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We present the contractile buckling dynamics of superparamagnetic filaments using experimental, 5 

theoretical and simulation approaches.  Under the influence of an orthogonal magnetic field, flexible 6 

magnetic filaments exhibit higher-order buckling dynamics that can be identified into three stages: 7 

initiation, development, and decay. Unlike initiation and decay stages where the balance between 8 

magnetic interactions and elastic forces are dominant, in the development stage, the influence of 9 

hydrodynamic drag results in transient buckling dynamics that are nonlinear along the filament contour. 10 

The inhomogeneous temporal evolution of the buckling wavelength is analyzed and the contractions 11 

under various conditions are compared. 12 

I. INTRODUCTION 13 

The buckling dynamics of microscopic elastic filaments are essential in numerous mechanical, 14 

biological and rheological processes. In particular, cytofilaments buckle against compressional forces to 15 

maintain the integrity of cells [1,2]; microorganisms propel themselves with the beating of the internally 16 

driven cilia and flagella [3,4]; shearing a suspension of microscopic fibers can induce fiber buckling, 17 

resulting in a non-Newtonian bulk behavior [5,6]. In comparison with the classic Euler buckling 18 

instability [7] of a compressed rigid column buckling out sideways, the buckling of microscopic elastic 19 

filaments exhibits much richer dynamics, not only because of the more flexible nature of the filaments 20 

and the addition of thermal fluctuations, but also due to the various forces to induce buckling [8–11]. 21 

Apart from studying the behavior of natural filaments, there is also a growing need to develop artificial 22 

filaments and control their movement. Paramagnetic colloidal filaments are one popular kind of such 23 

smart materials showing notable promise for spontaneous micromanipulations [12]. These artificial 24 
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filaments have become analogues to natural filaments, such as flagella and cilia [13,14]. They also show 1 

great potential as micro-robots for mixing [15] as well as cargo capture and transport [16]. 2 

Buckling plays a very important role in the induced dynamics of magnetically driven colloidal 3 

filaments. Related with many complex lateral deformations, shape instabilities can be observed in various 4 

fields, such as rotational [17], precessing [18,19], oscillating [13,20], and other complex 3D magnetic 5 

fields [16]. First analytically studied by Goubault et al. [21], buckling dynamics of paramagnetic 6 

filaments is induced using an orthogonal magnetic field. Starting from a relatively straight linear shape, 7 

filaments undergo contractile buckling and deform into long-lasting hairpins, S-shapes and multi-folded 8 

shapes due to the balancing of magnetic and elastic forces [20,22,23]. These metastable conformations 9 

can be utilized to probe the rigidity of absorbing or grafted polymer linkers under different 10 

environments [21,24] based on the bending curvatures. Reversible buckling with long-lasting higher 11 

mode shapes was also observed in elastic media [25]. Different from classic Euler buckling, where only 12 

the first few Euler modes are considered, the onset of magnetoelastic buckling instability usually features 13 

much higher buckling modes [20,23]. This leads to a much richer dynamical behavior of the buckling 14 

mode coarsening, or mathematically, there are higher-order bifurcations after the first critical bifurcation 15 

points.  16 

Most work to date has focused on static metastable shapes; however, the dynamics of buckling and the 17 

evolution of the pathways that a chain can take has not been well characterized.  Here we explore the 18 

evolution of the contractile buckling dynamics in aqueous media. We identify three stages of the 19 

dynamics: initiation of the buckling instability, development of buckling modes and the filament 20 

reorientation and decay of these modes. With experimental, theoretical as well as numerical approaches, 21 

we analyze the inhomogeneous coarsening of the buckling curves from the onset of the buckling 22 

instability to quasi-stable multi-folded shapes.  23 

  24 
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II. MATERIALS AND EXPERIMENTAL METHODS 1 

A. Filament sample preparation 2 

The semiflexible filaments are fabricated using superparamagnetic colloidal particles linked together 3 

with double stranded DNA (dsDNA). The particles are streptavidin functionalized polystyrene spheres 4 

(Dynabeads® MyOne™ Streptavidin C1, Life Technologies Corp.). The mean diameter of the particles is 5 

2a = 1.05±0.1 μm, density is 1.8 g/cm3, and effective volumetric magnetic susceptibility is χeff = 1.38, as 6 

provided by the manufacturer [26]. DNA fragments of 1250, 2000 and 4000 base pairs (bp) are 7 

biotinylated on the 5’ ends. They are formed by lysing lambda-phage DNA (New England Biolabs, 8 

Ipswich, MA) using standard polymerase chain reaction (PCR) procedures [27]. The superparamagnetic 9 

filaments are prepared inside glass chambers filled with aqueous solution (10 mM phosphate buffer 10 

solution) using methods previously described [27]. The colloidal particles are denser than the aqueous 11 

media and rapidly sediment to the bottom of the sample chamber; therefore, the filaments exist in a quasi-12 

two-dimensional environment. Filament flexibility is able to be tuned by altering the length of DNA 13 

linkers (changing the length of springs) or adjusting the field strength for linking (changing interparticle 14 

distance).  15 

B. Experiment set-up and imaging acquisition 16 

The alignment, Balign, and buckling, Bbuckle, magnetic fields are induced using a custom-built 17 

electromagnet microscopy system. As shown in Fig. 1(a), two air-core solenoid pairs (Sargent Welch) are 18 

placed perpendicular to each other, connected to a DC power supply (HY5020E, Mastech) to create two 19 

orthogonal magnetic fields, respectively. The sample chamber is placed at the center of the two pairs of 20 

solenoids. Images of the colloidal filament system are observed using a CCD camera (Orca-HR, 21 

Hamamatsu Inc., Sewickley, PA) attached to an inverted microscope with a 20X/0.75 (air) or a 100X/1.25 22 

(oil) Olympus objective. The strength of the applied magnetic field is measured using a Gaussmeter 23 

(AlphaLab, Inc., Salt Lake City, UT) and the direction of the applied magnetic field is determined using a 24 

paramagnetic filament of particles. The solenoid pairs are aligned to ensure that the filament was 90 25 
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degrees relative to the orthogonal solenoid pair. The alignment magnetic field is removed while the 1 

buckling magnetic field is applied simultaneously causing the filaments to buckle, as depicted in Fig. 1(b). 2 

Figure 1(c) shows a zoom-in image of the local structure of a superparamagnetic colloidal filament 3 

undergoes buckling instability in our experiment. Images of filament buckling are captured at a rate of 10 4 

frames/sec using HCImage (Hamamatsu Corporation, Bridgewater, NJ). Contours of filaments are tracked 5 

using JFilament plugin [28,29] in Fiji, an open-source NIH software [30], which searches for the darkest 6 

ridges at the central line of each filament based on stretching and deforming open active contours. 7 

 8 

FIG. 1. (a) A schematic of the electromagnet microscopy setup used to image filament buckling.  (b) 9 

The change of induced dipoles within the superparamagnetic filaments when the external field switched 10 

to perpendicular direction. (c) A zoom-in image of the local structure of a buckling superparamagnetic 11 

filament under orthogonal magnetic field. Scale bar, 10 μm. 12 

III. THEORY 13 

For an analytical description of the filament dynamics, we adopt the continuous worm-like chain 14 

model. Following the analysis of Roper et al.19 and Cebers et al.27, we consider an inextensible 15 

paramagnetic colloid-assembled filament of contour length L, diameter a, with a/L << 1. Its flexural 16 

rigidity is defined to be κ = kbTLp, where Lp is the filament persistence length and kBT is the thermal 17 

energy. The colloidal particles with magnetic susceptibility χ are of distance l away from their nearest 18 
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neighbors. The deterministic energy functional E(t) for such a filament under a uniform field with a 1 

magnetic flux density B at certain time t is: 2 · 2⁄ , , , 1 , (1)

where r(s,t), parameterized by the arc length s, denotes the position vector of the filament. The first term 3 

of the integrand introduces the magnetic dipolar potential energy where μ0 is the vacuum permeability. A 4 

simplified nearest neighbor mutual dipolar method [13,23] has been applied, and the magnetic moment 5 

per unit arc length 
/ /

, where t and n are the tangential and normal unit 6 

vectors in Frenet–Serret frame. The second term indicates the bending energy of an elastic beam, where 7 

,  is the local curvature. Subscripts are used to denote partial derivatives. The last term has the Lagrange 8 

multiplier [32,33] Λ(s,t) enforcing the constraint of local inextensibility , 1 and yielding the line 9 

tension. 10 

Given that the motion of the colloidal filament operates in the low Reynolds number regime 11 

throughout the buckling process, inertia can be neglected so that the equation of motion for the filament is: 12 , . (2)

The contractile buckling dynamics is described by a balance of the dissipative hydrodynamic friction, 13 

where the friction coefficient is , the conservative forces, as well as thermal fluctuations. 14 

For qualitative study, we make a Rouse dynamics simplification and assume local isotropic drag using 15 

slender-body theory [34] ~2 /log 2 /  ~ , and ignore long range hydrodynamic 16 

interactions. The fluid viscosity, measured to be η = 0.0022 kg/m·s, is used to account for the near wall 17 

effect [35]. To calculate the internal stresses  caused by the conservative forces, we utilize the 18 

principle of virtual work [36,37]. The detailed calculation can be found in the Appendix A. Combine Eq. 19 

(1) and Eq. (2), we have: 20 



 6

, 2 , , , , , , (3)

where θ(s,t) is the tangent angle at arc length s and time t, as shown in Fig. 1(c).  denotes the thermal 1 

noise in the system. cos θ is a function of r(s,t). We focus on the deterministic dynamics and the only 2 

randomness considered here is the initial stochastic transverse displacements along a straight contour. The 3 

tension  is determined from local inextensibility · 0: 4 

, 2 , , 4 , , 3 ,   (4)

We can define dimensionless variables: ̃ / , ̃ / , /  and the non-dimensionalized 5 

Eq. (3) becomes: 6 

, 2 ̃ , ̃ , ̃ ̃ , ̃ ̃ ̃ ̃ , ̃ , ̃ . (5)

The equation of motion only depends on a single dimensionless number  , 7 

which is the magnetoelastic number [23,31], representing the relative strength of magnetic to elastic 8 

forces. 9 

IV. NUMERICAL METHODS 10 

In order to quantitatively analyze the contractile buckling dynamics, a Brownian dynamics (BD) 11 

simulation [38] is performed. The colloidal filament is modeled as a bead-spring model, in which the 12 

colloidal particles are considered as the beads and the DNA linkers are modeled as Hookean springs. The 13 

contributing forces in this discretized system are magnetic dipolar interactions Fmag, elastic bending 14 

forces Fbend, hydrodynamic drag forces Fhydro and filament constraint forces Fconst. We also include 15 

thermal motion, which is denoted as a stochastic term ∆ .  16 

The deterministic governing equation for a buckling paramagnetic filament is: 17 

, (6)
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where  and  are the mass and position of particle i, and N is the number of particles in the simulated 1 

filament. In Eq. (6),  is calculated under mutual dipolar model [39];  is obtained using Euler 2 

beam theory;  are composed of stretching and repulsive terms, which obeys Hooks’s law and the 3 

force-distance relation [40] of compressions between two polyelectrolyte coated particles, respectively. 4 

The detailed algorithm to calculate the values of ,  and   can be found in Appendix B. 5 

The hydrodynamic drag force on particle i is given by: Fi
hydro =-kBTvi/Di, where vi is the relative 6 

velocity of the particle, and Di is the diffusion constant, which is applied using a Rotne–Prager–7 

Yamakawa tensor [41,42]. Utilizing the convention of Ermak and McCammon [43], the position vector 8 

ri(t +Δt) of the bead i at time t +Δt is related to the previous position vector ri(t) as: 9 ∆ ∆ ∑ · ∆ . (7)

The stochastic term ∆  is obtained utilizing a second-order Brownian dynamics algorithm [44], and the 10 

value can be calculated using Eq. (B7b).  11 

Combining Eq. (6) and Eq. (7), the position of the particle i evolves as 12 ∆ ∆ ∑ · ∆ , (8)

The buckling motion of superparamagnetic filaments is simulated according to Eq. (8) with an optimized 13 

timestep of 5×10-6 sec. 14 

  15 
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V. RESULTS AND DISCUSSION 1 

A. Comparing higher-order mode buckling dynamics with simpler buckling 2 

 3 

FIG. 2. A time series of snapshots of three superparamagnetic filaments buckles in experiment. The 4 

shortest filament realigns to the direction of the magnetic field 2.5 seconds after the buckling initiation (c); 5 

the filament with the medium length buckles into a quasi-stable hairpin shape 5.5 seconds from the 6 

direction switch of the external field (d); and it takes 11.5 seconds for the longest filament to fold into a 7 

14-curve shapes (e). Persistence length of the filaments Lp = 1.20 mm. The buckling field strength B = 77 8 

Gauss. Scale bar, 100 μm. 9 

The dependence of filament length on buckling dynamics can be readily observed in Fig. 2. Short rigid 10 

filaments simply rotate to realign with the buckling magnetic field. With increasing filament length, the 11 



 9

filament rotates to align with the buckling magnetic field direction but also exhibits a buckling mode, 1 

which is able to relax, as shown filament in the lower right corner of Fig. 2. For longer filaments, 2 

deformed configurations such as hairpin shapes are formed, with the two arms aligned with the new field 3 

direction. The filaments adopt a multi-mode buckled shape during the buckling process that rearrange into 4 

a single buckling mode. These hairpin shapes are quasi-stable over the timescale of the experiment. For 5 

much longer filaments, S-shapes or higher-order buckling mode shapes are observed. These structures 6 

take significantly longer to evolve and reach a quasi-stable configuration. The dynamics of these 7 

filaments is a result of the contractions along the original aligned direction rather than a rotational torque 8 

that acts to realign the filament with the orthogonal external field, resulting from the coupling of the 9 

transverse buckling and longitudinal displacement. These experimental results agree with Roper et al. [23] 10 

in that filaments with larger magnetoelastic numbers (Mn) tend to result in higher-order mode buckling 11 

shapes. It also provides a method to achieve complex folding of microfilaments. Notably, the buckling 12 

shapes in our experiments are saw-tooth rather than smooth curves, due to the large ratio of magnetic to 13 

elastic stresses in our experimental buckling conditions that provides large Mn for moderate filament 14 

length. We will focus on the long filaments below that are able to exhibit contractile buckling dynamics.  15 

B. Three stages of contractile buckling dynamics 16 

During contractile buckling, the magnetic potential energy is converted into elastic bending energy 17 

and dissipated through hydrodynamic friction. The repartitioning of magnetic and elastic energy, 18 

calculated using Eq. (1), continues throughout the entire process as the buckling modes developing and 19 

coarsening, as shown in Fig. 3(b). We identified three stages of contractile buckling behavior based on the 20 

energy evolution: initiation, development and decay.  21 

During the pre-buckling stage (Fig. 3(b) section I), an alignment magnetic field is applied. The 22 

filament is extended in the direction of Balign due to the dipoles within the particles aligning with the 23 

external magnetic field. As a result, the elastic bending energy is small, and the magnetic potential energy 24 
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is at its minimum. At t=0 in Fig. 3, when the field is switched to the perpendicular direction (Bbuckle) there 1 

is a rapid increase in the magnetic potential energy due to the instantaneous repulsive dipoles along the 2 

filament backbone. This marks the beginning of buckling instability and the starting point for the 3 

initiation stage. 4 

 5 

 FIG. 3. Plot of (a) filament shape evolution captured in experiments (left) and numerical simulations 6 

(right) (b) magnetic potential and elastic bending energy evolution in a buckled filament when an 7 

orthogonal magnetic field is applied, based on both experiment and numerical simulation results. 8 

Persistence length of the filament Lp = 1.33 mm. The buckling field strength B = 43 Gauss. Scale bar, 24 9 

μm. Filament length L = 155 μm. The numerical simulation result of energy evolution is calculated based 10 

on 100 runs. The shaded area indicates the error.  11 

The straight configuration of the filament is unstable with respect to small transverse perturbation. 12 

Bulges start to develop on the filament contour. For short times, the transverse movement is achieved by 13 

taking advantage of the initial local thermal roughness without any longitudinal displacement. Buckling 14 

filaments in the initiation stage satisfy two criteria: nonlocal longitudinal movement is negligible 15 

comparing to transverse displacement and buckling curves have amplitude much smaller than wavelength. 16 
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Reflecting on the equation of motion, the line tension  ~ 0 and cos θ ~ 1. The dimensionless equation of 1 

motion Eq. (5) reduces to:  2 

, , ̃ ̃ , ̃ ̃ ̃ ̃ 0. (9)

where  ̃ , ̃   is the contour displacement, which has a direction perpendicular to the filament initial 3 

alignment. The initial instability is assessed using a linear stability analysis [20,23,45]. Proposing a small 4 

transverse deformation with normalized wavelength /  and a dimensionless growing rate 5 

: ̃ , ̃ ~  ̃ ̃ , and substituting it into the equation of motion Eq. (9), we arrive at a 6 

relation . The fastest growing perturbation has the normalized growing rate 7 

/4  with a wavelength 2√2 1⁄ , and the smallest existing wavelength 8 2 1⁄ . Filaments with a length smaller than  will rotate and realign to the orthogonal 9 

magnetic field without an initial buckling stage. It takes · 0.1 sec for the fastest growing 10 

deformation to be significant in this linearized dynamics, which can be served as the time span for 11 

initiation stage. As a result, the initial stage (Fig. 3(b) section II) is relatively short for buckling conditions 12 

studied in this paper and cannot be fully resolved with our experiments. 13 

As the buckling modes continue to grow along the filament backbone, the buckling dynamics enter the 14 

development stage. The standard linear stability analysis no longer applies. Secondary and higher-order 15 

buckling bifurcations appear as the buckled curves coarsen, resulting in an increase in their wavelength 16 

and amplitude, as shown in Fig. 3(a). The elastic energy gradually increases as new curves develop and 17 

rearrange along the filament backbone, while the magnetic potential decreases due to the realignment of 18 

the dipoles (Fig. 3(b) section III).  The decrease in the magnetic potential energy is much larger than the 19 

gain in elastic bending energy, which is needed to satisfy the experimental requirement of large Mn and 20 

moderate filament length. The majority of the magnetic potential energy is dissipated through 21 

hydrodynamic friction. With increasing time, the variance in elastic bending energy increases, which is an 22 

effect of stochasticity in the rearrangements among the buckling modes that occur in this system. The 23 
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experimental data and simulation agree well in the energy plot with the exception that the bending energy 1 

calculated from experiments is typically smaller than that observed from simulations. This is likely due to 2 

small heterogeneities in the experimental filaments that encourage early coarsening of curves. Detailed 3 

discussion of the dynamics in the development stage will be given in the next section.  4 

The buckling process enters decay stage when the curves on the filament contour reach a balance 5 

between the magnetic and elastic forces. The relaxation time of the buckling mode exceeds its formation 6 

time, resulting in a quasi-stable configuration. Comparing the experiment and simulation data in Fig. 3 (a), 7 

the buckled filament appears to have a stable shape after reaching the decay stage in experiment, while in 8 

simulation, the buckled filament continues to relax. A similar phenomenon is observed in the energy 9 

evolution in Fig. 3 (b) section IV, whereby energy curves from experimental data reach a plateau while in 10 

simulations, the magnetic potential energy continues to decrease, and the elastic bending energy also 11 

decreases after reaching its maximum value. The anomalous stability of the experimental shapes indicates 12 

a deviation of experimental filament condition at quasi-stable stage from the assumption of ideal 13 

paramagnetic colloidal filaments with uniform elastic modulus. The magnetic heterogeneity within the 14 

paramagnetic colloidal particles and the possible nonlinear elastic deformation [23] may be responsible 15 

for this deviation.   16 

C. Analysis of nonlinear dynamics of contractile buckling 17 

In the development stage, the paramagnetic colloidal filaments exhibit inhomogeneous contractile 18 

buckling dynamics. Due to the inextensibility of the filament, a buckling mode on the filament backbone 19 

must decrease the filament length along the primary alignment axis to grow and evolve. The transverse 20 

movement is coupled with the longitudinal one. The buckling modes in the middle section of the filament 21 

are typically confined so the free tail ends of the filament must pull towards the center. Hydrodynamic 22 

friction limits the development of buckling modes in the center section of the filament. Similar to the 23 

inhomogeneous recoil dynamics of a suddenly released prestretched polymer [37,46,47], the non-uniform 24 
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friction leads to an inhomogeneous dynamics in our studied system. As shown in Fig. 4(a), the amplitudes 1 

of buckling curves increase slower with time when approaching the center of the filament.  2 

There are two regimes along the contour of a buckling filament in early development stage, which can 3 

be observed in Fig. 4(a). More obviously, when the tangent angle is used to describe the evolving shape in 4 

Fig. 4(b), the region with similar tangent angle fluctuations is separated by the white dash line from the 5 

region where the tangent angle fluctuation is greatly amplified. Located at the center of the filament, the 6 

bulk regime is defined as the segment of filament that does not exhibit significant longitudinal movement 7 

at any given time. On the other hand, the end regime is defined as the tail sections of a filament that 8 

exhibit significant longitudinal displacement. Figure 4(c) shows there is a relatively clear front that 9 

separates the bulk from the end regime, especially at smaller timescales, and from this graph, we can track 10 

a decay length at which the longitudinal speed drops to half of its maximum value. We find that at 11 

moderate Mn, the length of the propagation layer, corresponding to the white dashed line in Fig. 4(b), is 12 

approximately double the decay length mentioned above. With increasing time, the propagation front of 13 

the buckling modes moves from the filament ends to the center. After the end regime propagates to the 14 

center of the filament, the contraction of different segments along the filament starts to become more 15 

uniform and the inhomogeneity of the contractile movement gradually reduces. 16 

To investigate the wavelength evolution of the contractile buckling dynamics, a standard Fourier 17 

analysis is applied onto the series of buckling shapes. The Fourier mode amplitude of the buckling 18 

filament, normalized by the maxium mode amplitude, is plotted out as a function of the normalized wave 19 

number 2 /  and time t in Fig. 4(d). The dominant  has a normalized Fourier mode amplitude of 1. 20 

The initiation stages can be observed in this plot. At small timescales t  , the dominant  remains 21 

constant 2 / 0 √ √2⁄ . Exiting the initiation stage, the dominant  evolution demonstrates an 22 

asymptotic power law of -4. This power law is well followed until t ~ 2 sec, which is approximately the 23 
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time when the end regime covers half of the contour length. In the later development stage, the dominant 1 

 deviates from the power law of -4 and the decreasing of  gradually slows. 2 

 3 

FIG. 4. The development stage of simulated contractile buckling dynamics of a paramagnetic colloidal 4 

filament with filament length L = 246 μm, persistence length Lp = 1.33 mm. The buckling field strength is 5 
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43 Gauss. (a,b) Colormaps showing the relationship between (a) transverse displacement from the initial 1 

aligned configuration and (b) tangent angle, respectively, along the filament and normalized contour 2 

length s (by filament contour length) as well as time t. (c) Contraction speed ,  in the longitudinal 3 

direction along the filament backbone at different times. Results based on 100 runs. The shaded area 4 

indicates the error. (d) log-log colormap of normalized fourier modes amplitude of the filament shape (by 5 

the maxium mode amplitude) with the normalized wave number  and time t. 6 

The transverse buckling dominated bulk regime is responsible for the asymptotic power law of -4 of 7 

the wave number in Fig. 4(d). Here we show that the wavelength evolution obeys ~ / /  when 8 

the buckling dynamics of paramagnetic filament exhibits negligible longitudinal motion. The time and 9 

wavelength of the filament,  and , respectively, denote when the buckling dynamics exit the initiation 10 

stage and enter the development stage. Analytically, these two parameters obey ~2√2 1⁄  and 11 

~ , which are obtained from the linear stability analysis. Their exact values are affected by the 12 

initial thermal fluctuation conditions.  13 

To prove the statement above, a numerical method is applied. We designed a simplified buckling 14 

system with no global longitudinal movement, by virtually connecting the two ends of the filament to 15 

eliminate the significant end deformation that leads to contraction. The length of the simulated chain is set 16 

to be long enough so that the coupled ends do not significantly influence the transverse buckling 17 

dynamics. The initial filament shape is set to have small random undulations with a hidden contour of  = 18 

2.8% to enable buckling. Figure 5(a) shows the evolution of the filament conformation during the 19 

buckling process without contraction. Following Ref. [45], wavelength λ of the filament is calculated 20 

using slope-slope correlation method and root mean square amplitude w is measured to quantify the 21 

transverse displacement. The slope-slope correlation function of distance n along the contour and time t is 22 

defined as:  23 
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, , · , , (10)

where the symbol <…> denotes the ensemble spatial average over the contour length of the filament, 1 

t(s,t) is the tangent unit vector at the arc length s and the time t. The wavelength λ is four times the value 2 

of the first zero n1(t) of Ktt(n,t). The wavelength and amplitude are normalized by λ0 and w0, respectively, 3 

which are the values of λ and w at the end of the initiation stage. In experiment and numerical simulation, 4 

w0 and λ0 are determined as the value at the time when wavelength starts to increase significantly. Figure 5 

5(c) and (d) show the simulated wavelength and amplitude evolution of the simplified undulance 6 

dominated system, and a power law of 1/4 is obtained for both. The rescaled slope-slope correlation 7 

function at different time collapses into a single curve, as shown in Fig. 5(b), which indicates the time 8 

developing buckling conformation of paramagnetic filament exhibits self-similarity. This in return 9 

supports that there is a dynamic scaling for the buckling shape evolution. In comparison to the buckling 10 

dynamics without contraction, data from an experiment with similar conditions (   1.47 10 ) but 11 

allowing free-end contraction is plotted out in Fig. 5(c) and (d). Both the amplitude and wavelength 12 

evolution curves from experimental data deviate from the power law of ¼, due to the coupling of 13 

contraction dynamics and transverse buckling relaxation in the end regime. Notably, we applied different 14 

methods to analyze the wavelength evolution in Fig. 4(d) and Fig. 5(d). In Fig. 4(d), the normalized 15 

Fourier modes amplitude with the mode number and time are plotted out. When the bulk regime is 16 

dominant, the dominant amplitude mode (which corresponds to the mode of the bulk regime), results in a 17 

1/4 scaling at early buckling times. For Fig. 5(d), the slope-slope correlation method is applied to 18 

calculate the characteristic wavelength, which is affected by both the bulk and the end regime, so the 19 

scaling deviates from 1/4, even at initial buckling timescales. The overall trend of the wavelength 20 

evolution in early development stage is the same in both figures, where the contraction dynamics slows 21 

down the transverse relaxation.  22 
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 1 

FIG.5. (a) Snapshots of the simulated filament conformation during the orthogonal magnetic field 2 

induced buckling process without contraction. The buckling process has   1.47 10 , the 3 

persistence length of the filament Lp = 1.33 mm, and the buckling field strength B = 77 Gauss. (b) The 4 

rescaled slope-slope correlation function of buckling shapes in (a) collapse onto a single curve. (c,d) The 5 

temporal evolution of (c) normalized amplitude w/w0 and (d) normalized wavelength λ/λ0 of the buckling 6 

filament. Simulation system is restricted to only transverse displacement by coupling the dynamics of the 7 

free ends together. Experimental results from system of the same buckling condition with same Mn but 8 

the ends of the filament remain free. 9 

To understand this nontrivial scaling relation within the bulk regime, we present a scaling analysis. 10 

Although contractile buckling of paramagnetic filaments is intrinsically nonlinear, the dynamics within 11 

the bulk regime can be predicted analytically using a linear calculation within the weakly bending limit. 12 

Neglecting the axial movement, the dimensionless equation of motion Eq. (5) in the transverse direction 13 

becomes, 14 
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, 2 ̃ , ̃ , ̃ ̃ , ̃ ̃ ̃ ̃ , ̃ , ̃ 0, (11)

where  ̃ , ̃   is the normal displacement. In the weak bending limit, 1 ̃ 1, ̃ 01 ̃ 0, ̃ 0 / 1, where  ̃ , ̃  is the position on the axial direction,  is the normalized contour 2 

length stored in the lateral undulations. Since , ̃  is of order /  and   , ̃  is of order , Eq. (11) is 3 

to the leading order /  given by a balance of hydrodynamic drag force, effective line tension, and 4 

bending force: 5 

, ̃ , ̃ ̃ , ̃ ̃ ̃ ̃ 0, (12)

where the spatial average ̃ ̃ 2 ̃ , ̃ . Consider a transverse buckling dominated 6 

filament governed by the balance of the drag force with bending force and tension (or elastic stretching 7 

force for extensible filaments). Evidence from previous studies [48–50] shows that the bending term and 8 

tension term are of the same order, as long as there is no significant longitudinal movement in the 9 

buckling dynamics.  Note that when the magnetic field induces buckling within the bulk regime, the 10 

contribution of magnetic interactions is absorbed into the line tension term in the governing equation 11 

described by Eq. (12). The bending force and effective line tension are of the same order of magnitude, 12 

analogous to previously published research results mentioned above. The scaling analysis of Eq. (12) has 13 

the form: 14 ~ ̃ , (13)

where  and  are the characteristic curve amplitude and normalized wavelength, respectively. The 15 

bending force ( ) is comparable to the induced tension in the filament ( ̃ ) resulting from the 16 

magnetic dipolar interactions and the inextensibility of the backbone, as long as the longitudinal motion is 17 

negligible comparing to the transverse motion. Therefore, ̃ ~  is achieved and / . For a more 18 

comprehensive understanding, Hallatschek’s theoretical analysis [51] for the initially buckled 19 

incompressible rod in the uniformly buckled bulk regime in viscous media can be extended to our system: 20 

the ubiquitous -1/2 power-law temporal decay of the tension and the 1/4 power law of wavelength 21 
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evolution are quantitatively derived. Briefly, Eq. (12) has a group of solutions with separated variables of 1 

wave and temporal evolving mode amplitudes. Mode amplitudes are related to the line tension force 2 

history, . The stored contour length can be separated into different buckling modes whose value can 3 

also be expressed in mode amplitudes. Therefore, the mode amplitudes relate the conservation of stored 4 

contour length and the time integral of line tension together, which results in a -1/2 power-law temporal 5 

decay of the tension and therefore a 1/4 power law of wavelength evolution. The amplitude evolution in 6 

the bulk regime of the magnetic field induced buckling system follows the same power law of 1/4 due to 7 

its coupling with wavelength to maintain a constant .  8 

For the transverse dynamics dominated bulk regime in the early development state, the far-field 9 

hydrodynamic interactions do not significantly affect the dynamics. Reflecting on the simulation result of 10 

the filament buckling without contraction, it follows the 1/4 scaling law concluded from analytical theory. 11 

For late development state, however, far-field hydrodynamic interactions cannot be neglected. The 12 

analytical method without long range hydrodynamic interactions only gives a qualitative description of 13 

the dynamics. 14 

 15 
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FIG.6. Normalized longitudinal displacement along the filament backbone at (main plot) 10% end-to-end 1 

contraction ratio and (inset) four different end-to-end contraction ratios of 10%, 20%, 30% and 40%, with 2 

system of different Mn. The normalized longitudinal displacement is defined as the displacement of a 3 

small segment on the filament at a particular time from the initial straight configuration normalized by the 4 

length of the filament, and the normalized contour length from center is defined as the distance between 5 

the segment and the center of the filament normalized by the length of the filament. Both experiment 6 

(solid points) and numerical simulation (hollow points) results of higher-order buckling (Mn: 2.7×103 - 7 

1.7×105, or approximately 8 - 45 buckling modes) are plotted out. The numerical simulation result is an 8 

average of 100 runs with the error bars indicating the variance. The first (Mn = 16) and second (Mn = 63) 9 

mode buckling results are also included in the main plot with two example buckling shapes for each case 10 

next to the result curves and the shaded area (light blue for Mn = 16 and light pink for Mn = 63) 11 

indicating the error. Example buckling conformations of 10%, 20%, 30% and 40% end-to-end contraction 12 

ratios of a Mn = 1.7×104 system is shown at the top left corner of the inset.  13 

The nonlinear longitudinal movement is the key to the inhomogeneity of the development stage 14 

contractile buckling dynamics. In the early development stage where the end and bulk regimes coexist, 15 

significant inhomogeneous contraction within the propagation layer leads to a non-uniform buckling 16 

conformation. In the late development stage, where the bulk regime vanishes, the nonlinear longitudinal 17 

movement along the filament contour remains and continue to contribute to the non-uniform dynamics. 18 

Here the longitudinal displacement of the filament can be used as an indicator for inhomogeneous 19 

dynamics. The full nonlinear equation of motion Eq. (3) needs to be considered. Figure 6 plots out the 20 

normalized longitudinal displacement along the filament contour for different contractile buckling 21 

experiments. The nonlinearity of the dynamics increases as the longitudinal displacement curve deviates 22 

from the straight line. 23 

In early development stage, higher-order buckling dynamics tend to have similar inhomogeneous 24 

contractions; while for smaller mode number buckling systems, the contraction dynamics become more 25 
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linear as the buckling mode number decreases. As shown in Fig. 6, at moderate Mn (2.7×103 - 1.7×105) 1 

that covers most of higher-order mode contractile buckling experiments considered in this paper, the 2 

longitudinal displacement curves with respect to filament contour under different experimental conditions 3 

collapse onto a single curve, given by the same 10% end-to-end contraction ratio. However, for smaller 4 

Mn (Mn = 16, 63), which is characteristic of the smaller buckling modes, the curve tends to approach a 5 

straight line connecting the center zero displacement with the largest displacement at the end, which is 6 

indicative of pure rotation at conditions with Mn close to zero. The first mode buckling has an almost 7 

linear longitudinal displacement (blue dashed line in Fig. 6) and the second mode buckling (red short 8 

dashed line in Fig. 6) shows increase longitudinal nonlinearity. With increasing Mn, the change in 9 

contraction linearity becomes less sensitive to the increase in the mode number and the longitudinal 10 

dynamics along the filament backbone are similar for higher-order mode buckling.  11 

Thermal fluctuations have a significant impact on the longitudinal dynamics of the contractile 12 

buckling system with small buckling modes. Fig. 6 shows that at small Mn, there is a large variance in the 13 

longitudinal displacement. With increasing Mn, this variance decreases and from our numerical 14 

simulation results, the variance becomes negligible when the buckling mode number is greater than 8 (Mn 15 

< 2.7×104). The variance reveals the influence of thermal fluctuations on the filament buckling dynamics. 16 

For the first and second mode buckling dynamics, thermal fluctuations have a considerable impact on the 17 

longitudinal movement. For buckling dynamics with higher modes, the effect of stochasticity averages 18 

out among all the buckling modes and the collective result of longitudinal movement is not significantly 19 

affected.  20 

The nonlinearity of higher-order mode contractile buckling initially increases and then decreases 21 

throughout the development stage. For a small contraction ratio such as 10%, as shown by the black data 22 

points in Fig. 6, the longitudinal displacement curve with small values (0-0.3) of the contour length from 23 

center is approximately zero. When the end-to-end contraction ratio increases, the value of the previously 24 

zero longitudinal displacement increases until the entire longitudinal displacement curve becomes 25 
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positive except at the center point, which marks the end of the early development stage (around 20% end-1 

to-end contraction). The nonlinearity of buckling shapes increases monotonically in the early 2 

development stage as the longitudinal displacement curves continues to deviate from the straight line. 3 

After that, the buckling dynamics enter the late development stage where the longitudinal movement 4 

starts to slow down near the end region. The nonlinearity decreases as the contraction ratio increases and 5 

becomes more linear, as shown by the 30% and 40% end-to-end contraction data given by the purple and 6 

blue data points in the inset of Fig. 6, respectively. The buckling shapes will continue to become more 7 

uniform until reaching the decay stage, which is the end of the continuous longitudinal movement.  8 

VI. CONCLUSION 9 

In this paper we have described the contractile buckling dynamics of superparamagnetic filament 10 

using an orthogonal magnetic field in aqueous media. As a result of the competition between magnetic 11 

interactions, elastic bending forces and hydrodynamic friction, the paramagnetic filament undergoes an 12 

intrinsically nonlinear relaxation process. Flexible magnetic filaments under a strong external field (large 13 

Mn) tend to have higher-order buckling with contractions along the original aligned direction in the early 14 

stage, rather than rotations to realign with orthogonal external field. For these higher-order buckling 15 

dynamics, we identified three stages: initiation, development and decay. The initiation stage represents 16 

the onset of magnetoelastic buckling instability. Transverse dynamics is dominant in initiation stage and 17 

periodic higher-order mode buckling curves are formed. Following bucking initiation, the development 18 

stage is a transient state due to the competition between magnetic, elastic, and hydrodynamic forces. 19 

Here, small buckling curves coarsen into larger folds and the transverse displacement increases, while the 20 

filament experiences rapid contraction in longitudinal direction. In the final decay stage, the filament 21 

reaches a balance between the magnetic and elastic forces. The relaxation time of a buckling mode 22 

exceeds its formation time, resulting in the filament obtaining a quasi-stable buckling shape. Brownian 23 

dynamic simulations prove to be useful to studying the contractile buckling dynamics, and match well 24 

with experimental results. Comparing to the wrinkling of vesicles in elongation flow [52,53] which also 25 



 23

demonstrates the three dynamical stages, the system studied in this paper exhibits nonlinear contractile 1 

buckling. With experimental, theoretical as well as numerical approaches, we analyze the inhomogeneous 2 

coarsening of the buckling curves. Two regimes in the early development stage are identified: a bulk 3 

regime in the center of the filament where longitudinal movement is negligible and an end regime where 4 

contraction movement is significant. We demonstrated the asymptotic power law of 1/4 for buckling 5 

wavelength coarsening in the early development stage is due to the transverse buckling dominated bulk 6 

regime. We also observed for moderate Mn, the inhomogeneity of higher-order mode contractile buckling 7 

for different conditions are similar and following a first increase and then decrease trend until 8 

approaching the decay stage.  9 
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APPENDIX A: INTERNAL STRESSES CALCULATION [37] 16 

Internal stress  and the deterministic functional of the filament E are related by 17 

, (A1)

at a particular time t. Introducing a virtual displacement δ  which is an assumed infinitesimal change of 18 

the filament position rector, the new filament position vector becomes . Substituting 19 

 with  in Eq. (A1) and the change in energy functional reads . From Eq. 20 

(1), , , , , , · ,  21 

2 , , , , , where e is the unit vector in the same direction as the external 22 
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magnetic field, constants  and . The 1 

implicitly expressed line tension  is not included here and will appear later in this calculation. Given the 2 

inextensibility of the filament backbone, we have ,  and , . As a result, 3 2 , , , , (A2)

which can be rearranged to be: 4 2 , · . 0, (A3)

in which const. is only related to boundary conditions. To satisfy Eq. (A3) under different virtual 5 

displacement, that is, different function C(s), 2 , ·  has to vanish. As a 6 

result, 7 2 , ,   (A4)

where , and  has the physical meaning of the line tension and enforcing the constraint 8 

of local inextensibility.  The internal stress can be written as: 9 

2 2 , , , , . (A5)

 10 

APPENDIX B: BROWNIAN DYNAMIC SIMULATION ALGORITHM 11 

The discretized version of magnetic force [54] on particle i can be approximated as: 12 ∑ · · · · ·, , (B1)

where rij=rj-ri is the center to center vector of the two particles. Applying mutual dipolar model [39], the 13 

magnetic dipole moment for particle i has an expression of mi=
4
3
πa3χeff B/μ0+ ∑ Hdip

N
j=1,j≠i ,  where 14 

·| | | |  is the induced magnetic field by the other dipole j.  15 
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Considering the elastic bending forces, the colloidal filament is simplified to an Euler beam. The 1 

discretized elastic bending energy  of the DNA linkers between neighboring particles can be 2 

expressed using beam theory:  3 ∑ 1 , · , ,  1; 2,3, … 10; 1, , (B2)

where tii is the unit vector of rij.  Therefore, the bending force between particle i and its adjoining particle 4 

j   is given by [38]: 5 

, , · , , · , ,  

, · , , · , , , , 

  1; 2,3, … 10; 1, . (B3)

Filament constraint forces contain repulsive and stretching forces:  6 

Fi
const = Fi

rep +F istrech, (B4)

The charge and steric repulsive force Frep of the neighboring particle i and j are caused by the DNA-7 

grafted surfaces, and can be written in terms of the surface-to-surface distance Ds
ij of the colloidal 8 

particles i and j as follows [40],  9 

Fi
rep=Σj (C1(1+ln(18 Å)-ln(Ds

ij))/ Ds
ij

2+ 2C2 Ds
ij), 

   1; 22,3, … 1; 1; 1 . (B5)

where the constants C1 and C2 are influenced by the molecular weight of the DNA linkers, and the 10 

concentration and valence of the surrounding ionic medium. In this study, the constants are treated as fit 11 

parameters to the experimental data obtained using the method described by Li et al. [55]. 12 

The stretching force Fi
stretch between neighboring particle i and j obeys Hooks’s law, 13 
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∑ , 
   1; 22,3, … 1; 1; 1 . (B6)

where (lij-l) is the deviation of the distance from the equilibrium distance and the constant k is set to 1 

5.0×10-3 N/m which is large enough to approximate an inextensible filament. 2 

For the stochastic term corresponding to Brownian motion, different approaches [44,56,57] have been 3 

reported to represent thermal fluctuations both qualitatively and quantitatively. Here we utilize a second-4 

order Brownian dynamics algorithm [44] to compute the stochastic displacement, ∆ , of the colloidal 5 

particles that qualitatively represents the thermal motion:  6 

∆ ∆ ∑ · 0, 2 , (B7a)

∆ ∆ ∆ ∆ ∑ · , (B7b)

where the diffusion constant /6 , and  is the forces calculated for the conformation 7 ∆  calculated in Eq. (B7a). 8 
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