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Abstract 

Droplet-solid interaction is a ubiquitous fluid phenomenon that underpins a wide range of 

applications. To further the understanding on this important problem, we use an axisymmetric 

lattice Boltzmann method (LBM) to model the droplet impact on a solid surface with different 

wettability. The method applies a popular free-energy LBM developed by Lee and Liu [T. Lee 

and L. Liu, J. Comput. Phys. 229, 8045 (2010)] to simulate incompressible binary fluids with 

physical density and viscosity contrasts. The formulation is recast in cylindrical coordinates for 

modeling the normal impact of a three-dimensional (3D) droplet in the no-splashing regime, in 

which an axisymmetric flow is considered. The droplet deposits on or rebounds from the surface, 

governed by three key parameters: Weber number; Ohnesorge number; and equilibrium contact 

angle, which quantifies the surface wettability. We elucidate the distinct impact dynamics by 

probing droplet morphology and contact line behavior in great detail, which are quantitatively 

characterized by spreading factor, droplet aspect ratio, and dynamic contact angle. The 

simulations also resolve fluid velocity field inside and outside the droplet, which provides 

additional insight into the morphological evolution and mass/momentum transfer during impact. 

Explicit comparison between axisymmetric and conventional 2D LBM highlights the importance 

of axisymmetric terms in governing equations for reproducing physical impact behavior. The 

axisymmetric LBM significantly reduces computational cost as compared with 3D LBMs and 

offers an effective means to study droplet impact in applicable conditions. 
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1. Introduction 

Droplet impact on solid surfaces is one of the fundamental phenomena encountered in a 

wide range of important engineering processes, such as spray cooling, inkjet-based additive 

manufacturing, anti-fouling and anti-corrosion paints and coatings [1,2]. In these applications, 

the dynamic behavior of the droplet as a result of its interaction with a solid surface plays a 

critical role in determining cooling efficiency, printing resolution, and coating performance. 

Therefore, understanding droplet impact dynamics is of great significance in many technological 

advances. In general, droplet impact on a solid surface comprises an initial spreading phase 

governed by inertia force, and a recoiling phase governed by surface tension and viscous 

forces [3–5]. Droplet dynamics during spreading and recoiling is determined by droplet 

properties, impact velocity and angle, and surface wettability and roughness [6]. Varying these 

parameters could lead to distinct impact outcomes, which range from deposition, partial rebound, 

complete rebound, to splashing [1–6].  

As the interests of droplet impact shift toward miniaturized scale, complex fluid 

compositions, and nanoengineered novel surfaces in the past decades [7–19], fluid experiments 

to resolve fast and intricate impact dynamics for these new systems are challenging. The 

computational fluid dynamics (CFD) modeling complements advanced experimental techniques 

and provides unique insight into hydrodynamics. Using the volume of fluid, front-tracking, or 

level set methods [20,21], the simulations have been quite successful in studying multiphase 

flow problems with complex geometries. Although these techniques offer an important 

visualization of fluid interface evolution and detailed flow field in a wide parameter space, they 

generally suffer from numerical complications when explicitly tracking highly deformed 

interfaces during droplet impact [20,21]. 

As an efficient numerical method for fluid dynamics, the lattice Boltzmann method 

(LBM) has evolved rapidly in the last two decades [22]. Unlike the conventional CFD methods 

that solve the Navier-Stokes (N-S) equations based on the macroscopic continuum assumption, 

the LBM can accurately simulate macroscopic fluid behavior based on a microscopic perspective 

of fluid systems. In the LBM, one solves the kinetic equations of appropriate statistical particle 

distribution functions (PDFs) from which the macroscopic variables, such as density, velocity, 

and pressure, can be obtained by evaluating the hydrodynamic moments of these PDFs [23,24]. 

Several LBMs have emerged for simulating multiphase and/or multicomponent flows [25]. 
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However, any density and viscosity ratios between the two fluid phases inevitably cause 

numerical instabilities [20,21,25]. The ability to simulate liquid-gas systems with physical 

density and viscosity contrasts is central to the development of multiphase LBM. Recently, this 

issue has been addressed in the free energy approach [26–29] based on more efficient numerical 

schemes, e.g., stable discretization and multi-relaxation time [30–33]. 

The LBM is commonly formulated in Cartesian coordinates. However, many multiphase 

flow problems possess axisymmetry in nature, such as head-on droplet collision, normal impact 

of droplet on flat surfaces without splashing, and Rayleigh-Plateau instability of liquid jets. By 

adopting the intrinsic rotational symmetry in these problems, the axisymmetric LBM that 

depends on only two coordinates can capture accurate 3D hydrodynamics, which is more 

computationally efficient than 3D LBM. However, the application of axisymmetric LBM 

receives much less attention than the conventional 2D and 3D LBMs. Halliday et al. [34] 

presented the first axisymmetric model by introducing forcing terms into the microscopic 

evolution equation of LBM. Using the Chapman-Enskog expansion as in the original LBM, 

Halliday et al. [34] recovered the macroscopic continuity and momentum equations in 

axisymmetric cylindrical coordinates. Premnath and Abraham [35] then applied the 

axisymmetric implementation to multiphase flow. In their model, the forcing terms that represent 

the axisymmetric contribution of inertial, viscous, and surface tension forces, as well as the order 

parameter of fluid phases, were added to the standard multiphase lattice Boltzmann equations 

(LBEs). Mukherjee and Abraham further improved the method for systems with density 

contrasts and applied it to study droplet impact on wet [30] and dry walls [36]. Recently, Sun et 

al. [37] extended the Lee and Liu model [32] to axisymmetric multiphase flow with large density 

and viscosity contrasts and simulated head-on droplet collision. Despite these developments and 

applications, the normal impact of a droplet on a solid surface with significant density and 

viscosity ratios has not been comprehensively studied using the axisymmetric LBM. 

This paper presents numerical simulations of droplet impact with low computational cost, 

which use the axisymmetric LBM capable of achieving physical density and viscosity ratios 

across the liquid-gas interface. We validate the axisymmetric model against previous 

experiments and simulations of head-on droplet collision and droplet impact on solid surfaces. 

We comprehensively investigate the effects of Weber number, Ohnesorge number, and surface 

wettability on the dynamic behavior of the droplet during its interaction with the solid substrate. 
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Below, we briefly describe the axisymmetric LBM with density and viscosity contrasts that 

represents the physical liquid-gas coexistence and its numerical implementation in Section 2. 

Section 3 presents the simulation results of droplet impact with respect to the three governing 

parameters. Conclusions are drawn in Section 4. 

2. Numerical Method 

2.1 Multiphase Lattice Boltzmann Method for Axisymmetric Flows 

The multiphase LBM used in this study is based on the free energy formulation, which is 

essentially a phase field approach. In the presence of solid substrate, the total free energy of the 

system includes the bulk free energy and the interfacial free energy of the binary fluid, as well as 

the surface integral of the free energy density that describes the interactions between the liquid-

gas interface and a solid substrate. Overall, it is given by 

 ( ) ( )2 2 3
total 0 0 1 2 32 s s sV S

E C C dV C C C dSκψ φ φ φ φ⎛ ⎞= + ∇ + − + −⎜ ⎟
⎝ ⎠∫ ∫   (1) 

The bulk free energy ( )22
0 ( ) 1E C C Cβ= −  depends on fluid composition C, which is defined as 

the ratio of the local density to the bulk density of the liquid phase. Its value varies between 0 in 

the gas phase to 1 in the liquid phase. β  is a constant that determines the potential barrier 

separating two immiscible phases. The second term in the volume integral represents the 

interfacial free energy withκ being the gradient parameter. At thermodynamic equilibrium, the 

total free energy of the binary fluid is minimized, which drives the phase separation. This leads 

to a constant chemical potential 2
0E C Cμ κ= ∂ ∂ − ∇ . The equilibrium profile of a planar liquid-

gas interface at equilibrium is ( ) 0.5 0.5tanh(2 )C z z ξ= + , where z  is the coordinate normal to 

the interface and ξ  dictates the interfacial thickness. Given ξ  and β, the gradient parameter and 

the interface tension can be calculated respectively as 2 8κ βξ=  and 2 6σ κβ=  [32]. 

 The surface integral is introduced to model the wetting behavior, in which sC  is the 

composition at the solid surface S [32]. The cubic wetting boundary condition [32,38] with 

0 1 0φ φ= = , 2 c1/ 2φ φ= , and 3 c1/ 3φ φ=   is adopted in this study to avoid negative equilibrium 

density on a non-wetting surface, where cφ  is a constant related to the value of  equilibrium 
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contact angle eqθ . eqθ  is defined by Young’s equation as ( )eq
sg sl lg ccosθ σ σ σ= − = −Ω , where 

sgσ , slσ  and lgσ  are the interfacial tension for solid-gas, solid-liquid, and liquid-gas, 

respectively, and c c 2φ κβΩ =  is the dimensionless wetting potential. The equilibrium contact 

angle is achieved when ( ) ( )2
c s sS

C C Cφ κ⋅∇ = −n  is fulfilled at the solid surface [32,38]. 

Based on the free energy functional, the hydrodynamics of binary fluid is described by 

the Cahn-Hilliard, continuity, and momentum equations, which are written in axisymmetric 

cylindrical coordinates, respectively as [25,39] 

 
2 2

2 2
z r r

z r
u u CuC C C Mu u C M

t z r z r z r r r r
μ μ μ⎛ ⎞∂ ∂∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞⎛ ⎞+ + + + = + + −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  (2) 

 z r r
z r

u u uu u
t z r z r r

ρρ ρ ρ ρ ∂ ∂∂ ∂ ∂ ⎛ ⎞⎛ ⎞+ + + + = −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
  (3) 

 
2 2

2 2
z z z z r z z r

z r
u u u u u u u uPu u
t z r z z r r r r

ηρ η ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂∂⎡ ⎤+ + = − + + + −⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎝ ⎠
  (4) 

 
2 2

2 2 2
r r r z z r r r r

z r
u u u u u u u u uPu u
t z r r z r r r r r

ηηρ η ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂∂⎡ ⎤+ + = − + + + − −⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎝ ⎠
  (5) 

ρ  is the local fluid density, which varies across the interface. ru  and zu  are fluid velocities in 

the radial and axial directions, respectively. P is the hydrodynamic pressure, η  is the dynamics 

viscosity, μ  is the chemical potential, and M  is the mobility constant that has positive values. 

 Following the Lee and Liu method detailed in Ref. [32], the above governing equations 

can be discretized and solved numerically by the lattice Bhatnagar-Gross-Krook (BGK) model 

using two PDFs. An incompressible transformation is applied to address the numerical instability 

induced by large density and viscosity contrasts [33,40]. To properly recover the macroscopic 

equations, the axisymmetric terms present in the corresponding discrete Boltzmann equations as 

additional forcing terms, and the definitions of fluid macroscopic properties based on PDFs are 

modified [34,35,37]. The l’Hopital’s rule is applied for terms such as xCu
x

 or 
1
x x

μ∂
∂

 to avoid 

singularity at the axis of symmetry ( 0x = ) [25]. A detailed description and derivation of the 

method can be found in Refs.  [32,37]. 



6 
 

The D2Q9 lattice velocity scheme is employed in this study. A schematic plot of the 

computational domain with grid size 360 360×  is shown in Figure (1). The impact axis of a 

spherical droplet with radius 0 60R =  coincides with the left boundary of the domain. The 

bottom boundary is the solid substrate, where the standard bounce-back rule is imposed after the 

streaming step [32,38]. Consistent with the axisymmetric assumption, symmetric bounce-back 

boundary conditions are imposed at the left boundary after the streaming step. No-flux boundary 

conditions are applied on the top and right boundaries, where zero gradients normal to the 

boundary are fulfilled for all of the macroscopic variables. 

Ranging from smooth spreading to splashing, jetting or rebound, outcomes of droplet 

impact on a solid surface depend critically on impact parameters and solid surface properties. 

The dynamic interaction between droplet and surface is governed by the interplay of inertia, 

viscous, and surface tension forces. Because splashing generates secondary droplets, which break 

the rotational symmetry along the impact axis, we limit the study to the no-splashing regime by 

imposing small impact velocity. The impact velocity of the droplet 0U  is set based on the Weber 

number ( 2
0 0We 2 R Uρ σ= ) in each impact simulation. To study the viscous dissipation effect, 

we vary the Ohnesorge number ( l l 0Oh 2 Rη ρ σ= ). Unless otherwise stated, the density ratio of 

the liquid droplet to the ambient gas is l g 842ρ ρ =  and the corresponding dynamic viscosity 

ratio is l g 181η η = . The interfacial tension and thickness are fixed at 0.002σ = and 5ξ = , 

respectively. For each impact, the mobility is varied such that the Peclet number (
1 2 3 2Pe U Mκ β= ) is kept constant at Pe 10= . 

To characterize impact dynamics, we measure the spread factor *D , aspect ratio *H , and 

dynamic contact angle dynθ . The spread factor is defined as *
0/D D D= , where 0D  is the initial 

droplet diameter before contact. D  is the instantaneous blob diameter during spreading, but 

becomes the diameter of wetted area during recoiling. The aspect ratio is defined as *
0/H H D=  

with H representing the droplet height measured at the axis of symmetry. The dynamics contact 

angle measured by the fluid composition gradient as ( )dyn 1tan z rC Cθ −= ∂ ∂ . The composition 

gradients rC∂   and zC∂   at the contact line are taken as the average value over the interfacial 
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thickness. To study the effect of certain parameters, we vary the one of interest while keep others 

constant. 

As the problem is reduced to two dimensions with fewer discretized velocities (D2Q9 

versus D3Q27 [32]), the axisymmetric model offers at least two orders of magnitude 

improvement in computational efficiency even with additional overhead for calculating 

axisymmetric forcing terms. This allows one to simulate bigger droplets and provides better 

resolutions for the dynamics of the diffuse interface in the free energy LBM. All simulation 

results are generated by a serial C code. A typical simulation includes an equilibrium stage of 

50,000 timesteps and an impact stage, which ranges from 40,000 to 150,000 timesteps, 

depending on the impact conditions. The total simulation takes 40 to 66 hours on a 3.3 GHz 

processor. 

2.2 Model Validation 

To validate the axisymmetric LBM, we conduct a benchmark simulation of normal 

droplet impact on a hydrophobic surface and compare the results with previous experiments and 

3D LBM simulations [4,32]. The impact conditions are matched by assigning the same 

dimensionless numbers We = 103 and Oh = 0.015. The same as the 3D LBM simulations, a 

density ratio of 842 is considered for the glycerin/water mixture used in the experiments [4]. Due 

to numerical stability limitation, our benchmark has a slightly higher viscosity ratio l g 93.5η η =  

(51 in the previous  studies). The interfacial tension and thickness are selected to be 0.004σ =  

and 5ξ = . Figure (2) compares the variations of the spreading factor and the aspect ratio during 

impact. *D  in the axisymmetric benchmark shows excellent agreement with both experiments 

and 3D simulations. *H  exhibits notable deviations from the experimental results in the late 

stage of impact. By closely examining the experimental images (Figure 2 in Ref. [4]), we 

attribute this discrepancy to the partial rebound in the experiment, which left a small residual 

droplet on the surface. In contrast, the droplet completely rebounded in our simulation. We 

speculate the partial rebound is caused by contact angle hysteresis induced by surface roughness, 

which is not considered in the simulations. 

3.  Results and Discussion 

3.1 Effect of Weber Number 
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The Weber number characterizes the relative magnitude of the kinetic energy (inertia) to 

the surface tension energy. Figure (3) shows sequential morphologies of droplet impinging at 

two different We numbers (We = 20 and 96) with the fixed Oh number (Oh = 0.0218). The 

starting time is defined when the droplet makes contact with the solid surface. Even in the early 

stage, i.e., at T = 0.6, distinct morphologies are apparent. On the hydrophobic surface, the front 

of the spreading lamella detaches from the substrate for droplet with high impact velocity. This 

levitated lamella is induced by the lubrication force in air trapped under the droplet front, which 

results from the rapid movement of contact line and the large advancing contact angle [1–3]. The 

morphology difference becomes more pronounced as impact proceeds. At T = 1.2, the droplets 

on the hydrophobic surface almost finish their spreading regardless of We number, while the 

ones on the hydrophilic surface spread further. The recoiling occurs significantly later on the 

hydrophilic surface. The comparison of subsequent snapshots shows faster recoiling on the 

hydrophobic surface due to much lower surface friction. In the recoiling stage, the droplet with 

We = 20 undergoes a few cycles of oscillations until it deposits with a steady shape defined by 

equilibrium contact angle, while the rapid recoiling of We = 96 droplet eventually leads to 

complete rebound from the surface. In contrast, the We number does not change the outcome of 

impact on the hydrophilic surface. Both cases deposit, with the same final shape. 

A systematic study of the We number effect is performed for We number between 12 and 

150 at a constant Oh number (Oh=0.0218). Figure (4) plots droplet spreading factor, aspect ratio, 

and dynamic contact angle against non-dimensional time ( 0 0T U t D= ) on the two surfaces, 

where t is the simulation time. On the hydrophilic surface, both *D  and *H  vary quickly in the 

early impact until reaching a maximum value (see Figure (4a)). The maximum spreading factor 

increases with a higher We number because greater impact inertia induces larger deformation. 

The minimum aspect ratios have similar values for different We numbers. All spreading factors 

then decrease gradually to the same equilibrium value. In contrast, the aspect ratio maintains at 

the minimum for a notable period of time, which represents the universal lamella film for all 

impact conditions and wetting properties [41–43]. The droplet with a higher We number requires 

more time to reach equilibrium due to significant spreading. The initial spreading is similar on 

the hydrophobic surface, which indicates the surface wettability has negligible influence on the 

early impact. However, the maximum spreading factor is notably smaller for the same We 

number. Furthermore, Figures (4b) and (4d) highlight the damped oscillations toward the 
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equilibrium value for the droplets with We 22≤ . *D  monotonically reduces to zero when 

We 54≥ , which corresponds to complete rebound. 

In Figure (4e), dynamic contact angles exhibit rapid decreases at the beginning of impact 

on the hydrophilic surface. The droplets with We = 96 and 150 show a kink in the dynθ  

evolution, where a local minimum value is reached, followed by an immediate increase. This 

unique behavior can be attributed to the inertia transfer from the normal direction to the 

transverse direction during spreading. The significant inertia transfer at high We number causes 

excess reduction of  dynθ compared with low We number droplets, whose dynamics is dominated 

by the liquid-solid surface energy. dynθ s of different droplets that eventually converge and the 

values monotonically decrease to a global minimum smaller than the equilibrium contact angle 
eqθ . During the recoiling, the apparent receding contact angle remains almost unchanged. The 

dynamic contact angle finally approaches eqθ  as the contact line receding stops. On the 

hydrophobic surface, the dynamic contact angle shows much more complex variations as shown 

in Figure (4f). In particular, dynθ  of the droplet with We 54≥  has multiple kinks in the spreading 

stage. The primary kink that occurs at the end of spreading stage is associated with the formation 

of the levitated lamella, during which the dynamic contact angle increases. After that, the 

dynamic contact angle decreases again as the lamella vanishes. In the recoiling stage, dynθ  

increases toward the equilibrium value 110° until complete rebound occurs ( dynθ  undefined 

afterward). In contrast, in the cases of We 54≤ ,  dynθ decreases monotonically without the kinky 

behavior during spreading, but undergoes dramatic oscillations toward the equilibrium value 

when recoiling. The oscillations lead to variation of dynθ  between advancing and receding 

contact angles. 

From an energetic point of view, the remaining inertia of impact after viscous dissipation 

and conversion to liquid-solid surface energy does not overcome the liquid-gas interfacial energy 

regardless of surface wettability. Thus, the droplet preserves structural integrity throughout 

impact. For the hydrophilic surface, wider droplet spreading consumes more kinetic energy. 

Therefore, the recoiling is dominated by the interfacial surface tension of the deformed droplet 

and surface wettability, which drives all droplets to the same equilibrium morphology. On the 

hydrophobic surface, a droplet with low We number does not entail sufficient inertia that can 

exceed the total surface energy of wetted area, which leads to deposition after oscillations. 
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Conversely, large inertia at high We number effectively overcomes viscous dissipation and 

substrate surface tension, which leads to complete rebound from the hydrophobic surface. 

3.2 Effect of Ohnesorge Number 

Figure (5) shows the shape evolution of a droplet that impacts at two different Oh 

numbers (Oh = 0.0218 and 0.074) with the fixed We number (We = 20). Here, we apply a 

relatively low We number to focus on the deposition regime on both substrates. The results 

indicate that Oh number influences only dynamics, but does not alter impact outcomes and the 

final equilibrium shape. We vary the Oh number between Oh = 0.0196 and 0.074 while keeping 

the We number fixed We = 20 to comprehensively probe the Oh number effect on impact 

dynamics. On the hydrophilic surface, the maximum *D  increases as the Oh number reduces due 

to less viscous dissipation. An overdamped behavior without the recoiling stage is observed at 

Oh = 0.074, as shown in Figure (6a). The dynamics of droplet impact closely resembles the free 

vibration of a damped spring-mass system [44–46]. This analogy is even more prominent for 

impact on the hydrophobic surface. Figure (6b) confirms that the damping effect is inversely 

proportional to the Oh number. The lowest Oh number Oh 0.0196=  results in complete 

rebound. The droplet aspect ratio in Figure (6c) reveals a secondary maximum for Oh = 0.052 

and 0.074, and the dynamic contact angle curves in Figure (6e) show kinks. From the velocity 

field in Figure (7), we find that the fluid at the droplet center is reflected back by the substrates 

and pushes the droplet surface to rise temporarily. This behavior is caused by the dominated 

viscous forces, which hinder droplet spreading and drive an upward flow. The oscillatory 

behaviors of spreading factor, aspect ratio, and dynamic contact angle on the hydrophobic 

surface are coordinated. The oscillation frequency and magnitude during the recoiling stage are 

inversely correlated with the Oh number. 

Regardless of surface wettability, the strong viscous effect quickly dissipates kinetic 

energy of impact, which leaves the droplet governed by the surface tension toward 

thermodynamic equilibrium. On the other hand, weak viscous forces at a small Oh number 

demand longer time (and more cycles of oscillations) to dissipate kinetic energy until the surface 

tension takes effect. In all, the droplet can reach an equilibrium state if enough energy is 

dissipated during initial spreading; otherwise, it will start recoiling with sufficient energy to 

partially/completely rebound. 
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To provide deeper insight into the Oh number effect, Figure (8) shows the time evolution 

of the total kinetic energy and the total viscous dissipation energy of the droplet, both normalized 

by its initial kinetic energy. The normalized total kinetic energy (KE*) of the droplet is 

calculated by the summation of the instantaneous kinetic energy over liquid lattice sites 

2

, ,TKE l i j i ji j
xπ ρ= ∑ ∑ u  divided by the initial kinetic energy 2

, 0IKE l i ji j
x Uπ ρ= ∑ ∑ . Here, 

(i, j) represents the indices of liquid lattice site. The normalized total viscous dissipation energy 

(DE*) is calculated from the viscous dissipation rate φ  per unit volume, which is defined as 

 
2 2 2 2 2( )2 12

3
r z r r z r zu u u u u ru u

r z r z r r r z
φ η η η

⎧ ⎫∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + + − +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
  (6) 

Using Equation (6), we calculate ,i jφ  for each lattice site inside the liquid phase and obtain the 

total viscous dissipation rate , ,VDR 2 i j i ji j
xπ φ= ∑ ∑ . Finally, DE* is obtained by numerical 

integral of VDR in time after impact and subsequently normalized by IKE. Notably, the total 

viscous dissipation energy considers only contribution from the viscous flow inside the droplet. 

Other mechanisms of dissipation such as contact line dissipation and viscous dissipation in the 

rim  [47] are not included. 

On the hydrophilic surface (Figure (8a)), we observe that KE* first decreases until a local 

minimum is achieved. With the increase of Oh number, this minimum is reached earlier and its 

value increases. Then all KE* curves increase again toward a local maximum, which also occurs 

earlier with increasing magnitude for a higher Oh number. Finally, KE* decreases to zero, which 

indicates a static droplet. On the other hand, DE* increases quickly in the early stage of impact 

and approaches a nearly constant value that is weakly dependent on Oh number. According to 

conservation of energy, the kinetic energy change equals viscous dissipation energy and surface 

energy change. Since the simulations with three different Oh numbers all reach the same 

equilibrium state after deposition, the viscous dissipation energy should be the same across these 

simulations. The small differences of DE* shown in Figure (8) indicate other types of viscous 

dissipation may play a role here. 

The secondary maxima of KE* curves are one order of magnitude higher for the 

hydrophobic surface. This is because the maximum spreading factor on the hydrophobic surface 

is always lower than that on the hydrophilic surface. Thus, less energy is transferred to and 

stored as the interfacial and surface energies. In addition, less time is available to viscous 
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dissipation. Overall, the droplet can recoil with more kinetic energy. If the inertia is sufficient to 

overcome other forces in recoiling, a complete rebound occurs; otherwise the droplet deposits on 

the surface after oscillations. 

3.3 Effect of Equilibrium Contact Angle   

The effect of surface wettability on the droplet dynamics is shown in Figure (9). We 

explore a eqθ  range from 30° for 110°. The maximum spreading increases with enhanced surface 

wettability. For eq o50θ ≤ , the spreading factor decreases gradually to eqθ  in the recoiling stage, 

while it oscillates for eq o50θ > . The frequency and magnitude of the oscillations are inversely 

correlated with the surface wettability. Figure (9b) shows the aspect ratio minima reached in the 

spreading phase are independent of eqθ , but the oscillations for eq o40θ >  are amplified as eqθ  

increases. In Figure (9c), the dynamic contact angle shows a gradual and smooth decrease toward 

the equilibrium contact angle when eq o30θ =  and o40 . For eq o50θ ≥ , the dynamic contact angle 

decreases gradually, then oscillates slightly toward eqθ . 

3.4 Velocity Vector Field 

During droplet spreading and recoiling, the velocity vector field inside the droplet and in 

the gas phase, which surrounds the droplet, exhibits remarkable changes. These changes in fluid 

velocity influence energy dissipation and thereby determine the outcome of impact. The most 

dramatic changes in the flow field are associated with the droplet impact on the hydrophobic 

surface at high We number as shown in Figure (10). As the droplet approaches the solid surface, 

a radial moment of the gas adjacent to the solid surface starts to build up. After the spreading 

begins, a radial velocity also develops in the liquid phase. At T = 0.57, a counterclockwise 

circulation in the gas phase can be observed above the levitated lamella of the droplet. After the 

maximum spreading is reached, the fluid velocity near the outer rim of the droplet reverses 

direction, while the flow above the stable lamella film continues to move outward. As a result, 

two opposite circulatory flows are created at T = 2.30. As the backward flow strengthens during 

recoiling, both flows in the droplet and the surrounding gas point inward and a clockwise 

circulation appears in the snapshot of T = 3.60. At T = 5.60, the liquid inside the droplet is now 

moving upward and parallel to the axis of symmetry, which eventually drives the complete 

rebound of the droplet from the surface.  
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3.5 Axisymmetric LBM versus 2D LBM 

To highlight the effect of axisymmetric terms to a pure 2D LBM, Figure (11) compares 

the time sequences of droplet shapes when impacting on the hydrophobic surface ( eq 110θ = o ) at 

We = 150 and Oh = 0.0218. The droplet morphologies start to deviate from each other at the 

early stage of impact. The droplet in the 2D simulation spreads approximately two times more 

than that in the axisymmetric simulation at T = 1.92. By T = 4.0, the axisymmetric droplet starts 

recoiling, while the 2D droplet still undergoes spreading. The axisymmetric droplet completely 

rebounds from the surface at T = 18.85, while the 2D droplet is still in the recoiling stage. Most 

importantly, the final impact outcome is completely different: the axisymmetric droplet 

completely rebounds and the 2D droplet deposits on the solid surface. This comparison indicates 

that the surface tension effect is significantly underestimated in the 2D simulation, which results 

in unphysical impact dynamics for a 3D droplet. 

4. Conclusions 

In this study, droplet impact on a flat solid surface is investigated comprehensively using 

the axisymmetric LBM with significant density and viscosity contrasts. We probe droplet impact 

dynamics by varying the We number, Oh number, and surface wettability. The effects of each 

parameter is isolated by varying the one while keeping others constant. Our results show that 

inertia is the most critical parameter during droplet spreading, while the recoiling is governed 

primarily by viscous and surface tension forces. The We number significantly influences 

spreading stage. The rate of recoiling depends mainly on Oh and surface wettability. Namely, 

faster recoil is observed at lower Oh numbers and higher equilibrium contact angles. 

Furthermore, the droplet on hydrophilic surfaces recoils toward the equilibrium state gradually 

and smoothly, while the droplet undergoes significant oscillations on hydrophobic surfaces 

during recoiling. As the surface wettability decreases, the time required to reach equilibrium 

increases. The tendency of a droplet to rebound increases by increasing We number and 

decreasing both Oh number and surface wettability. Velocity vector fields of impact reveal 

intriguing developments of circulatory flow during impact. Finally, a comparison of the droplet 

morphologies between axisymmetric and pure 2D LBMs indicates that the energy transfer in the 

2D LBM does not capture the correct physics of 3D droplet impact, which lead to distinct impact 

outcomes. 
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Understanding droplet-solid interactions will aid in optimizing surface characteristics 

related to many scientific applications. For example, the total rebound of droplets from surfaces 

is essential in wet environments to preserve a dry surface condition and prevent corrosion. The 

impact dynamics also modulates heat transfer between droplet and surface, which plays a vital 

role in spray cooling of high power electronics and ice formation on airfoils. The axisymmetric 

LBM is a promising tool to elucidate fundamental physics of droplet impact in applicable 

conditions and provide greater hydrodynamics insight inaccessible to experimental techniques.  
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Figure (1): Schematic plot of the simulation 
domain used in droplet impact study. 
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Figure (2): Comparison of droplet spreading 
factor (D*) and aspect ratio (H*) variations 
between the present study and previous 
experiments and simulations. The droplet 
normally impacts on a hydrophobic surface (

eq o107θ = ) at We = 103 and Oh = 0.015. 
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Figure (3): Instantaneous morphologies of droplet impacting at We = 20 (black solid lines) and 
We = 96 (red dash lines) on the solid surfaces with eq o40θ =  (left portion of each frame) and 

eq o110θ =  (right portion). The Oh number is fixed at 0.0218 for all simulations. 
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Figure (4): We-dependent variations of droplet spreading factor (upper panel), aspect ratio 
(middle panel), and dynamic contact angle (lower panel) in non-dimensional time at Oh = 0.0218 
on hydrophilic ( o40eqθ = left panel) and hydrophobic ( o110eqθ = right panel) surfaces. The insets 
in (e) are the magnified views of the spreading and recoiling stages. 
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Figure (5): Instantaneous morphologies of droplet impacting at Oh = 0.0218 (red dash lines) and 
Oh = 0.074 (black solid lines) on the solid surfaces with eq o40θ =  (left portion of each frame) 

and eq o110θ =  (right portion). The We number is fixed at 20 for all simulations. 
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Figure (6): Oh-dependent variations of droplet spreading factor (upper panel), aspect ratio 
(middle panel), and dynamic contact angle (lower panel) in non-dimensional time at We = 20 on 
hydrophilic ( o40eqθ = left panel) and hydrophobic ( o110eqθ = right panel) surfaces. The inset in 
(e) is the magnified view of the recoiling stage. 
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Figure (7): Instantaneous velocity vector fields of 
droplet impacting on a hydrophilic solid surface (

eq o40θ = ) at We = 20 and Oh = 0.074. 
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Figure (8): Normalized kinetic energy and 
viscous dissipation energy of the droplet versus 
non-dimensional time at various Oh numbers on 
(a) hydrophilic, eq o40θ =  and (b) hydrophobic, 

eq o110θ =  surfaces. The insets are the detailed 
views of the normalized kinetic energy variation. 
The We number is fixed at 20 for all simulations. 
The symbols are ,  and  respectively for KE* 
at Oh = 0.0245, 0.0520 and 0.0740. while the 
symbols ,  and  respectively for DE* at Oh 
= 0.0245, 0.0520 and 0.0740. 
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Figure (9): (a) Spread factor, (b) aspect ratio, and 
(c) dynamic contact angle versus non-dimensional 
time at We = 20, Oh = 0.0218 for different 
equilibrium contact angles. The symbols are , , 

, , , ,   and   respectively for o30eqθ =
, o40 , o50 o60 o70 o80 o100 and o110 . 
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Figure (10): Instantaneous velocity vector fields 
of droplet impacting on a hydrophobic solid 
surface ( eq o110θ = ) at We = 96 and Oh = 0.0218. 
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Figure (11): Droplet morphology comparison between axisymmetric and 2D LBMs at We = 20, 
Oh = 0.0218, and eq 110θ = ° . 

 

 

 

 

 

 

 

 


