor plasma coasts to the pinch 

axis, stagnating via an expanding accretion shock wave into a fairly stable precursor plasma 

column, see [4-6] and references therein. The kinetic-to-thermal energy conversion via an 

expanding cylindrical accretion shock wave has been demonstrated to play a major role in the 

keV x-ray radiation production in both gas-puff and wire-array Z-pinches [7]. The same applies 

to the deuterium gas-puff Z-pinch implosions on the Z facility that produced large yields of DD 

fusion neutrons [8]. The classic Noh solution and its generalizations, both in hydrodynamics [6, 

9] and in MHD [10], provide convenient tools for a simple theoretical analysis of these 

phenomena. These solutions also help get an insight into the complicated 3D behavior of wire-
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arrays Z-pinch plasmas [6] and make simple theoretical estimates of neutron yields in spherical 

implosions of laser targets [11] and cylindrical implosions of Z-pinch plasmas [6, 8, 12]. 

Simplicity of the Noh problem formulation and of its explicit solution made it the 

workhorse of compressible hydrocode verification for over three decades. This deceptively 

simple benchmarking test problem “poses a formidable challenge to all hydrodynamics codes 

since they have to deal with an infinitely strong shock” [9], and is able “to dramatically reflect 

any underlying numerical solver pathologies (e.g., asymmetries and wall-heating phenomena)” 

[13]. References 14-35 are a small selection from the vast body of literature on numerical 

methods in astrophysics, physics of fluids and plasmas, where the classic Noh solution has been 

used as an indispensable test problem. There is increased interest in utilizing such test problems 

to simulating turbulent flows induced by Richtmyer-Meshkov (RM) instability [36, 37], see the 

reviews [38, 39] and references therein. 

 Indeed, a deep connection can be traced between the physical picture of stagnation as 

modeled by the classic Noh solution and the RM instability. In our recent paper containing the 

perturbation analysis of the classic Noh solution [40], we discussed the analogy between the 

spectra of the perturbed Noh flow and that of an RM-unstable flow in planar geometry, see Ref. 

41, Section III.B. In both cases, the main manifestation of the compressibility of the shocked 

material is the reverberation of the sonic waves between transmitted shock front(s) and either the 

unstable material interface, in the case of the RM instability in planar geometry, or the axis or 

center of symmetry, in the case of the classic Noh accretion-shock flow in cylindrical and 

spherical geometries, respectively. The eigenvalues for all the stable sonic modes are almost 

identical, with an obvious correction accounting for the difference between cylindrical or 

spherical geometries of the classic Noh solution, and planar geometry of the RM-unstable flow. 
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But the latter has also another eigenmode, which is localized at the perturbed material interface 

and describes the small-amplitude RM perturbation growth. The classic Noh accretion-shock 

flow does not involve a free surface or a material interface, where an RM or Rayleigh-Taylor 

instability could develop. Hence, all of its eigenmodes are stable [40]. This is one of the reasons 

why it is such an important test problem. 

The classic Noh solution has been constructed for a fluid that is dissipationless (no 

viscosity, no thermal conduction) and has an ideal-gas equation of state: / ap T mρ= , 

( )/ 1pε ρ γ= −⎡ ⎤⎣ ⎦ , where p , ρ , T , and ε  are the pressure, density, temperature (in energy 

units), and specific energy of the gas, respectively, the constant 1γ >  is the adiabatic exponent, 

and am  is the atom mass.  Exploring the process of stagnation, one encounters a number of 

interesting problems involving physics that is not accounted for in the classic Noh solution. For 

example, how well does the one-dimensional (1D) classic Noh solution describe two- or three-

dimensional (2D or 3D) stagnation? How is the stagnating flow modified if the converging fluid 

is dissipationless but its EOS is not ideal-gas?  These questions are obviously interrelated. If the 

EOS of the converging fluid does not satisfy the stability conditions formulated in [42-44], the 

instability of a shock front can certainly affect the stability of the solution as a whole. 

Alternatively, the 1D stagnation of a material with a EOS that is “non-convex”  (which means 

that it does not have the “normal thermodynamic properties” as defined in Chapter I, Section 17 

of Ref. 45: the derivative ( )2 21 / /
S

pρ⎡ ⎤∂ ∂⎣ ⎦  along the isentrope is not positive-definite), can 

proceed via a rarefaction accretion wave rather than a shock front.  

In recent years, significant progress has been made towards answering both of the above 

questions. First, the generalized Noh solutions for the non-ideal-gas EOS satisfying certain 
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symmetry conditions outlined in Ref. 46, have been obtained [13], [47]. Numerical study of the 

RM instability in planar geometry had been reported for a Mie-Grüneisen equation of state [48]. 

In this case, the 1D background flow is a solution of a planar Riemann of shock-interface 

interaction, quite similar to the simple particular case of a rigid piston problem defining the 

planar Noh accretion-shock solution.  Second, the physical stability of the classic Noh solution 

has been proven [40]. The long experience of successful verification of the 2D and 3D 

hydrocodes with the classic Noh solution is an indication, although not a proof, that the latter is 

physically stable: the small perturbations introduced by the discrete grid do not make the 

stagnating flow deviate from the self-similarity and one-dimensionality. A deviation of the 

simulated solution from the analytic one, such as shown in Fig. 21 of [32], indicates problems 

with the code. In Ref. 40, we have demonstrated that the physical stability of the classic Noh 

solution is ensured by the stability of a shock front in an ideal gas. In other words, the Noh 

accretion-shock flow is stable because the reflection coefficient for the sound waves incident 

upon the expanding shock front from the shocked gas is less than unity for an ideal gas with an 

arbitrary γ . The stable classic Noh solution is therefore an attractor, asymptotically approached 

by the 3D solutions close to it. This conclusion can change if this reflection coefficient is greater 

than unity, or even diverges, which means that an isolated shock front itself can generate sonic 

waves, as it happens in fluids whose EOS satisfies the conditions for the D’yakov-Kontorovich 

(DK) instability [42-44]. It is not known yet how this instability will affect the accretion-shock 

flow. For a planar version of a generalized Noh accretion-shock solution, such analysis has been 

done in two recent publications [49, 50] whose results are not in agreement.  

A self-similar solution generalizing the classic Noh solution for an arbitrary EOS, not 

necessarily satisfying the symmetry constraints [13, 46, 47], would make a convenient platform 
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for a theoretical study of the stability of externally driven expanding shock fronts in spherical 

and cylindrical geometry. Generation of new, multi-dimensional, semi-analytic verification 

solutions capable of testing the accuracy of 2D and 3D modeling of small perturbation evolution 

in shocked fluids would be an additional benefit of such study. Such solutions would enable code 

verification in both stable and unstable conditions, taking into account finite shock strength and 

the EOS specifics. The generalized Noh solutions for an arbitrary EOS have not been derived so 

far, and in the literature one can find statements that it cannot be done at all. Below we 

demonstrate how this problem is solved.   

This paper is structured as follows. In Section II, we describe the formulation of our 

problem. In Section III, we introduce a model three-term EOS [45] based on the simple 

analytical form of the density-dependent Grüneisen coefficient suggested in Refs. 51, 52. This 

EOS does not satisfy the constraints formulated in Refs. 13, 46, 47. In Section IV, we construct 

examples of semi-analytic self-similar solutions of the Noh problem with this EOS in cylindrical 

and spherical geometry for aluminum and copper. We demonstrate how these solutions converge 

to the strong-shock solutions described in Ref. 47 in the high-pressure range. In Section V, we 

conclude with a discussion.    

II. Formulation of the problem 

The general Noh problem is formulated as follows. At 0t −= , an infinite space is filled 

with a uniform material whose density is denoted by 0ρ . Its initial velocity is supersonic, it has 

the same absolute value 0u  everywhere, and it is directed at each point to the plane, axis, or 

center of symmetry in the cases of planar, cylindrical, or spherical symmetry, respectively. The 

1D accretion-shock flow emerging after 0t +=  maintains its initial planar, cylindrical or 
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spherical symmetry. We need to determine the pre-shock profiles of density, pressure, and 

velocity, calculate the strength of the expanding shock wave and the post-shock conditions.  

The Noh problem belongs to the family of the fundamental 1D problems of compressible 

fluid dynamics that involve shock waves and permit self-similar solutions, such as the Sedov-

Taylor-von Neumann blast-wave problem [46, 53], the converging-shock problem independently 

solved by Guderley [54] and Landau and Stanyukovich [55], the problem of gas motion under 

the action of an impulsive load studied by von Hoerner, Häfele, Zel’dovich and other authors 

[45, 56]. In this large family, the Noh problem stands out for several reasons, one of them being 

the utmost simplicity of its classic solution. If the material is an ideal gas initially at zero 

temperature and pressure, then this problem has an explicit self-similar solution [1]. The 

accretion shock wave expands from the plane, center or axis of symmetry at the constant velocity 

( )0 / 1su u CR= − , where CR  is the density compression ratio in the expanding shock wave. For 

an ideal gas in the strong-shock limit ( ) ( )1 / 1CR γ γ= + − . The shocked gas is at rest, its density 

and pressure are uniform and given by 

( ) ( ) 2
0 0

1, ,    , ,     
1

m
s s s sr t CR p r t p u r u t

CR
ρ ρ ρ ρ= = = = ≤

−
,   (1)  

where the values of the geometric parameter 1m = , 2 and 3, refer to the planar, cylindrical and 

spherical geometry, respectively. The pre-shock profiles of the density, pressure and radial 

velocity are  

 ( ) ( ) ( ) ( )
1

0 0, 1 1 ,    , 0,     , ,    .
m

s
s

u tr t CR p r t u r t u r u t
r

ρ ρ
−

⎡ ⎤= + − = = − >⎢ ⎥⎣ ⎦
  (2) 

 The pre-shock density build-up in (2) for the cylindrical and spherical geometry is due to 

the convergence of the incident gas flow. The assumption of zero initial pressure combined with 

the ideal-gas EOS ensures that there is no corresponding pressure build-up, and therefore the 
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velocity of the convergent gas remains constant, equal to 0u . The shock velocity with respect to 

the incident material is therefore 

0 01s s
CRD u u u CR u

CR
= + = = ⋅

−
.         (3) 

 For the spherical and cylindrical geometry, 2m =  and 3, the accretion-shock stagnating 

flow described by the classic Noh solution involves adiabatic compression of the converging gas 

(3) followed by its shock compression. For the case of planar geometry, 1m = , which involves 

no convergence, and hence, no adiabatic compression, the Noh problem reduces to the rigid 

piston problem, a particular case of the planar Riemann problem, the evolution of a step-function 

discontinuity in the initial conditions, see §100 of [44]. Obviously, the solution of this problem, 

which includes pre- and post-shock areas of uniform flow separated by a shock front, can be 

obtained for an arbitrary EOS [13, 48−50], and we will not discuss this case below.     

 Over the years, the interest to the Noh problem has stimulated a few generalizations of its 

original formulation. For example, the piston problem involving multiple shock reflections from 

the piston and the plane/center/axis of symmetry has been studied in Ref. 9.  Most of the 

generalized solutions are semi-analytic, that is, not given by explicit analytic formulas but rather 

obtained with the aid of numerical integration of ordinary differential equations, exactly as is the 

case for the classic converging-shock solutions [54, 55]. For example, semi-analytic self-similar 

solutions have been obtained for the cases when the density and/or velocity profiles at 0t −=  are 

not flat [6] and for the magnetohydrodynamic Noh problem [10].  

In this article, we describe another possible generalization of the Noh solution that 

involves a non-ideal-gas equation of state of the converging material. The issue of compatibility 

of the self-similar solutions of the compressible Euler equations with non-ideal-gas EOS had 

been first analyzed by Sedov [46]. He used dimensional analysis to demonstrate that the blast-
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wave problem has a self-similar solution if the specific internal energy ( ),pε ρ  is proportional 

to the pressure p  with a coefficient that depends only on the density ρ . The EOS satisfying this 

requirement can be presented in the Mie-Grüneisen form as 

( )p ρ ρε= Γ ,          (4) 

where ( )ρΓ  is a density-dependent Grüneisen coefficient. The ideal-gas EOS is obviously a 

particular case of Eq. (4) with ( ) 1 constρ γΓ = − = . Although Eq. (4) contains an arbitrary 

function of density, it is not a general form of an equation of state. For example, the van der 

Waals EOS cannot be presented in this form [46]. Sedov’s conclusion based on the dimensional 

analysis is also applicable to the solutions of the converging-shock problem [54, 55] and the 

impulsive-loading problem [45, 56], where the self-similarity is not derived from the 

dimensional considerations, see the discussion in Chapter XII of Ref. 45. A self-similar solution 

of the impulsive-loading problem with the Mie-Grüneisen EOS (4) is presented in Ref. 57. Self-

similar solutions of the Guderley converging-shock problem have been published for the 

“reduced” van der Waals [58] and Mie-Grüneisen [59] EOS.  

The study of the Noh problem with the aid of the Lie symmetries theory [13, 47] resulted 

in the constraints on the EOS similar to those formulated by Sedov [46]. One of the examples of 

an equation of state satisfying these constraints in [47] is the Mie-Grüneisen EOS (4). Under the 

assumption that the specific internal energy, pressure, and speed of sound in the converging pre-

shock material are zero, the solution (1)-(2) was reproduced [47], with the strong-shock value of 

21 2 /CR = + Γ , the subscript 2 indicating the value of the density-dependent Grüneisen 

coefficient immediately behind the expanding shock front. By the same token, it has recently 

been demonstrated in Ref. 13 that if the adiabatic bulk modulus of the pre-shock material cannot 
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be neglected, then the constant-velocity solution (2) does not exist for cylindrical and spherical 

geometry. Physically, it means that when an adiabatic density compression is accompanied by a 

pressure build-up, the velocity profile of the converging pre-shock material in cylindrical and 

spherical geometry cannot remain flat. Hence the conclusion made in Ref. 13: in a medium with 

an EOS that accounts for the cold energy, the Noh problem has a self-similar solution with a 

constant inflow velocity only for a planar geometry, in which case it reduces to a simple 

particular case of the Riemann problem, as discussed above. 

Our formulation of the generalized Noh problem does not include the assumption of 

uniform inflow velocity, 0u const u= = , which is assumed in [13] to be inherent to the Noh 

problem definition. This constraint is actually in addition to the aim of finding a self-similar 

solution. Here we demonstrate that cylindrical and spherical self-similar solutions of the Noh 

problem with non-uniform inflow velocity exist for dissipationless fluids with arbitrary EOS. In 

other words, the existence of such self-similar solutions requires only that the fluid is 

dissipationless, and does not impose any constraints on its EOS, like those derived in Refs. 46, 

47. For these solutions, the density gradient produced by the adiabatic compression of the 

converging pre-shock material translates into a finite pressure gradient, which is consistent with 

any EOS approximating the behavior of an adiabatically compressed condensed material. The 

pressure gradient, in turn, slows down the incident material, so that the velocity of the material 

entering the expanding shock front is less than 0u . The density and pressure of the resting 

shocked material are still uniform but they are not given by Eq. (1). Rather, they have to be 

determined self-consistently in the process of the problem solution.  
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III. A model three-term EOS 

We will demonstrate the existence of self-similar solutions of the Noh problem in 

cylindrical and spherical geometry using a version of the three-term equation of state  described 

in Chapter XI, §6 of Ref. 45. This form of EOS can provide a satisfactory description of 

adiabatic and shock compression of condensed materials in the pressure range up to several 

Mbar: 

 ( ) ( ) ( ) ( ), , ,c T eT T Tε ρ ε ρ ε ρ ε ρ= + + ,      (5) 

 ( ) ( ) ( ) ( ), , ,c T ep T p p T p Tρ ρ ρ ρ= + + .      (6)   

 Here, the cold, or elastic, terms,  cε  and cp , are related to the forces of interaction 

between the atoms of the material at 0T = , and therefore, they depend only on the material 

density ρ . The thermal ion/lattice terms, Tε  and Tp , as well as the thermal electron terms, eε  

and ep , are functions of both density and temperature. By excluding the temperature variable, 

one can present the EOS (5), (6) in the form ( ),pε ε ρ=  and check that it does not satisfy the 

general symmetry criteria, such as Eq. (11.28) of Ref. 46 or Eq. (50) of Ref. 47, that allow the 

existence of self-similar solutions of the blast-wave, imploding-shock and impulsive-loading 

problems. Note that the convenient decomposition (5)-(6), which is often used to construct 

tabular equations of state [60], cannot be derived from first principles because the motions of the 

free and bound electrons and ions in a real fluid are all coupled. In Ref. 61, a discussion of the 

validity of the assumptions underlying the model (5)-(6) is found.  

To construct numerical examples of the self-similar solutions of the cylindrical and 

spherical Noh problem sought for, we need to specify the functions entering Eqs. (5), (6). Below, 

we use a particularly simple form of Eqs. (5)-(6) as an analytically treatable example of a EOS, 
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in which the relation between p  and ε  is not “separable and homogeneous” [59], and which 

thereby does  not satisfy the symmetry requirements of [46, 47]. As discussed below, our simple 

model EOS does not provide an accurate approximation of the real equations of state for 

aluminum and copper, and there are many ways of improving its accuracy. But the self-similar 

solutions of the generalized Noh problem could be readily constructed in the same way for other, 

more accurate analytic EOS, including those which are not based on the decomposition (5), (6) 

[61]. 

We use the one-parameter approximation of the cold curve due to Molodets [51, 52]. The 

density dependence of the Grüneisen coefficient on the isotherm 0T =  is heuristically postulated 

in the form 

 ( ) ( )0

2 2
3 / 1aa

ρ
ρ ρ

Γ = +
−

.        (7) 

 Here, 0aρ  is the density of the material at zero temperature and zero pressure, 0T =  and 

0p = . The density 0aρ  is higher than the normal density 0ρ  of the same material because of the 

thermal expansion that stretches the lattice, producing a negative cold pressure at room 

temperature. For example, in Al this negative pressure at room temperature [45] is about −17 

kbar, which is compensated by an almost equal positive thermal contribution to make the total 

pressure 1 bar or zero, which makes little difference.  The value of the Grüneisen coefficient at 

the density 0aρ is denoted by 0aΓ , and the dimensionless parameter of the theory a  is evaluated 

from (7): ( )01 2 / 2 / 3aa = + Γ − . Figure 1(a) compares the density dependence of the Grüneisen 

coefficient (7), with the parameters listed in Table 1 for aluminum and copper [52], to the values 

inferred from the experimental data of Ref. 62 (symbols). The monotonic lines (7) are seen to 
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reproduce the general trends of the experimental curves ( )ρΓ , although the fine details are not 

captured. 

 The cold pressure as a function of density is found by substituting (7) into the left-hand 

side of the Landau-Slater formula [45, 63, 64] 

  ( )

2

2 1
2 3

c

c

d p
d
dp
d

ρ ρρ

ρ

Γ = +           (8) 

and integrating the resulting differential equation. Denoting the normalized density by 

0/ az ρ ρ= , we present the result of the first integration in the form 

 
( )

( )

4
0

4 10/3
0

1
1

ac

a

K azdp
d a zρ ρ

−
=

−
,        (9) 

where 0aK  is the value of the adiabatic bulk modulus ( )/ SK pρ ρ= ∂ ∂  extrapolated in [51, 52] 

to  0T =  and 0aρ ρ=  as a fitting parameter of the theory. Integrating (9) with the boundary 

condition ( ) ( )0 1 0c a cp p zρ = = = , we obtain [51, 52]:       

 ( )
4 5/3 3 2/3 2 1/3 4/3 7/30

4

4 3 2

3 1 12 6
5 71

1 12 6  .
5 7

a
c

Kp a z a z a z az z
a

a a a a

− − −⎛= − − + −⎜
⎝−

⎞− + + − + ⎟
⎠

    (10) 

 Substituting (10) into the definition of the cold energy, 2 /c cp d dρ ε ρ= , and integrating 

the resulting equation with the boundary condition ( )0 0c aε ρ = , we find [51, 52]:  

 ( )
4 3 2

4 2/3 3 1/3 10
4

0

2 4/3 7/3 10/3 4 3 2

3 3 7 70 210 35 56
10 351

9 3 3 1 3 4 14  .
2 7 70 2 2 7 10

a
c

a

K a a a aa z a z z
a

a z az z a a a a

ε
ρ

− −

− − −

⎛ − − + −= + +⎜− ⎝

⎞+ − + − − + − + ⎟
⎠

   (11) 



14 
 

 These simple formulas yield reasonably accurate cold compression curves for numerous 

solid materials, see Refs. 51, 52, 65, 66, and references therein. The zero temperature 

isotherms/isentropes (10) are shown as lines labeled “Cold” in Figs. 1(b), (c) for aluminum and 

copper, respectively. The cold compression curves inferred from the experimental data [62] for 

the same materials are also shown with empty circle symbols. They are seen to be in a fair 

agreement with the prediction of the Molodets’ model.  

An analytic approximation of the relation between the Grüneisen coefficient and the cold 

pressure different from (8) is due to Dugdale and MacDonald [67]; it had been used for the 

analysis of the Hugoniot data in Ref. 62 and in many subsequent publications. When the 

Dugdale-MacDonald approximation is used, Eqs. (10) and (11) must be replaced by the formulas 

found in Ref. 66.  

 We use the simplest approximation of the ion/lattice thermal contributions to the specific 

internal energy and pressure: 

 3
T

a

T
m

ε = ,          (12) 

 ( )03 a
T T

a

p z z T
m
ρρε= Γ = Γ ,        (13) 

where the temperature is expressed in energy units. It is possible [51, 52, 65, 66] to account for 

the temperature correction to the Grüneisen coefficient. One can take into account the non-

harmonic corrections to Tε  and Tp  calculated for a one-component plasma by the Monte-Carlo 

method [68], thereby generalizing the Mie-Grüneisen model, but below we will not use these 

corrections. 

 The electronic contributions to the specific internal energy and pressure can be presented 

as [45, 66] 
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 2
0

1
2

e
e z Tε β −Γ= ,         (14)  

 1 2
0 02

ee
e ap z Tβ ρ −ΓΓ= ,         (15) 

where eΓ  is the electronic Grüneisen coefficient. The 2T  dependence is a reasonable 

approximation for post-shock temperatures much lower than the Fermi energy of the electron 

gas, and hence, for a limited shock strength. If we choose [45, 66] a constant value of 2 / 3eΓ = , 

then the density and temperature dependence of eε  and ep   in (14), (15) would exactly 

correspond to a free electron gas at a temperature well below the Fermi energy. The constant 0β  

is then determined by the number of free electrons per unit mass of the material at 0T =  and 

0aρ ρ= , cf. Eq. (11.24) of Ref. 45. The constant value of 2 / 3eΓ =  in Eqs. (14), (15) reflects the 

assumption that this number does not change with the shock strength, which, of course, cannot 

be rigorously justified. The experimental data [45, 62] indicate that the value of 1 / 2eΓ =  is a 

better approximation for simple metals at post-shock temperatures between 3 and 5 eV. In the 

multi-Mbar pressure range, the number of free electrons is determined by the consecutive 

ionization of atomic shells [69], which leads to a very different temperature dependence of the 

electronic contributions [68]. In tabular EOS, the electronic terms are typically evaluated using 

the quantum average-atom model [70, 71]. Since our purpose is to present examples of self-

similar solutions for an EOS free of the previously formulated constraints, rather than to derive 

an accurate analytical EOS model, below we will use the simplest form of Eqs. (14), (15) with 

2 / 3eΓ = .  

 The Hugoniot equations we are interested in describe shock transitions from the cold 

isotherm/isentrope 0T = . The cold material can be isentropically compressed to a higher density 
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than 0aρ . The pre-shock cold state labeled by the subscript 1 is fully determined by the 

normalized density, 1 0 1a zρ ρ= , where 1 1z ≥ . The corresponding values of the pre-shock specific 

internal energy and pressure, ( )1 1c zε ε=   and ( )1 1cp p z= , are given by Eqs. (11) and (10), 

respectively. The post-shock state labeled by the subscript 2 corresponds to a higher density, 

2 0 2a zρ ρ= , where  2 1z z> , and a finite temperature 2T , with the corresponding values of the 

specific internal energy and pressure given by Eqs. (5) and (6), respectively. We write down the 

Hugoniot relation (1.71) of Ref. 45 in the form 

 ( ) ( ) ( ) ( )2 2 2 1
2 2 2 1

1 2 0

,1 1,
2

c
c

a

p z T p z
z T z

z z
ε ε

ρ
+⎛ ⎞

− = − ⋅⎜ ⎟
⎝ ⎠

.      (16) 

 For a given value of 2z , Eq. (16) is a quadratic equation in 2T . In this equation, the 

coefficient at 2
2T  is equal to 

  1 2
0 2 0 2 0 2

1 2 1

1 1 1 1 21
2 2 2 4

e e ee e

e

zz z z
z z z

β β β−Γ −Γ −Γ ⎛ ⎞⎛ ⎞ Γ Γ− − ⋅ = + −⎜ ⎟⎜ ⎟ Γ⎝ ⎠ ⎝ ⎠
.   (17) 

 This coefficient is positive for the density compression parameter 2 1/z z  below the 

strong-shock limiting value of the density compression, 1 2 / eCR = + Γ , which for our choice of 

2 / 3eΓ =  equals  4. When 2 1/ 4z z → , the temperature jump 2T → ∞ , as should occur in the 

strong-shock limit. The free term in the quadratic Hugoniot equation (16) is negative,      

 ( ) ( ) ( ) ( )2 1
2 1

1 2 0

1 1 0
2

c c
c c

a

p z p z
z z

z z
ε ε

ρ
+⎛ ⎞

− − − ⋅ <⎜ ⎟
⎝ ⎠

  at   2 1 1z z> ≥ ,   (18) 

which is easily checked with the aid of Eqs. (10), (11). Therefore, for any 2z  in the interval 

1 2 14z z z< < , Eq. (16) has one positive solution for 2T . Having evaluated this solution, we find 
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the post-shock density, temperature and pressure.  The shock velocity with respect to the pre-

shock material, D , is then found from Eq. (1.67) of [45], which we write down in our notation as 

 ( )
( )

( )
( )

2 2 1 2 2 1

1 2 1 1 2 1 0a

p p z p p
D

z z z
ρ
ρ ρ ρ ρ

− −
= =

− −
 .      (19) 

 Figure 1 shows the Al (b) and Cu (c) Hugoniot curves that start on the 0T =  

isotherm/isentrope from the initial density 1 0aρ ρ=  (the principal Hugoniot curve), and from the 

densities greater than that by a factor of 1.1, 1.2, and 1.4. Also shown are the experimental data 

for the principal Hugoniots of Al (b) and Cu (c) from Refs. 62, 72, 73. Note that some of the Al 

data from Ref. 73 is taken at a cryogenic initial temperature 20 K, but this has not noticeably 

shifted the Hugoniot data from those taken at room temperature. The agreement between the 

above analytic formulas and the experimental data in the shock pressure range up to 4 Mbar is 

reasonable. It can be significantly improved by using more advanced approximations of the cold 

and thermal terms found in Refs. 65, 66, 68, 70, 71. We will not be pursuing this for the reasons 

explained above. 

 It must be emphasized that although all the Hugoniot curves shown in Figs. 1(b), (c) start 

from the 0T =  isotherm/isentrope, the “Cold” curve, the corresponding shock strengths are all 

finite, even for the principal Hugoniot curves that start from the origin, where both 0T =  and 

0p = .  Indeed, as explained in [45], for low and moderate shock strengths, the cold contribution 

dominates in the post-shock pressure, see Figs. 1(b), (c), where the principal Hugoniot curves 

plotted for 1 0aρ ρ=  closely follow the corresponding “Cold” curves in the low-pressure range. 

The density-dependent cold pressure makes a qualitative difference between the EOS of 

condensed materials and of an ideal EOS gas. For the latter case, there is no cold pressure, the 

0T =  isotherm/isentrope is also the 0p =  isobar, and any finite-pressure shock starting from 
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this curve can be regarded as infinitely strong, compressing the pre-shock gas by the same factor 

of ( ) ( )1 / 1CR γ γ= + − . When the EOS accounts for the cold energy and pressure, the density 

and pressure build-up in the converging fluid is inconsistent with the assumption of uniform 

inflow velocity, 0u const u= = . This is why self-similar Noh solutions based on this assumption 

do not exist for cylindrical and spherical geometry [13].   

IV. Self-similar solutions of the Noh problem for cylindrical and spherical geometry 

We solve the ideal 1D compressible hydrodynamic equations. The equation of continuity is 

( )1
1 0m

mu r u
t r r r
ρ ρ ρ −

−

∂ ∂ ∂+ + =
∂ ∂ ∂

,       (20) 

where u  is the radial velocity. We write down the Euler equation for the adiabatically 

compressed pre-shock material in the form 

 ( )
2 0

Ku uu
t r r

ρ ρ
ρ

∂ ∂ ∂+ + =
∂ ∂ ∂

,        (21) 

where the derivative in the definition of the adiabatic bulk modulus ( )/ SK pρ ρ= ∂ ∂  is taken 

along the isentrope. For the isentrope corresponding to the initial state, the dependence ( )K ρ  is 

a known function of density. Here we limit ourselves to the zero-temperature pre-shock 

isotherm/isentrope, hence, in our examples, ( )cp p ρ= , the dependence given by Eq. (10). 

The problem formulation outlined in Section II is identical to the classic Noh case. At 

0t −= , an infinite space is filled with a material whose density and pressure are uniform. The 

initial velocity has the same absolute value 0u  everywhere, and it is directed at each point to the 

axis or center of symmetry in the cases of cylindrical and spherical symmetry, respectively. The 

material behind the accretion shock front expanding at a constant speed is at rest, and its density 

and pressure profiles are flat. We need to determine the pre-shock profiles of density, pressure, 
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and velocity, calculate the strength of the expanding shock wave and find the post-shock density 

and pressure. For the examples presented below, the temperature and pressure of the uniform 

material at 0t −=  are zero, and the density equals 0aρ , see Section III and Table 1. This choice 

of parameters is explained only by the convenience of expressing the density dependence of the 

adiabatic bulk modulus along the isentrope with the aid of (9). The existence of the self-similar 

solutions sought for does not depend on this choice. 

Solution of the above problem is self-similar. We denote the constant velocity of the 

expanding accretion shock front in the laboratory frame by su  and introduce the self-similar 

coordinate η  by 

s

r
u t

η = ,          (22) 

so that the value of 1η =  refers to the expanding shock front, whereas 1η >  corresponds to the 

converging cold material ahead of it. The velocity and density of the converging cold material 

are sought in the form 

 ( ) ( ), su r t u Uη η= ,         (23) 

 ( ) ( )0, ar t Nρ ρ η= .         (24) 

 Note that at 0t +→  we have η → ∞  for each fluid particle at a finite distance from the 

axis or center of symmetry. Hence the above initial conditions translate into the following 

boundary conditions at infinity for the dimensionless profile functions ( )U η  and ( )N η : 

 ( ) 0lim / sU u u
η

η
→∞

= − ,         (25) 

  lim 1N
η→∞

= .          (26) 

 The continuity equation (20) translates into 
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 ( )1
0

U dN dU mU
N d d

η η
η η

−
+ + = .       (27)   

 The Euler equation (21) with the aid of Eq. (9) is reduced to 

    ( ) ( )
( )

4
0

42 13/3
0

1
1 0

1
a

a s

K aNdU dNU U
d du a N

η
η ηρ η

−⎛ ⎞− + + =⎜ ⎟ −⎝ ⎠
.    (28) 

 The density-dependent adiabatic bulk modulus factor in the last term in the left-hand side 

of Eq. (28) is the only term in the system (27), (28) that accounts for a particular choice of EOS. 

The choice of the initial point on the cold isotherm/isentrope, 0T = , ensures that the density-

dependent  adiabatic bulk modulus is found with the aid of Eq. (9) where one substitutes z N= . 

A different choice of an EOS, or of the isentrope corresponding to the initial state, would only 

mean that the function  ( )K ρ  characteristic of this isentrope in (21) will be different.  

 For each material, there is a one-parameter family of the self-similar Noh solutions in 

cylindrical ( 2m = ) and spherical ( 3m = ) geometry. The most convenient parameter is the 

dimensional value of the expanding shock velocity, su . Having specified a value of su ,  we 

evaluate the dimensionless coefficient, 2
0 0/a a sK uρ , in Eq. (28). Then we can perform a 

numerical integration of Eqs. (27), (28) starting from the shock front, 1η = , to η → ∞ . Note that 

the initial conditions for the normalized density, ( ) 11 1N N+ = > , and the normalized velocity, 

( ) 11 0U U+ = < , of the adiabatically compressed material entering the expanding accretion shock 

front are not known in advance. Rather, these constants have to be determined in the process of 

finding the numerical solution of the Noh problem. 

 The velocity of the adiabatically compressed material entering the shock front equals 

( ) 11s su U u U
η

η η
=

=⎡ ⎤⎣ ⎦ , whereas the velocity of the shock front equals su . Therefore the velocity 
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of the shock front with respect to the material entering it equals ( )11sD u U= − . On the other 

hand, the shocked material near the axis or center of symmetry is assumed to be at rest, and 

therefore its velocity with respect to the expanding shock front equals su . The continuity 

equation implies that the parameter 1U  determines the shock density compression ratio: 

 2 2
1

1 1

1N z U
N z

= = − .         (29) 

 We also require that the initial state of the material at 0t += , or, which is the same, at 

η → ∞ ,  corresponds to a zero pressure at the 0T =  isotherm/isentrope, which is expressed by 

the boundary condition (26). For a given trial value of 1U , we can determine the corresponding 

value of the normalized density 1 1N z=  of the adiabatically compressed, finite-pressure cold 

material ahead of the shock front, at 1η += , from the requirement that the numerical solution 

asymptotically satisfies (26).  This is easily done using a simple shooting method. By our 

assumption, the post-shock normalized density is ( )2 2 1 11N z z U= = − . Substituting these values 

of 1z  and 2z  into the Hugoniot equation (16) and solving it as described in Section III, we 

calculate the shock velocity D  from Eq. (19) and compare this result with our trial value, 

( )11su U− . The trial parameter 1U  is then chosen from the requirement that both expressions 

yield the same value for the shock velocity D . Having satisfied this requirement, we link the 

pre-shock solution of Eqs. (27), (28) via the Hugoniot jump conditions determined by our EOS 

with the post-shock state of the uniform resting material behind the expanding accretion shock 

front. This completes the construction of the generalized Noh solution sought for.  

 Figure 2 illustrates the self-similar profiles of density (a), pressure (b), and velocity (c) 

for solutions of the Noh problem in spherical geometry for aluminum. Figure 3 shows the same 
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in cylindrical geometry for copper.  Parameters of these solutions, as well as those for two 

cylindrical-geometry solutions for Al, are listed in Table 1. For each combination of material and 

geometry, we present two examples, which are arbitrarily selected from the corresponding one-

parametric families of solutions. The lower- and higher-intensity shock waves are labeled 

“weak” and “strong,” respectively, although all of these shock waves produce Mbar-range 

pressure jumps. Table I demonstrates, however, that the density compression ratios even in the 

strongest of these shocks are well below the value of  4CR =  calculated for our model EOS in 

the strong-shock limit. The only example for which the adiabatic- and shock-compression 

parameters are formally within the range of applicability of the EOS model used here is the 

cylindrical “weak” shock solution for aluminum. 

 All the self-similar profiles shown in Figs. 2 and 3 are qualitatively alike. The adiabatic 

density compression due to the convergence produces a negative gradient of the cold pressure, 

which, in turn, slows down the incident material. Therefore the shock velocity with respect to the 

pre-shock material, D , is less than the sum of the shock velocity in the laboratory frame, su , and 

the incident velocity at infinity, 0u , see Table 1. The relative difference between D  and 0su u+   

is understandably higher in a spherical geometry because a spherical convergence involves a 

faster density and pressure build-up than a cylindrical convergence. This difference is also 

smaller for stronger shocks; it vanishes in the strong-shock limit of Ref. 47. 

 To elucidate the transition to this limit, we note that for large values of su → ∞  the 

dimensionless factor 2
0 0/a a sK uρ  in the Euler equation (28) becomes small. Neglecting it in the 

first approximation, we find that the solution of Eq. (28) corresponds to a constant velocity, 

1 /U η∝ . Recalling that in this case 0/ 1 /s sCR D u u u= = + , and using the boundary condition 

(25), we find the approximate solution for the self-similar velocity: 
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 ( ) 1CRU η
η

−= − .         (30) 

 Substituting (30) into (27), we can integrate this equation with the boundary condition 

(26) to obtain 

 ( )
1

11
m

CRN η
η

−
⎛ ⎞−= +⎜ ⎟
⎝ ⎠

,        (31) 

which reproduces the classic Noh solution (2), as should occur. One can select a dimensionless 

value of CR  between 1 and 4 as a parameter determining a particular approximate solution of 

the Noh problem for a given material and convergence geometry. Substituting 1
1

mz CR −= , 

2
mz CR= into the Hugoniot equation (16), we determine 2T , and thereby, 2p . The shock velocity 

D  is then found from Eq. (19), the velocities 0u  and su – from Eq. (3). This is almost the same 

solution of the Noh problem as described in Ref. 47. The difference is that the shock density 

compression ratio is not necessarily close to the Mie-Grüneisen strong-shock limiting value of 

21 2 /CR = + Γ , where 2Γ  is the post-shock value of the Grüneisen coefficient (7) at 

2
mz z CR= = , cf. Eq. (114) of Ref. 47, or to our strong-shock limiting value 1 2 / 4eCR = + Γ =  

determined by the constant electronic Grüneisen coefficient 2 / 3eΓ = .  Rather, it has to be found 

from the Hugoniot equations for a finite shock strength. Choosing the value of CR  to make the 

convergence velocity 0u  in the approximate solution the same as in the computed semi-analytic 

solution (evaluated numerically as described above), we can compare the approximate solution 

of the Noh problem outlined above with the numerically accurate one for the same initial 

conditions. 

The approximate solutions for the spherical and cylindrical geometry are shown in Figs. 2 

and 3, respectively, as lines with box symbols. It turns out that the above approximation is fairly 
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accurate in predicting the velocity su  of the expanding shock front in the laboratory frame in all 

cases. For example, its deviation from the exact value is less than 3% and 1% for the weak-shock 

and strong-shock spherical solutions for Al shown in Fig. 2. For the same cases, the density 

compression ratios are 21% and 16% off, and post-shock pressures – 44% and 30% off, 

respectively, as shown in Fig. 2. This is not surprising because the approximate solution that 

neglects the pre-shock velocity decrease requires a larger velocity jump at the shock front to stop 

the incident flow, implying a stronger shock wave. A good agreement for the spherical geometry 

is only achieved in the Gbar shock pressure range. 

 On the other hand, for cylindrical geometry the pre-shock velocity decrease is lower, 

which makes the constant-velocity approximation more accurate. It is hard to see the difference 

between the lines representing the density and velocity profiles given by the exact and 

approximate solutions for Cu in Figure 3. Even for the weak-shock case, the values of the 

velocity su , compression ratio CR  and post-shock pressure sp  given by the approximate 

solution are off only by 0.7%, 7% and 15%, respectively. 

We have shown that, with condensed materials, the explicit solutions [47] for the 

cylindrical and spherical Noh problem, which do not exactly satisfy Eqs. (20), (21), can 

reasonably approximate self-similar solutions of these equations. The accuracy of this 

approximation is determined, for our model EOS, by the smallness of the parameter 2
0 0/a a sK uρ  

characteristic of the relative values of cold and ram pressures, and by the geometry of 

convergence. 

V. Conclusions 

 We have presented semi-analytic self-similar solutions of the Noh problem in cylindrical 

and spherical geometry for a simple model EOS that approximates cold- and shock-compression 
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properties of condensed materials with a reasonable accuracy. The EOS used here does not 

satisfy the symmetry constraints [46, 47] that make it possible to derive self-similar solutions of 

the blast-wave [46, 53], converging-shock [54, 55, 59], or impulsive-loading [45, 56, 57] 

problems for materials with non-ideal-gas equations of state. 

 The generalized, semi-analytic, self-similar solutions of the Noh problem and the classic 

ones [1] are qualitatively very much alike. The difference is that the expanding accretion shock 

wave has a finite strength, and the pre-shock adiabatic density compression results in a pressure 

build-up, which, in turn, slows down the converging pre-shock material. The self-similar 

solutions are not given by explicit formulas, as in the classic case [1]. Rather, they need to be 

numerically calculated using the simple procedure described above. In contrast to the classic case 

of Ref. 1 or the strong-shock limit of Ref. 47, the solutions have to be constructed for specific 

values of material parameters and finite shock strength. From the derivation of our examples in 

Section IV it is clear that other, different self-similar solutions of the Noh problem can be 

likewise constructed for other materials and different EOS models. As in the case of an ideal-gas 

EOS, the existence of the self-similar solutions does not require the initial temperature and/or 

pressure of the converging material to be zero.  

 The self-similar solutions of the Noh problem for an arbitrary EOS exist because, when 

the initial density, pressure, and velocity profiles are flat, the scales of the all the flow variables 

in our problem do not depend on time. In other words, the initial and boundary conditions of the 

problem contain a characteristic velocity 0u , and characteristic values of the density and 

pressure, but no parameters from which a characteristic length or time scale can be constructed. 

Therefore the solution of the problem has to be self-similar, i. e., depending on the coordinate r  

and time t  only via a dimensional combination like / sr u t .  In this respect, too, the Noh problem 
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stands out among the other fundamental 1D problems of ideal compressible fluid dynamics 

permitting self-similar solutions, such as the blast-wave problem [46, 53], the converging-shock 

problem [54, 55, 59], or the impulsive-loading problem [45, 56, 57]. All these other problems 

involve shock waves whose strength changes as they propagate. Hence the self-similarity of their 

solutions is not consistent with finite shock strength, i. e., with a time dependence of the shock 

density compression ratio. This constraint does not exist only for the Noh problem, where the 

accretion shock strength does not change as it propagates, and therefore it can be finite and 

essentially arbitrary. So can be the EOS of the converging material. 

We have chosen to use the simplest analytical EOS model compatible with the 

decomposition (5), (6). The purpose of this work is to present some examples and to explain how 

the self-similar solutions of the Noh problem can be constructed for a EOS that accounts for the 

cold energy and pressure, and therefore, does not satisfy the symmetry constraints of Refs. 40, 

41. To construct a solution as described above, one only needs an expression for the adiabatic 

bulk modulus as a function of density along the chosen isentrope, and expressions for the 

specific internal energy and pressure making it possible to calculate, for given parameters of the 

pre-shock state and a trial value of the shock density compression ratio, the full set of the post-

shock parameters including the shock velocity D  with respect to the material entering it. 

Obviously, this information can be obtained for any analytical EOS model, resulting in EOS- and 

material-specific Noh solutions. One can even consider the materials with “anomalous” 

thermodynamic properties, whose non-convex EOS allow for rarefaction shocks, see Chapter I, 

Section 19 and Chapter XI, Section 20 of [45], as well as [74, 75]. The generalized Noh solutions 

can be used for verification of hydrocodes with all kinds of non-ideal EOS in one dimension. 
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The new solutions also provide a convenient platform for accretion-shock stability 

studies in a cylindrical and spherical geometry. Like the classic Noh solutions, the new solutions 

include a resting core of a uniform shocked material surrounding the axis or center of symmetry. 

Therefore a linear stability analysis of such solutions would result in explicit dispersion 

equations, similar to that derived for the classic case in Ref. 40. Stability study, in this case, is 

much easier than the analysis required to describe the small-amplitude RM instability [38] in 

materials that do not satisfy the stability criterion [44] for reflected and/or transmitted shock 

front(s). The simplest analytical non-ideal EOS that satisfies the DK instability criteria is the van 

der Waals EOS [76]. This EOS can be presented in the form (5), (6), and therefore, it can be 

readily used for constructing generalized Noh solutions as described above. When this work is 

done, the results of such analysis will be available for hydrocode verification in two and three 

dimensions, in both stable and DK-unstable parameter ranges. 
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Table 1. Equation-of-state constants [51, 52] for Al and Cu and parameters of the Noh 
solutions illustrated in Figs. 2 and 3. 
  

 Al Cu 
0aρ , g/cm3 2.789414 9.075238 

0ρ , g/cm3 2.73 8.93 

0aΓ  1.798175 2.421139 
a  2.767552 2.139944 

0aK , GPa 91.133 146.16 

0β , erg/g⋅K  500 110 
Geometry Cylindrical Spherical Cylindrical 
Shock 
strength 

Weak 
shock 

Strong 
shock 

Weak 
shock 

Strong 
shock 

Weak 
shock 

Strong 
shock 

sv , km/s  10 15 15 20 10 50 

0v , km/s 5.336 22.89 10.10 25.82 7.416 142.4 
D , km/s 14.03 35.94 21.00 39.62 16.04 191.7 

1 0/ aρ ρ    1.611 2.609 3.024 5.640 1.782 3.857 

2 1/ CRρ ρ =    1.403 2.396 1.400 1.981 1.604 3.834 

2 0/ aρ ρ  2.259 6.250 4.233 11.17 2.859 14.79 

1p ,  Mbar 1.098 5.329 7.948 34.68 3.514 39.70 

2p ,  Mbar 3.637 60.08 18.57 157.0 19.18 9549 

2T ,  eV 0.1759 7.286 0.3243 5.519 1.314 263.4 
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Figure captions 

Figure 1. (Color online.) (a) Grüneisen coefficient vs. density compression as given by Eq. (7) 

for Al and Cu (lines) and inferred experimental values (diamonds for Al, triangles for Cu) from 

Ref. 62, (b) and (c). Cold compression curve and Hugoniot curves for Al and Cu, respectively, 

starting from the zero temperature isotherm/adiabat, the pre-shock density being 1 0/ 1aρ ρ = , 1.1, 

1.2, and 1.4. Empty circles represent the cold compression curve calculations from Ref. 62. Solid 

circles, triangles and diamonds represent the experimental data for the principal Hugoniots of 

aluminum and copper taken from Refs. 62, 72, and 73 (Al only), respectively. 

Figure 2. (Color online.) Self-similar profiles of density compression (a), pressure (b) and radial 

velocity (c) for solutions of the spherical Noh problem for Al. Shock parameters for each case 

are listed in Table 1. Lines with box symbols represent the constant-velocity approximate 

solution: the density profile is given by Eq. (31), the pre-shock pressure is zero, and the pre-

shock velocity is equal to 0u− .   

Figure 3. (Color online.) Self-similar profiles of density compression (a), pressure (b) and radial 

velocity (c) for solutions of the cylindrical Noh problem for Cu. Shock parameters for each case 

are listed in Table 1. Lines with box symbols represent the constant-velocity approximate 

solution: the density profile is given by Eq. (31), the pre-shock pressure is zero, and the pre-

shock velocity is equal to 0u− .   
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 Figure 1. (Color online.) (a) Grüneisen coefficient vs. density compression as given by 
Eq. (7) for Al and Cu (lines) and inferred experimental values (diamonds for Al, triangles for Cu) 
from Ref. 62, (b) and (c), Cold compression curve and Hugoniot curves for Al and Cu, 
respectively, starting from the zero temperature isotherm/adiabat, the pre-shock density being 

1 0/ 1aρ ρ = , 1.1, 1.2, and 1.4. Empty circles represent the cold compression curve calculations 
from Ref. 62. Solid circles, triangles and diamonds represent the experimental data for the 
principal Hugoniots of aluminum and copper taken from Refs. 62, 72, and 73 (Al only), 
respectively. 
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Figure 2. (Color online.) Self-similar profiles of density compression (a), pressure (b) and 
radial velocity (c) for solutions of the spherical Noh problem for Al. Shock parameters for each 
case are listed in Table 1. Lines with box symbols represent the constant-velocity approximate 
solution: the density profile is given by Eq. (31), the pre-shock pressure is zero, and the pre-
shock velocity is equal to 0u− .   
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Figure 3. (Color online.) Self-similar profiles of density compression (a), pressure (b) and 
radial velocity (c) for solutions of the cylindrical Noh problem for Cu. Shock parameters for each 
case are listed in Table 1. Lines with box symbols represent the constant-velocity approximate 
solution: the density profile is given by Eq. (31), the pre-shock pressure is zero, and the pre-
shock velocity is equal to 0u− .   


