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Abstract

Flow in porous media is known to be largely affected by pore morphology. In this work, we

investigate the effects of pore geometry on the transport and spatial correlations of flow through

porous media in two distinct pore structures arising from three dimensional assemblies of overlap-

ping and non-overlapping spheres. Using high resolution direct numerical simulations (DNS), we

perform Eulerian and Lagrangian analysis of the flow and transport characteristics in porous me-

dia. We show that the Eulerian velocity distributions change from nearly exponential to Gaussian

distributions as porosity increases. A stretched exponential distribution can be used to represent

this behavior for a wide range of porosities. Evolution of Lagrangian velocities is studied for the

uniform injection rule. Evaluation of tortuosity and trajectory length distributions of each porous

medium shows that the model of overlapping spheres results in higher tortuosity and more skewed

trajectory length distributions compared to the model of non-overlapping spheres. Wider velocity

distribution and higher tortuosity for overlapping spheres model give rise to non-Fickian transport

while transport in non-overlapping spheres model is found to be Fickian. Particularly, for over-

lapping spheres model our analysis of first passage time distribution shows that the transport is

very similar to those observed for sandstone. Finally, using 3-D velocity field obtained by DNS

at the pore-scale, we quantitatively show that despite the randomness of pore space, the spatially

fluctuating velocity field and the 3-D pore-space distribution are strongly correlated for a range of

porous media from relatively homogeneous monodisperse sphere packs to Castlegate sandstone.
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I. INTRODUCTION

Understanding the flow through porous media is of great importance in many natural and

technological processes such as oil recovery [1], CO2 sequestration [2], filtration [3], biological

flows [4], and reactive transport [5]. In many practical cases, low Reynolds number flows

through porous media are modeled at the Darcy scale using Darcy’s law which relates the

specific discharge, q, to pressure drop, ∆p, along the flow direction as:

q =
−κ
µ

∆p

L
(1)

where κ is the permeability, µ is the viscosity of the fluid, and L is the length of medium

along the flow direction. In flow through porous media, intricate pore geometry creates a

complex and spatially fluctuating velocity field and it is well-known that such flow variations

at pore-level affect the transport processes in porous media and give rise to many anomalous

behaviors which macroscopic models fail to predict, such as early breakthrough of the solute

[6] or mixing-controlled reactions in heterogeneous media [7]. Naturally, it is of great interest

to relate such complex velocity fields and resulting macroscopic transport properties to pore

geometry.

Recent advances in porous media imaging techniques such as X-ray micro-tomography

and pore-scale simulations have allowed for resolving the flow at the pore-scale for complex

and realistic pore geometries. Computationally, fluid flow at pore-scale is investigated either

through direct pore-scale or pore-network models. In the latter approach, the pore struc-

ture is approximated by a network of pores connected by throats. As a result, pore-network

models do not preserve the original pore-space features. A review of pore-scale analysis

using pore-network models is given in [8]. Direct pore-scale modeling, on the other hand,

is achieved by solving governing equations directly on the pore-structure [9]. Recently, a

direct comparison of velocity fields obtained by particle image velocimetry (PIV) and mag-

netic resonance imaging (MRI) with pore-scale simulations suggests that given an accurate

representation of the pore geometry, DNS could predict accurately flow and transport at the

pore-scale [10].

Pore-scale modeling has been intensively used to study the effects of pore geometry on

transport properties such as hydraulic permeability [11–14], heat transfer [15] and solute

dispersion [16, 17]. For example, studies of Daneyko et al. [18] and Vidal et al. [19] suggest

negligible effects of grain size distribution on the hydraulic permeability, whereas Garcia et al.
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[20] showed that the grain shape is a key parameter and could change permeability by a factor

of 2. In a similar study, Pan et al. [21] proposed improvements to the existing empirical

permeability relationships for sphere packing with various porosities and polydispersities.

Contributions of flow inertia to permeability in regular and random sphere arrangements

were evaluated in [22]. It was shown that the pore structure plays an important role on

the drag force acting on the sphere packing along with the solid volume fraction and the

direction of the flow. Anisotropy of the porous medium and its effects on the permeability

were studied by Stewart et al. [23]. A correlation between the mean tortuosity and the

porosity was proposed in stochastically generated porous media in [24].

Many recent observations have shown that displacement of solute could not be accu-

rately predicted by advection-dispersion equation (ADE) [25] and this discrepancy is often

attributed to the extreme heterogeneity of the medium and significant changes in the local

velocity field [26]. The signature of anomalous transport is the power-law tail of solute

concentration long after its breakthrough [27]. Different stochastic models have been devel-

oped to address this anomalous behavior such as mobile-immobile concept [28], multiple-

rate transfer models [29], fractional ADE [30], and continuous time random walk (CRTW)

[31, 32]. In the CTRW framework, the transport of solute is greatly affected by the behavior

of transit time distribution, ψ(t), where it is generally assumed that ψ (t) ∼ t−1−β. For ex-

ample, truncated power-law (TLP) distribution for ψ (t) has been particularly successful at

describing anomalous transport [33]. However, the key parameter β in ψ (t), also a measure

of medium heterogeneity, still needs to be determined. In fact, effective parameterization

of such models requires knowledge of Eulerian and Lagrangian statistics of flow through

porous media. For example, given the physical interpretation of ψ (t), it can be determined

from pore-scale velocity field [34, 35]. Bijeljic and Blunt [36] used pore-network model of a

Berea sandstone to determine transient time distribution where they observed a power-law

distribution of pore-to-pore travel times.

Importance of detailed knowledge about underlying velocity distributions and correlations

in porous media due to their impact on transport behavior and hydraulic properties of the

media has led to intensive research focused on measuring velocity probability density func-

tions (PDF) and its correlations through experimental and numerical techniques [37–39]. A

combination of log-normal and exponential functions has been suggested [40] to describe the

velocity distribution of slow flow in monodisperse bead packing for the low- and high-velocity
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regions of the velocity distribution, respectively. Velocity distribution for low and moderate

Reynolds number flows were reported by Icardi et al. [41] in porous media generated by

irregular nonconvex polydisperse objects. They obtained almost symmetric distribution for

transverse components of velocity with increasing variance with respect to Reynolds num-

ber. It was pointed out that the streamwise velocity distribution is highly skewed for low

Darcy velocities showing an intensified negative tail as Darcy velocity increases, indicating

the existence of recirculation zones. Recently, it was shown that for two-dimensional models

of fibrous material, PDFs of all velocity components follow a power-law with some tuning

parameters [42]. In an experimental study by Patil and Liburdy [43], they observed in planes

near the bed walls where flow is nearly two-dimensional, pore-space and velocity autocorre-

lations feature the same patterns but such patterns vanish in central planes. Using confocal

microscopy and PIV, Datta et al. [44] showed that in a channel comprised of glass beads,

2-D velocity components follow an exponential behavior. Moreover, they presented strong

relationship between spatial fluctuations of 2-D velocity field with pore-space geometry.

In this work, we study Eulerian and Lagrangian velocity PDFs by means of high resolution

direct numerical simulation of Navier-Stokes equations at the pore-scale. Our emphasis is

on characterizing statistics of flow and transport and their relationships to pore-space. We

study how Eulerian velocity PDFs vary with respect to medium properties (i.e. porosity)

and their correlations for two distinct models of porous media namely hard-sphere and

overlapping sphere models of porous media. Later on, we study Lagrangian velocity PDFs

sampled isochronally and equidistantly along the particle trajectory and their evolutions

with time and space. We investigate the Lagrangian velocity PDFs and their relationship

with their Eulerian counterpart. Transport properties of porous media are obtained using a

streamline approach through analyzing first passage time distributions and mean tortuosity.

We show that that wider Eulerian velocity PDFs and higher tortuosity for overlapping sphere

system yield in more anomalous transport compared to hard-sphere system where Eulerian

velocity PDFs and tortuosity show narrower distributions and smaller values, respectively.

Finally, we analyze the correlation functions of pore-space and Eulerian velocity field and

show that not only for rather homogeneous porous media comprised of spheres in 3-D, but

also for natural rocks there exists a strong relationship between these correlation functions.
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II. NUMERICAL METHOD

The fluid flow is described by the mass and momentum conservation equations:

∇ · u = 0 (2)

∂(ρu)

∂t
+∇ · (ρuu) = −∇p+∇ · (ρν∇u) (3)

Conservation equations are solved using finite volume method (FVM) and projection method

[45] by using PArallel Robust Interface Simulator (PARIS) [47]. Eq. (3) is discretized on a

staggered grid configuration where no-slip and no-penetration boundary conditions are en-

forced on the fluid-solid interface. Convection and diffusion terms in Eq. (3) are discretized

using QUICK and central difference schemes [46], respectively and time integration is per-

formed using Euler explicit scheme. The resulting Poisson equation is solved by Biconjugate

gradient stabilized method (BiCGSTAB) with the residual tolerance of 10−8. The computa-

tional domain is a cube where periodic boundary condition is prescribed on all boundaries.

A constant pressure gradient (i.e. body force per unit mass) is applied to induce the flow

from left to right in x-direction. In many applications of flow through porous media such as

enhanced oil recovery, given the physical properties of water, typical flow rate of 1ft/day (u)

and average pore size of 10 microns (l) results in Re << 1 where Re = ρul
µ

. In this paper,

we study flow and transport through porous media in the creeping flow regime (Re << 1).

The results are reported after steady-state condition is achieved based on criterion given by

Botella and Peyret [48].

A. Validation

In this section we show the validation of our simulations. For the purpose of validation,

we compare our results with experimental data by Suekane et al. [49] and numerical results

the same experiment by Finn and Apte [50]. In the experiment, pore-scale velocity mea-

surements were carried out for flow packed bed using magnetic resonance imaging (MRI).

Figure 1 shows a comparison for the normalized velocity. As can be seen, there is an excel-

lent agreement between predicted velocity profile and experimental data. Moreover, Figure

1 shows the effect of grid resolution on the predicted velocity profile. Additionally, we ob-

tained k/D2 = 6.82 × 10−4 for the permeability of monosized sphere pack for φ = 35.8%
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which is close to k/D2 = 6.8× 10−4 reported by Bryant and Blunt [51] for the same system

and for φ = 36.2%.

FIG. 1: (a): comparison of interstitial velocity profiles at Re = 105.57 with experimental

data of Suekane et al. [49] (#) and numerical results of the same experiment by Finn and

Apte [50] (−−). − simulation data with grid spacing of ∆/D = 56, · − · simulation data

with grid spacing of ∆/D = 28. (b): schematic of the experimental setup of Suekane et al.

Simulation is performed with 4 lateral faces as wall and inflow and outflow boundary

conditions for bottom and top faces, respectively, according to the experiment of Suekane

et al. Normalized velocity is measured along the centerline of the plane shown in white

(along x axis). Solids are colored gray.

B. Porous media

In this work, we build porous media via arranging spheres in 3-D space. A wide range of

real heterogeneous porous media can be represented by considering two distinct categories of

packing, (a) impenetrable (hard-) sphere model and (b) fully-penetrable (overlapping) sphere

model [52]. In the latter model, also known as boolean model, spheres centers are points of

a stationary Poisson process. Boolean model is an extreme case of a penetrable-concentric-

shell (cherry-pit) model where impenetrability parameter is zero. In the case of hard-sphere

model, the impenetrability constraint makes it difficult to analyze and generate such systems

specially at high solid volume fractions [53]. There are a number of techniques for generating
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(jammed) packing of hard-spheres. In this work, we adopted the collision-driven molecular

dynamics algorithm of [54] which is essentially a generalization of Lubachevski-Stillinger

(LS) algorithm [55]. In LS algorithm, spheres are initially added sequentially in a periodic

box at a small volume fraction. Spheres then evolve in time while their radii grow at rates

proportional to their radii until the desired packing is achieved. Polydispersivity gives more

flexibility in representing a wide class of microstructures. Thus, we further generalized this

algorithm based on the work of [56] to generate dense polydisperse sphere packings. In the

case of polydisperse spheres with M classes of spheres, density function of sphere radii is

given by:

f(r) =
M∑
j=1

yiδ(r − ri) (4)

where yi = Ni
N

and harmonic mean particle diameter D is defined as:

D =

∑M
j=1 NiD

3
i∑M

j=1 NiD2
i

(5)

while 〈D〉 =
∑M

j=1 yiDi. Since particle size distribution of many granular systems is found to

be approximately log-normal [57], spheres radii probability density function takes the form:

f(r) =
1

rσ
√

2π
exp

[
−(ln(r)− µ)2

2σ2

]
(6)

where σ and µ are variance and average of ln(r), respectively. In LS algorithm, the initial

configuration, expansion rate, and initial distribution of particle velocities affect the final

packing. It is also worth noting that the expansion rate must be chosen carefully as small

values lead to local crystallization while a relatively large ones will not produce random close

packing. Finally, we build the overlapping sphere model by placing mono-sized spheres in

random locations within the computational domain sequentially until the desired porosity

is achieved. In this study, we use three models of porous media including monodisperse

hard-spheres, polydisperse hard-spheres, and overlapping spheres with different porosities

by changing the number of spheres in the system where all the porous media have the same

harmonic mean particle diameter (D) (Figure 2).
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(b)

(a) (c)

(d)

(e)

(f)

FIG. 2: Three dimensional periodic assemblies of spheres and cross sectional views of

indicator function (solid or pore space) for (a,b) monodisperse hard-spheres, (c,d)

polydisperse hard-spheres, and (e,f) (monodisperse) overlapping spheres. Pore space is

colored black.

C. Characterization of porous medium

Characterization of the microstructure of porous media plays an important role in deter-

mining macroscopic properties such as residual saturation of nonwetting phase, permeability,

reaction constant, etc. [58]. Microstructure of porous media can be characterized by n-point

probability functions [59], Voronoi statistics [60], fractal geometry[61, 62], local-porosity the-

ory [63], Minkowski functional [64], and pore size distribution [65], to name a few. Our aim

here is to connect our findings about flow in porous media to such statistical descriptors.

Each realization of the porous medium is a domain of space V ⊆ R3 consisting of two disjoint

phases namely pore and grain. Thus, each phase could be identified through an indicator

function I i(r) for phase i as:

I i(r) =

1 r ∈ Vi

0 otherwise
(7)
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Complete statistical description of a medium is then obtained by means of n-point correlation

function Sin given as:

Sin(r1, r2, . . . , rn) = 〈
n∏
j=1

I i(rj)〉 (8)

where 〈· · · 〉 denotes the ensemble average over all the possible positions r and Sin defines

the probability of finding r1, r2, . . . , rn all in the phase i. For statistically isotropic material

(i.e. joint probability distributions are invariant of coordinates rotation) n-point correlation

function depends only on the relative position of points rather than their absolute positions

[66]. Hereafter, for simplicity, we drop the superscript i and let I to be indicator function

of the pore phase. Perhaps the simplest and most important characteristics of a porous

medium is its porosity (i.e. the ratio of pore volume to total volume) and is given by the

one-point correlation function as:

S1(r) = 〈I(r)〉 = φ (9)

Among various statistical descriptors of random media, in this study we focus on two-point

correlation functions as they arise in analytical estimations of many physical properties

of random media and reveal their global structures [59]. These functions have been ex-

tensively used to characterize the porous media [67, 68]. They could be used to estimate

upper and lower bounds for fluid permeability, electrical conductivity, and magnetic fields

[69]. Recently, Jiao et al. [70] used two-point correlation functions to model heterogeneous

two-phase media. However, it is worth noting that two-point correlation functions cannot

be sufficient alone to completely determine a medium [71] (i.e. for capturing long-range

connectivity higher order statistics are required).

For two-phase medium two-point correlation functions have limiting behavior as [66, 68]:

lim
r→0

S2(r) = φ (10)

lim
r→∞

S2(r) = φ2 (11)

For isotropic two-phase medium, Debye et al. [72] showed that derivative of S2(r) at origin

(r = 0) is in direct relationship with the specific surface area (s) of the medium as:

lim
r→0

S
′

2(r) = −s/4 (12)

This relationship was later generalized for anisotropic media by Berryman [73].
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Blair et al. [67] showed that two-point correlation functions could also be used to obtain

estimations of effective pore size and mean grain diameter. Additionally, the shape of two-

point correlation functions reflects an underlying medium morphology. Thus, S2(r) plays

an important role in this work as we later show that structure of S2(r) can determine that

of velocity fluctuations in porous media regardless of how the porous media is constructed.

Shown in Figure 3 is S2 for our three models of porous media.

(a) (b)

(c)

FIG. 3: Different models of porous media and their two-point correlation functions.

Significant difference in the structure of S2 (r) is an indication of different morphology of

porous media models. In hard-sphere systems (a), oscillations in S2 (r) is due to exclusion

volume effect. These oscillations becomes weaker in the case of polydisperse hard-spheres

(b) and completely vanishes for overlapping spheres (c). Different statistics could be

obtained simply by calculating S2 (r), as shown in the figure.

D. Determining representative elementary volume (REV)

Modeling of fluid flow at pore-scale or imaging porous media is limited to small samples.

Thus, it is important to show that such data sets is representative of larger scale systems.

The prerequisite for any analysis of porous medium for calculating macroscopic properties,
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is evaluating the representative elementary volume of such medium. The concept of REV

has different definitions in the literature [74], however, it could be regarded as a length-scale

at which flow obeys Darcy’s law and macroscopic properties such as porosity and perme-

ability are defined using volume averaging. Many different procedures exist for determining

REV [74]. In this work we determine “statistical” REV with slight modifications in the

procedure proposed in [75]. It is worth mentioning that in the statistical approach a sample

is called REV if the mean and variance of the quantities of interest (e.g. porosity, specific

surface) falls below a certain value [21]. Here, instead of generating a reference domain and

then dividing it to smaller subdomains for further analysis, we increase the domain size

incrementally and generate 20 independent packings for each increment in domain size. We

believe this procedure provides a better way of doing such an analysis as (i) every single

medium satisfies periodicity in all directions which is consistent with boundary conditions

used in numerical simulations, (ii) different packings generated for each domain size allows

for variability in packing structure even when porosity is kept constant (i.e. we randomly

choose the parameters affecting packing, see §II B), (iii) this procedure eliminates bound-

ary effects (e.g. wall) and the need for adding buffer layers to the outlet and inlet. We

studied different REVs for porosity, specific surface area, and permeability and found that

permeability gives the largest REV. Here, we define REV where coefficient of variation of

permeability falls below 3%. Figure 4a shows that domain sizes with L/D ≥ 5.0, satisfies

this criteria and thus are considered REV. Empirical variograms are useful in determining

REV as they show the correlation of data with distance [76]. Thus, to further analyze and

quantify how large our domain is with respect to spatial correlations and different length

scales of the medium, we evaluated the empirical variograms of porosity and velocity in the

direction of flow as:

γp(h) =

∑N
1 (I(xi + h)− I(xi))

2

2N
, (13)

γu(h) =

∑N
1 (u(xi + h)− u(xi))

2

2N
(14)

where I is the indicator function for porosity (I(xi) = 1 for pore space and I(xi) = 0 for solid

space) and N is total number of points with the distance h. Figure 4b suggests that beyond

one particle diameter (D ≥ 1), variograms of porosity and velocity become uncorrelated

and hence our porous medium represents larger samples [77]. Table I summarizes values

of two different characteristic length scales namely, mean pore diameter (lc) and integral
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length scale (λ) and ratios of domain size to these length scales. Mean pore diameters are

calculated based on two-point correlations functions (see Figure 3) as φ(1−φ)
S′
2(0)

(i.e., intersection

of S2 = φ2 and a tangent to S2(r) at r = 0). Integral length scale of the spatial structure of

each medium is calculated as:

λ =

∫ ∞
0

S2(r)dr (15)

Finally, we used a simulation box of size L/D = 8 discretized into 4803 finite volumes to

both eliminate finite size effects and achieve grid independent results.

(a)

(b)

FIG. 4: Representative elementary volume calculation: (a) Variation of permeability with

respect to domain size. (b) Variogram of porosity and velocity in the direction of flow

normalized by their theoretical asymptotic values γ∞ = φ(1− φ) for porosity and

γ∞ = 〈u2〉 − 〈u〉2 for velocity variograms. Variograms are plotted as functions of distance

from the inlet face. Data is for the monodisperse hard-sphere model at φ = 0.40.

III. LAGRANGIAN STATISTICS

In this section we study Lagrangian-based statistics of flow through porous media. La-

grangian description of flow field is obtained by means of particle tracking in the steady-state

Eulerian flow field. In each simulation, 105 tracer particles are introduced on the inlet face
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TABLE I: Mean pore size (lc) and integral length scale (λ) of non-overlapping and

overlapping systems.

porous medium φ lc λ L/lc L/λ

monodisperse hard-spheres 0.45 0.29 0.14 27.58 57.14

polydisperse hard-spheres 0.45 0.17 0.15 47.00 53.33

overlapping spheres 0.45 0.50 0.30 16.00 26.66

uniformly. Particle trajectory is then obtained via integration of Eq. (16) as:

dx (t)

dt
= v (x (t)) ,x (t0) = x0 (16)

where a third order Runge-Kutta scheme is used for time integration and a trilinear inter-

polation scheme is used to locally interpolate particle velocity from fully resolved Eulerian

field. We also performed computations where we used 104 and 5× 104 particles and con-

firmed that 105 particles gives converged statistics. Particle tracking enables us to study

useful quantities such as trajectory length, breakthrough curves, and tortuosity. Figure 5

(a) (d) (g)

(e)

(h)

(e)

(f)

(b)

(c)

FIG. 5: Variation of trajectory length distribution with respect to porosity for (a-c)

monodisperse hard-sphere, (d-f) polydisperse hard-sphere, and (g-h) overlapping sphere

models of porous media.

shows variations of trajectory length distribution for three models of porous media. For all

the three types of porous media, trajectory length distributions are highly conditioned by

porosity. Interestingly, trajectory length distributions for the hard-spheres model exhibit less
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skewness compared to those of overlapping spheres at the same porosity where long-tailed

particle trajectory length distribution is observed. Such long tails signify highly tortuous

pathways due to closing off of pore throats as spheres overlaps in the overlapping spheres

model whereas in porous media comprised of hard-spheres pore space is hydrodynamically

well connected. Overall, it is clear that trajectory length distributions are different for each

case such that as we move from overlapping sphere to hard-sphere model and from low to

high porosities, the mean trajectory length as well as its variation reduces (Table II). From

TABLE II: Mean, standard deviation (SD), minimum, maximum, and skewness of

trajectory lengths for different monodisperse models of porous media and porosities.

porous medium φ mean SD min max skewness

hard-sphere

0.36 10.09 0.49 8.74 12.60 0.57

0.45 9.65 0.39 8.57 11.45 0.27

0.60 9.29 0.36 8.47 10.71 0.45

overlapping

0.36 10.86 1.01 8.97 16.08 1.23

0.45 10.33 0.79 8.69 13.69 0.91

0.60 9.57 0.55 8.50 12.18 0.75

the data in Figure 5, we can calculate the tortuosity for different models of porous media.

Elongation of streamlines in flow through porous media, captured by tortuosity, impacts

medium’s permeability and its transport properties and thus has been studied intensively

in the literature [78–85]. In this work tortuosity is defined as:

T =
〈λ〉
L

(17)

where 〈λ〉 is the average trajectory length traveled by all the particles while no flux weighting

is involved and L represents the straight line connecting injecting and absorbing sites (i.e.

inlet and outlet boundaries here). Generally, obtaining fluid trajectories to be used in Eq.

(17) is notoriously difficult both experimentally and numerically in complex geometries.

Alternatively, it has been shown that tortuosity could be obtained by calculating 〈u〉
〈ux〉 [82].

This simple equation, however, has limitations due to existence of recirculation zones in

flow through porous media as mentioned by Duda et al. [80]. Here we extended the work

of Matyka et al. [83] by directly calculating tortuosity in our two distinct classes of porous

14



media. Figure 6 shows the variation of tortuosity calculated using Eq. (17) for porous

media comprised of hard-spheres and overlapping spheres. We found that tortuosity scales

well with porosity for the range of porosity 0.36 < φ < 0.60 according to two empirical

relations [79, 86] as:

T = 1− p ln (φ) (18)

T = 1− p (1− φ) (19)

where p is a constant parameter equals to 0.26 and 0.55 for hard-sphere and overlapping

sphere models, respectively. The values reported here for hard-sphere systems is in excellent

agreement with tortuosities reported by Muljadi et al. [87] for the same medium using the

indirect formula of Koponen et al. [82] as well as geometric tortuosity values reported by

Sobieski et al. [85]. Since streamlines are uniformly initiated at the inlet plane, we expect

tortuosity values reported here to be even smaller than when streamlines are initiated in

a flux-weighted fashion. It was also found that polydispersivity has negligible effect on

tortuosity. Tortuosity is linked to transport phenomena in porous media and its macroscopic

0.35 0.40 0.45 0.50 0.55 0.60
Porosity

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

T
o
rt

u
o
si

ty

1− 0.55 (1− φ)

1− 0.26 lnφ

hard-sphere

overlapping

FIG. 6: Variation of tortuosity with different models of porous media and porosity. Error

bars for the case of hard-sphere model are the size of symbols and thus not plotted.

properties such as dependence of permeability in Kozeny-Carman theory on tortuosity [41,

80, 88]. It is thus expected that different values of tortuosities result in significance differences

in transport properties. To investigate the effect of our two distinct pore-structures on

the nature of transport, we have studied the transport of solute particles using streamline

approach in purely advective flows (in the absence of diffusion).

Here, we calculated the first passage time of solute particles, which is the travel time
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required for a particle to percolate through the porous medium. First passage time dis-

tribution (FPTD) in fact could be seen as ψ (s, t) with displacement equal to the distance

between injection and absorbing sites. We associate ψ (t) to FPTD and directly calculate

the key parameter β from pore-scale simulations for two models of porous media. It is worth

noting that although the models of porous media examined here are idealized ones, but they

in fact represent two opposite extremes of porous media classes. For example, overlapping

spheres at low porosities can be used as models for consolidated media such as sandstone

while on the other hand hard-sphere model could represent unconsolidated media such as

packed beds and particulate composites [66]. Using pore-scale simulations on two different

types of porous media, we obtained parameter β which could be seen as degree of medium

heterogeneity [36]. Shown in Figure 7 is FPTD for two models of porous media and two

porosities. As can be noted, transport of solute plume in the hard-sphere model is consid-

ered Fickian (i.e., β > 2). However, overlapping sphere medium shows anomalous behavior

(i.e., β < 2) with parameter β = 1.8. This is interestingly close to the value reported by

Bijeljic and Blunt [36] which was obtained for two-dimensional model of Berea sandstone,

corroborating the fact that the model of overlapping spheres could be used to represents

consolidated systems. Moreover, the shape of FPTD is consistent with trajectory length

distributions where there exists a long tail of particle trajectories for the case of overlapping

spheres while in the case of hard-sphere model, trajectory length distributions are essentially

symmetric and do not exhibit long-tailed behavior.

(a) (b)

FIG. 7: First passage time distribution for (a) monodisperse hard-spheres and (b)

overlapping spheres for high (2) and low (#) porosity media.

Now, we study the Lagrangian velocity statistics and their evolution. Lagrangian descrip-

tion of particle velocity consists of two viewpoints which is analyzing Lagrangian velocities

sampled isochronally and equidistantly along streamlines. Studies on flow through porous
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media and observations of intermittency of fluid velocities suggest that particle velocities

persist for a characteristic length scale lc rather than a characteristic time scale τc [35].

Thus, stochastic description of particle transport in porous media is based on distribution of

Lagrangian velocities sampled equidistantly along streamlines. Naturally, it is important to

quantify the velocity statistics in these two frameworks and their relations to the Eulerian

velocity field. Recently, Dentz et al. [34] provided expressions that relate Lagrangian veloc-

ity statistics to those of Eulerian. Here, we briefly review these relations and proceed to our

analysis of Lagrangian statistics. We first consider particle velocity along its trajectory as a

function of travel distance, s. According to Dentz et al. [34], the PDF of s(pace)-Lagrangian

and t(ime)-Lagrangian velocities are related through flux-weighting as

ps(v) =
vpt(v)

〈vt〉
(20)

where 〈vt〉 =
∫
vpt(v)dv. Furthermore, due to volume conservation, t-Lagrangian velocity

PDF, pt(v), is equal to Eulerian velocity PDF, pe(v). Thus, this means that ps(v) is related

to pe(v) through flux weighting as

ps(v) =
vpe(v)

〈ve〉
(21)

where 〈ve〉 =
∫
vpe(v)dv. It is worth noting that Eq. (21) is valid under stationary con-

dition. T- and s-Lagrangian velocity distributions evolve in time and space if their initial

distribution is different than their steady-state one. Clearly, at t=0 and s=0 both ps(v)

and pt(v) are identical and equal to initial particle velocity distribution, p0(v). Further-

more, under Eulerian ergodicity and uniform injection which is the case here, t-Lagrangian

velocity PDF coincides with Eulerian velocity PDF and thus does not evolve [34, 89]. How-

ever, s-Lagrangian velocity distribution for the case of uniform injection evolves towards its

steady-state PDF given in Eq. (21). Figure 8 shows the evolution of mean s-Lagrangian

velocity. As expected, at s = 0 the mean s-Lagrangian velocity (and mean t-Lagrangian ve-

locity) is equal to the mean Eulerian velocity. However, mean s-Lagrangian velocity evolves

to its steady-state value while mean t-Lagrangian velocity remains constant and equal to

mean Eulerian velocity. It is worth noting that mean s-Lagrangian velocity converges faster

to its steady-state value for the case of monodisperse hard-sphere model compared to over-

lapping sphere model due to relatively simpler pore-structure. Finally, using Eq. (21), we

can calculate the stationary s-Lagrangian velocity distribution and compare it with the dis-

tribution obtained from numerical simulation and particle tracking. Figure 9 shows that

17



0 2 4 6 8 10

Distance (D)

10−3

10−2

10−1

M
ea

n
ve

lo
ci

ty

100 101 102 103 104

nt

10−6
10−5
10−4
10−3
10−2
10−1

FIG. 8: Evolution of the mean velocity sampled equidistantly in space for hard-sphere (#)

and overlapping sphere (�) models. Due to uniform injection of particles, mean velocity

sampled equidistantly in space evolves from its initial value which coincides with mean

Eulerian velocity (· − ·) and reaches its steady-state value calculated from Eq. (21) (−−).

Inset: Mean velocity sampled isochronally remains constant until breakthrough and is

equal to mean Eulerian velocity as expected. nt is the number of time steps.

measured s-Lagrangian velocity PDF agrees well with the flux weighted Eulerian velocity

PDF.
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FIG. 9: Comparison of stationary s-Lagrangian velocity PDF as given by Eq. (21) and

numerical simulation.

IV. EULERIAN STATISTICS

A complete picture of velocity field is extremely useful in understanding transport in

porous media. For example, Tennekes and Lumley [90] showed that mechanical dispersion

(DL) is directly related to the Lagrangian velocity of a particle (VL) and Lagrangian integral
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time scale (TL) as:

DL
∼=
(
VL − VL

)2
TL (22)

Patil and Liburdy [43] replaced the Lagrangian velocity variance with Eulerian velocity vari-

ance under the assumption of VL being stationary and estimated the mechanical component

of longitudinal dispersion. Although it has been shown that different pore-space structures

have significant effects on the velocity distribution at the pore-scale as well as changing the

nature of transport, a quantitative study showing the interplay of pore structure, velocity,

and transport is still lacking. One can imagine that due to incompressibility of fluid, local

velocity changes as fluid go through network of throats and pores of different sizes. This

simple argument suggests that given the pore and throat size distribution of a medium, the

velocity distribution must obey the same distribution, a fact that was studied by Siena et al.

[39] where they found that the pore size and velocity distributions decay similarly. However,

such a relationship is not always very simple as spatial correlation of pore and throat sizes

has also found to be an effective parameter [39].

Here, we first look at the velocity distribution for our three models of porous media with

increasing level of pore space complexity over a range of porosities. Then, we focus on

generalizing such velocity PDFs. Figure 10 shows that the velocity is broadly distributed

and despite the randomness of pore space in different models of porous media, its distri-

bution shows some universality. It is worth noting that in all the cases shown in Figure

10, there exist the following common feature as (i) the peak in PDFs locates at zero and

it becomes more significant as porosity reduces, (ii) all the PDFs have both negative and

positive tails, the latter is due to the tortuous flow path. This effect is the strongest in the

case of overlapping spheres, which is supposed to result in the most complex pore space

among the models examined here, (iii) in all the cases here, velocity distribution becomes

less broad as porosity increases and the positive tail of velocity distribution decays faster,

(iv) spanwise velocity components are symmetric with a peak value at zero, similar to the

streamwise component of velocity. One can see by looking at Figure 10 that flow in over-

lapping spheres model results in broader range of velocity compared to hard-sphere models.

Additionally, Figure 11 shows the velocity norm distributions of monodisperse hard-sphere

and overlapping sphere models in log-log scale. It reveals a significant difference in velocity

norm PDF of these two models in low velocity ranges. As shown in Figure 11, greater portion

of pore-space in overlapping sphere model experiences very low velocities, which is consis-
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FIG. 10: Top row: PDF of streamwise velocity. Bottom row: PDF of velocity

perpendicular to mean flow direction (spanwise). All velocities are normalized by mean

interstitial velocity (q/φ) for (a,b) monodisperse hard-sphere, (c,d) polydisperse

hard-sphere, and (e,f) overlapping sphere models of porous media.

tent with the transport behavior shown in Figure 7. Quantitatively speaking, streamwise
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FIG. 11: PDFs of velocity norm for monodisperse hard-sphere (#) and overlapping sphere

(�) models for φ = 0.36.

velocity variance scales as 0.89〈u〉2 compared to 1.21〈u〉2 for hard-sphere and overlapping

sphere models, respectively. Since there is no long-range correlation of pore-space in our

models of porous media (see Figure 3), we can explain this by studying pore-size distribution

functions of theses models. Klatt and Torquato [91] numerically estimated complementary

cumulative distribution functions (1-CDF) of pore sizes (Fδ) for monodisperse hard-sphere
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and overlapping spheres. Consistent with our velocity PDFs, they showed that Fδ decays

much slower for overlapping spheres compared to hard-spheres, resulting in a broader pore

size distribution and also larger effective pore-diameter (see Figure 3). To generalize the ve-

locity PDFs, we focus on the positive tail of distribution as the contribution of the negative

tail to transport is negligible. The velocity distribution could be divided into two regions:

first region (u < 〈u〉) is characterized by very small velocities due to existence of extensive

fluid-solid interfaces and stagnant zones (see normalized velocities around zero in Figure 10)

and second region (u > 〈u〉) which is responsible for most of transport and is characterized

by the structure of sample-spanning network of pores and throats [92]. Here, we adopted a

stretched exponential distribution as [42]:

f(u/〈u〉) = a exp

[
−
(
u/〈u〉
α

)η]
(23)

where parameter η controls the shape of the positive tail (e.g. exponential or normal) and α

indicates the decay rate. Parameter a is a normalizing factor such that Eq. (23) is integrated

to one and thus is given by η
αΓ(1/η,1/αη)

where Γ is the incomplete gamma function. Figure 12

shows that η heavily depends on the porosity and exhibits a transition from subexponential

(η < 1) to normal (η ≈ 2).

(a) (b)

FIG. 12: Dependence of model parameters in Eq. (23) on porosity for two models of

porous media (hard-sphere and overlapping). η strongly depends on the porosity and is

consistently larger for hard-spheres (a). On the other hand, the dependence of α on the

porosity is not very strong (b). This figure clearly quantifies the transition in velocity

distribution shape as a function of porosity.

Velocity distributions for models of porous media in this study showed broad dynamic

ranges of velocity which can be estimated by Eq. (23) accurately for several decades in
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FIG. 13: Streamwise velocity distributions for (monodisperse) hard-sphere and overlapping

sphere models of porous media with their corresponding fits obtained by Eq. (23) (solid

line). Porosity is 0.45.

probability (Figure 13). Despite the usefulness of velocity distribution, they cannot be

used to learn about spatial correlations of velocity field while such correlations are critically

informative as the flow pass through tortuous paths and channels of high and low velocities.

Thus, to examine the spatial features of velocity, we calculated two-point correlation function

of 3-D velocity field which averages the scalar product of all velocity vector pairs separated

by distance R by:

Cuu (R) =

〈∑
j [u′ (rj) · u′ (rj +R)]∑

j‖u′ (rj)‖2

〉
(24)

where u′ = u− u and the summation is taken over 104 positions rj randomly chosen in the

simulation domain. Figure 14 shows Cuu and S2 obtained for monodisperse hard-spheres.

In particular, Cuu is strongly similar to S2(r), shows a nearly exponential decay. We show

that spatial features in velocity field are exactly the same as those of pore space. The

oscillations in S2(r) due to exclusion volume effects are reflected on pore-scale velocity fluc-

tuations causing velocity fluctuations to be slightly correlated at large distances. To further

generalize these findings, we carried out the same analysis on more complex pore geome-

tries such as those in polydisperse hard-spheres and overlapping spheres. Interestingly,

results shown in Figure 15 suggest that even in completely different pore structures such

as those in overlapping sphere model, spatial correlations of velocity are reflective of those

of pore space. Observed strong relationship between pore-structure characteristics and spa-

tially fluctuating velocity field motivated us to see if such a relationship exists for natural
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FIG. 14: Spatial correlation in velocity fluctuations for monodisperse hard-sphere model

along with their two-point correlation function calculated on pore space. Strong

similarities suggests spatial correlations of velocity and pore space are almost identical in

the creeping flow regime.

(a) (b)

FIG. 15: Spatial correlation in velocity fluctuations for (a) polydisperse hard-sphere and

(b) overlapping sphere models along with their two-point correlation function calculated on

pore space.

rocks. We used cube samples (512× 512× 512) of unconsolidated sandpack and Castlegate

sandstone with voxel size of 9.184µm and 5.6µm, respectively (data is publicly available at

https://www.digitalrocksportal.org). These samples are originally obtained via x-ray micro-

CT and then segmented where each voxel is identified as either void or solid. Porosity is 0.36

and 0.206 for unconsolidated sandpack and Castlegate sandstone, respectively. Figure 16,

shows two-dimensional cross sections of the segmented image of these samples. To confirm

that observed relationship between pore-space characteristics and fluctuating velocity field

does not exist due to spatial homogeneity of the pore-space in hard-sphere and overlapping

sphere models, similar analysis was performed on samples of unconsolidated sandpack and
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(b) (d)

FIG. 16: Cross sectional view of the indicator function (solid or pore space) and normalized

velocity magnitude (|U|/|U|max) for (a,b) the unconsolidated sandpack and (c,d) Castlegate

sandstone with porosity of 36% and 20.6%, respectively. Pore-space is colored black.

Castlegate sandstone. Figure 17 shows that consistent with what we observed previously for

overlapping sphere and mono(poly)disperse hard-sphere models, a similar relationship exists

in natural rocks as well where two-point correlation functions of pore-space and fluctuating

velocity field decay similarly.
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FIG. 17: Spatial correlation in velocity fluctuations for different models of porous media

along with their two-point correlation function calculated on pore space. Strong

similarities suggest spatial correlations of velocity and pore space are almost identical in

the creeping flow regime.
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V. CONCLUSION

We investigated the flow through porous media through direct numerical simulation for

three models of porous media with increasing levels of pore space complexity. We showed

that the Eulerian velocity field has a broad dynamic range which reflects the complexity of

the pore space. It was shown that streamwise Eulerian velocity distributions in virtually

all porous media could be accurately modeled by a stretched exponential function which

captures the transition from nearly exponential to Gaussian shapes of Eulerian velocity

distribution for several decades in probability as porosity increases. A streamline particle

tracking approach was used to calculate the Lagrangian statistics in an advection-dominant

transport regime. We showed that particle trajectory in overlapping sphere model compared

to hard-sphere model was more tortuous and its distribution had higher skewness. We then

showed by means of FPTD that higher tortuosity and broader Eulerian velocity distribu-

tions of non-overlapping sphere model resulted in non-Fickian transport (with quantitative

agreement with transport in sandstone) while transport in the hard-sphere model was found

to be Fickian. Evolution of Lagrangian velocity distributions, sampled isochronally and

equidistantly along the particle trajectory were studied for the uniform injection rule and

it was found that mean s-Lagrangian velocity evolves in space and reaches stationary con-

dition quickly (takes longer for overlapping sphere model compared to hard-sphere model

due to more complex pore-structure) while mean t-Lagrangian velocity does not evolve in

time. Under stationary condition, s-Lagrangian velocity distribution is related to Eulerian

velocity distribution through flux-weighting. Finally, we studied the spatial correlations in

3-D velocity field by means of two-point correlation functions of velocity fluctuations. For

the relatively homogeneous porous media examined here (overlapping and non-overlapping

spheres in 3-D), we showed that the two-point correlation function of 3-D velocity field

decays similarly to that of pore space and even at long distances displays similar oscilla-

tions. We tested the generality of this finding on two more heterogeneous porous media (i.e.,

unconsolidated sandpack and Castlegate sandstone) in which we again observed a similar

behavior, where two-point correlation functions of 3-D pore space and velocity fields were

extremely similar.

25



VI. ACKNOWLEDGEMENTS

This publication was made possible, in part, with the support from National Science

Foundation (grant no. CBET-1604423).

[1] N. S. K. Gunda, B. Bera, N. K. Karadimitriou, S. K. Mitra, and S. M. Hassanizadeh, Lab on

a Chip 11, 3785 (2011).

[2] M. L. Szulczewski, C. W. MacMinn, H. J. Herzog, and R. Juanes, Proceedings of the National

Academy of Sciences 109, 5185 (2012).

[3] S. Osterroth, C. Preston, B. Markicevic, O. Iliev, and M. Hurwitz, Separation and Purification

Technology 165, 114 (2016).

[4] W. M. Durham, E. Climent, and R. Stocker, Physical Review Letters 106, 238102 (2011).

[5] A. Parmigiani, C. Huber, O. Bachmann, and B. Chopard, Journal of Fluid Mechanics 686,

40 (2011).

[6] P. K. Kang, M. Dentz, T. Le Borgne, and R. Juanes, Physical Review E 92, 022148 (2015).

[7] I. Battiato, D. M. Tartakovsky, A. M. Tartakovsky, and T. Scheibe, Advances in water re-

sources 32, 1664 (2009).

[8] M. J. Blunt, Current Opinion in Colloid & Interface Science 6, 197 (2001).

[9] Y. Zaretskiy, S. Geiger, K. Sorbie, and M. Frster, Advances in Water Resources 33, 1508

(2010).

[10] X. Yang, Y. Mehmani, W. A. Perkins, A. Pasquali, M. Schönherr, K. Kim, M. Perego, M. L.

Parks, N. Trask, M. T. Balhoff, et al., Advances in Water Resources 95, 176 (2016).

[11] L. W. Rong, K. J. Dong, and A. B. Yu, Chemical Engineering Science 99, 44 (2013).

[12] W. J. Bosl, J. Dvorkin, and A. Nur, Geophysical Research Letters 25, 1475 (1998).

[13] N. S. Martys, S. Torquato, and D. P. Bentz, Physical Review E 50, 403 (1994).

[14] Y. Chen, C. Shen, P. Lu, and Y. Huang, Chemical Engineering and Processing: Process

Intensification 87, 75 (2015).

[15] C. Zhang, L. Wu, and Y. Chen, Fractals 23, 1540003 (2015).

[16] S. Ovaysi and M. Piri, Journal of Computational Physics 229, 7456 (2010).

26



[17] R. S. Maier, D. M. Kroll, R. S. Bernard, S. E. Howington, J. F. Peters, and H. T. Davis,

Physics of Fluids 12, 2065 (2000).

[18] A. Daneyko, A. Hltzel, S. Khirevich, and U. Tallarek, Analytical Chemistry 83, 3903 (2011).

[19] D. Vidal, C. Ridgway, G. Pianet, J. Schoelkopf, R. Roy, and F. Bertrand, Computers &

Chemical Engineering 33, 256 (2009).

[20] X. Garcia, L. T. Akanji, M. J. Blunt, S. K. Matthai, and J. P. Latham, Physical Review E

80, 021304 (2009).

[21] C. Pan, M. Hilpert, and C. T. Miller, Physical Review E 64, 066702 (2001).

[22] R. J. Hill, D. L. Koch, and A. J. C. Ladd, Journal of Fluid Mechanics 448, 243 (2001).

[23] M. L. Stewart, A. L. Ward, and D. R. Rector, Advances in Water Resources 29, 1328 (2006).

[24] J. D. Hyman, P. K. Smolarkiewicz, and C. L. Winter, Physical Review E 86, 056701 (2012).

[25] P. Gouze, T. Le Borgne, R. Leprovost, G. Lods, T. Poidras, and P. Pezard, Water Resources

Research 44, W06426 (2008).

[26] T. Le Borgne, M. Dentz, and J. Carrera, Physical Review Letters 101, 090601 (2008).

[27] G. Di Donato, E.-O. Obi, and M. J. Blunt, Geophysical Research Letters 30, 1608 (2003).

[28] M. T. Van Genuchten and P. Wierenga, Soil Science Society of America Journal 40, 473

(1976).

[29] R. Haggerty and S. M. Gorelick, Water Resources Research 31, 2383 (1995).

[30] J. H. Cushman and T. R. Ginn, Water resources research 36, 3763 (2000).

[31] B. Berkowitz, J. Klafter, R. Metzler, and H. Scher, Water Resources Research 38, 1191 (2002).

[32] G. Srinivasan, D. M. Tartakovsky, M. Dentz, H. Viswanathan, B. Berkowitz, and B. Robinson,

Journal of Computational Physics 229, 4304 (2010).

[33] B. Bijeljic, P. Mostaghimi, and M. J. Blunt, Physical Review Letters 107, 204502 (2011).

[34] M. Dentz, P. K. Kang, A. Comolli, T. Le Borgne, and D. R. Lester, Physical Review Fluids

1, 074004 (2016).

[35] P. De Anna, T. Le Borgne, M. Dentz, A. M. Tartakovsky, D. Bolster, and P. Davy, Physical

review letters 110, 184502 (2013).

[36] B. Bijeljic and M. J. Blunt, Water Resources Research 42, W01202 (2006).

[37] R. S. Maier, D. Kroll, Y. Kutsovsky, H. Davis, and R. S. Bernard, Physics of Fluids 10, 60

(1998).

27



[38] Y. E. Kutsovsky, L. E. Scriven, H. T. Davis, and B. E. Hammer, Physics of Fluids (1994-

present) 8, 863 (1996).

[39] M. Siena, M. Riva, J. D. Hyman, C. L. Winter, and A. Guadagnini, Physical Review E 89,

013018 (2014).

[40] L. Lebon, L. Oger, J. Leblond, J. P. Hulin, N. S. Martys, and L. M. Schwartz, Physics of

Fluids (1994-present) 8, 293 (1996).

[41] M. Icardi, G. Boccardo, D. L. Marchisio, T. Tosco, and R. Sethi, Physical Review E 90,

013032 (2014).

[42] M. Matyka, J. Goembiewski, and Z. Koza, Physical Review E 93, 013110 (2016).

[43] V. A. Patil and J. A. Liburdy, Experiments in Fluids 54, 1497 (2013).

[44] S. S. Datta, H. Chiang, T. S. Ramakrishnan, and D. A. Weitz, Physical Review Letters 111,

064501 (2013).

[45] A. J. Chorin, Mathematics of Computation 22, 745 (1968).

[46] A. Doostmohammadi, D. S., and A. Ardekani, Journal of Fluid Mechanics 570, 532 (2014).

[47] S. Dabiri and G. Tryggvason, Chemical Engineering Science 122, 106 (2015), ISSN 0009-2509,

URL http://www.sciencedirect.com/science/article/pii/S0009250914005004.

[48] O. Botella and R. Peyret, Computers & Fluids 27, 421 (1998).

[49] T. Suekane, Y. Yokouchi, and S. Hirai, AIChE journal 49, 10 (2003).

[50] J. Finn and S. V. Apte, International Journal of Multiphase Flow 56, 54 (2013).

[51] S. Bryant and M. Blunt, Physical Review A 46, 2004 (1992).

[52] M. Sahimi, Flow and transport in porous media and fractured rock: from classical methods to

modern approaches (John Wiley & Sons, 2011).

[53] H. Hermann and A. Elsner, Advances in Materials Science and Engineering 2014, e562874

(2014).

[54] M. Skoge, A. Donev, F. H. Stillinger, and S. Torquato, Physical Review E 74, 041127 (2006).

[55] B. D. Lubachevsky and F. H. Stillinger, Journal of statistical Physics 60, 561 (1990).

[56] A. R. Kansal, S. Torquato, and F. H. Stillinger, The Journal of Chemical Physics 117, 8212

(2002).

[57] R. S. Farr, Powder Technology 245, 28 (2013).

[58] M. A. Klatt and S. Torquato, Physical Review E 90 (2014), arXiv: 1501.00593.

[59] S. Torquato and G. Stell, The Journal of Chemical Physics 77, 2071 (1982).

28



[60] M. A. Klatt and S. Torquato, Physical Review E 90, 052120 (2014).

[61] Z. Deng, X. Liu, C. Zhang, Y. Huang, and Y. Chen, International Journal of Heat and Mass

Transfer 113, 1031 (2017).

[62] B. Yu, Applied Mechanics Reviews 61, 050801 (2008).

[63] R. Hilfer, Physical Review B 45, 7115 (1992).
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