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Discriminating between correct and incorrect substrates is a core process in biology but how is energy ap-
portioned between the conflicting demands of accuracy (µ), speed (σ) and total entropy production rate (P )?
Previous studies have focussed on biochemical networks with simple structure or relied on simplifying kinetic
assumptions. Here, we use the linear framework for timescale separation to analytically examine steady-state
probabilities away from thermodynamic equilibrium for networks of arbitrary complexity. We also introduce a
method of scaling parameters that is inspired by Hopfield’s treatment of kinetic proofreading. Scaling allows
asymptotic exploration of high-dimensional parameter spaces. We identify in this way a broad class of com-
plex networks and scalings for which the quantity σ ln(µ)/P remains asymptotically finite whenever accuracy
improves from equilibrium, so that µeq/µ → 0. Scalings exist, however, even for Hopfield’s original network,
for which σ ln(µ)/P is asymptotically infinite, illustrating the parametric complexity. Outside the asymptotic
regime, numerical calculations suggest that, under more restrictive parametric assumptions, networks satisfy the
bound, σ ln(µ/µeq)/P < 1, and we discuss the biological implications for discrimination by ribosomes and
DNA polymerase. The methods introduced here may be more broadly useful for analysing complex networks
that implement other forms of cellular information processing.

I. INTRODUCTION

In cellular information processing, a biochemical mecha-
nism is coupled to an environment of signals and substrates
and carries out tasks such as detection [1–5], amplification
[6–8], discrimination [9–24], adaptation [25], searching [26]
and learning [27–30]. As Hopfield pointed out in his seminal
work on discrimination [9], systems operating at thermody-
namic equilibrium have limited information processing capa-
bility and energy must be expended to do better [8, 32].

We focus here on the widely-studied task of discrimination
between correct and incorrect substrates, an essential feature
of many core biological processes. The accuracy of discrim-
ination may have to be traded off against speed while energy
remains a limiting resource [25, 31]. How can energy be ap-
portioned between such desirable properties as accuracy and
speed and the inevitable dissipation of heat to the environ-
ment? Quantitative insights into this question can help us dis-
till the principles underlying cellular information processing
despite the pervasive complexity of the underlying molecular
mechanisms.

Previous studies of discrimination have largely focussed on
particular systems, such as Hopfield’s original proofreading
mechanism [9, 19, 20], McKeithan’s T-cell receptor mech-
anism [14, 18], minimal feedback mechanisms [25], irre-
versible multi-step mechanisms [23], or ladder mechanisms
[12, 15, 16, 21]. Murugan et al. analysed general sys-
tems using simplifying assumptions about where energy is
expended and showed how discriminatory regimes also de-
pend on the topology of the mechanism [15, 16]. Several
studies have analysed the relationship between energy expen-
diture and other properties away from thermodynamic equi-
librium. These have often been limited to networks with
simplifying assumptions [11–13, 15, 19–24] or have consid-
ered different questions in the context of kinetic proofreading
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[13, 15, 16, 22–24, 33, 34]. The results in [17, 25, 35] show
some formal similarities to those presented in this paper and
these studies are reviewed further in the Discussion (§IX).

One of the challenges in dealing with general systems away
from thermodynamic equilibrium is that the steady-state prob-
abilities can be complex algebraic functions of the parameters
(see the Discussion) [8, 32], which makes it difficult to iden-
tify any universal behaviour. We address this issue here in
two ways. First, we use a graph-based treatment of Markov
processes called the “linear framework” [36], which allows
steady-state probabilities to be analytically calculated for pro-
cesses of arbitrary structure away from thermodynamic equi-
librium (§II, §III). Second, we introduce a way of exploring
parameter space by scaling the parameters. This idea is in-
spired by Hopfield’s original analysis of kinetic proofreading,
which we revisit here to point out certain subtleties that are
not always appreciated (§IV). The scaling method allows us
to calculate the asymptotic behaviour of steady-state proper-
ties of general systems, despite the difficulties arising from
high-dimensional parameter spaces and algebraic complexity.
In this way, we are able to exhibit a universal asymptotic rela-
tionship between energy, speed and accuracy for a broad class
of discriminatory systems, without simplifying assumptions
as to where energy is expended (§VI). We further explore
whether this asymptotic relationship also has significance for
finite parameter values and for actual biological discrimina-
tion mechanisms (§VIII).

II. THE LINEAR FRAMEWORK

The linear framework [36–38] is a graph-based interpreta-
tion of biochemical processes which has been used to analyse
protein post-translational modification [39], covalent modifi-
cation switches [40] and eukaryotic gene regulation [8, 32].
In the stochastic setting considered here, the framework fol-
lows the treatment previously developed by Hill [41] and
Schnakenberg [42]. A finite-state Markov processM is repre-
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sented by a directed graph,G, with labelled edges and no self-
loops (Fig. 1(a)), hereafter a “graph”. The vertices 1, · · · , n,
are interpreted as microstates and a labelled edge, i a→ j, as a
transition between microstates whose label, a, is the infinites-
imal transition rate of the Markov process. The equations of
motion are defined as if the edges are reactions under mass
action kinetics, with the labels being the corresponding rates.
This yields the master equation of the Markov process in the
form dp/dt = L(G)p, in which p ∈ (R≥0)n is the vector of
microstate probabilities and L(G) is the Laplacian matrix of
G. For instance, for the subgraph GC in Fig. 1(a),

L(GC) =

 −(k′C + l′C) kC lC +W
k′C −(kC +m′) m
l′C m′ −(lC +W +m)

 .

Since probability is conserved, there is a conversation law,∑
i pi(t) = 1, where pi(t) is the probability that M is in mi-

crostate i at time t.
If the graph is strongly connected, so that any two vertices

can be joined by a path of edges in the same direction, then
there is a unique steady state up to a scalar multiple. A repre-
sentative steady state, ρ(G), can be calculated in terms of the
labels by the Matrix-Tree theorem (MTT): if Θi(G) denotes
the set of spanning trees rooted at i (Fig. 1(c)), then ρi(G) is
the sum of the product of the labels on the edges of each tree,

ρi(G) =
∑

T∈Θi(G)

 ∏
j

a→k∈T

a

 . (1)

The steady-state probabilities are then

p∗i =

(
ρi(G)

ρ1(G) + · · ·+ ρn(G)

)
. (2)

If the steady state is one of thermodynamic equilibrium,
so that detailed balance is satisfied, then the framework gives
the same result as equilibrium statistical mechanics, with the
denominator in equation (2) being the partition function (up
to a constant factor). However, equation (2) is also valid away
from equilibrium.

In contrast to eigenvalues or determinants, the MTT gives
the steady state analytically in terms of the labels (equation
(1)). This makes it feasible to undertake a mathematical anal-
ysis, without relying on numerical simulation, whose scope is
necessarily more restricted. Substantial algebraic complexity
can arise in equation (1) through the combinatorial explosion
of enumerating spanning trees (Discussion) but, as we show
here, with the appropriate mathematical language, it is pos-
sible to draw rigorous conclusions about structurally complex
systems away from thermodynamic equilibrium. In particular,
we exploit the fact that steady-state probabilities are rational
functions in the labels, which allows us to determine asymp-
totic behaviors.

III. STEADY STATES OF A BUTTERFLY GRAPH

Discrimination typically requires a mechanism for choos-
ing a correct substrate from among a pool of available sub-
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FIG. 1. The Hopfield mechanism and the linear framework. (a) La-
belled, directed “butterfly” graph for the original Hopfield mecha-
nism in ref. [9], consisting of the subgraph GD for the incorrect
substrate D (within left-hand dashed circle) and the subgraph GC

for the correct substrate C (within right-hand dashed circle), which
share the common vertex 1. Cyan and magenta denote correct and in-
correct substrate binding, respectively. (b) Hypothetical energy land-
scape for the Hopfield mechanism showing where energy may be
expended to drive the proofreading step with label m′. (c) The span-
ning trees ofGC rooted at 3C (circled) are shown. A spanning tree is
a subgraph which includes every vertex (spanning) and has no cycles
when edge directions are ignored (tree); it is rooted at i if i is the
only vertex with no outgoing edges. Any non-root vertex has only a
single outgoing edge. Using equations (1) and (3), the trees shown
here give the left-hand factor in the denominator of equation (4) and
the remaining factors arise in a similar way.

strates, as in DNA replication, in which DNA polymerase
must choose at each step one correct deoxynucleoside triphos-
phate from among the four available (dATP, dGTP, dCTP,
dTTP). We follow Hopfield in assuming a single correct sub-
strate, C, and a single incorrect substrate,D, and describe this
mechanism by a graph G (e.g. Fig. 1(a)) whose vertices rep-
resent the microstates of the discriminatory mechanism, such
as DNA polymerase in the case of replication. This graph is
naturally composed of two subgraphs, GX (X = C,D), cor-
responding to the states in which substrate X is bound. GC
and GD share a common vertex, but no edges, so that G has a
butterfly shape.

We will denote such a butterfly graph G = GC ⊕v GD,
where v is the shared vertex. For the task of discrimination,
the subgraphsGX are structurally symmetric, with symmetric
vertices, 1X , · · · , nX , of which 1C = 1D = 1 is shared, and
symmetric edges, iC → jC if, and only if, iD → jD. The
labels on these corresponding edges may, however, be distinct.
The vertices iX with i > 1 are the microstates in which X is
bound, while vertex 1 is the empty microstate in which no X
is bound. All directed edges are assumed to be structurally
reversible, so that, if iX → jX , then jX → iX . The graphs
GC , GD and G are therefore all strongly connected.

Let G = GC ⊕v GD be any butterfly graph. Even if GC
and GD are not structurally symmetric, as above, it follows
readily from equation (1) that

ρi(GC ⊕v GD) =

{
ρi(GC)ρv(GD) if i ∈ GC
ρi(GD)ρv(GC) if i ∈ GD .

(3)
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IV. THE ERROR FRACTION FOR THE HOPFIELD
MECHANISM

The original Hopfield kinetic proofreading mechanism is
described by the discriminatory butterfly graph G = GC ⊕1

GD in Fig. 1(a). The substrates C andD are treated as “slow”
components and assumed to have constant concentration over
the timescale of interest. These concentrations are absorbed
into the “on-rates” k′C , k

′
D, l
′
C , l
′
D. The discrimination mecha-

nism itself is assumed to have the “fast” components and to be
at steady state. The rate W for exit from 3X (X = C,D) cor-
responds to product generation and release of X , so that the
overall system is open whenever W > 0, with C and D being
transformed into correct and incorrect product, respectively.

In this mechanism, discrimination occurs twice, through
binding and unbinding of X to form 2X and to form 3X . It is
assumed that unbinding, rather than binding, causes discrim-
ination, as is often the case in biology [14], so that l′C = l′D
and k′C = k′D. The correct substrate has a longer residence
time, so that kC < kD, which reflects the free energy differ-
ence of ∆ > 0 between 2C and 2D (Fig. 1(b)): if energy is
measured in units of kBT , where kB is Boltzmann’s constant
and T is the absolute temperature, then kD = kCe

∆. There
is assumed to be no difference in discrimination between 2X
and 3X , so that kC/kD = lC/lD = e−∆ < 1.

Hopfield defines the steady-state error fraction, ε as the
probability ratio of the incorrect to the correct exit microstate,
which, using equation (2), is given by ε = ρ3D

(G)/ρ3C
(G) (ε

is the inverse of the accuracy µ in the Abstract; we will work
with the former). Using equations (1) and (3),

ε =
[l′D(kD +m′) +m′k′D][(kC +m′)(W + lC) +mkC ]

[l′C(kC +m′) +m′k′C ][(kD +m′)(W + lD) +mkD]
.

(4)
If the overall system remains closed, so thatW = 0, while the
mechanism operates at thermodynamic equilibrium, then it
has the error fraction, ε0 = kC/kD = lC/lD = e−∆ (Supple-
mentary Material). If the overall system becomes open, so that
W > 0, while the mechanism remains at equilibrium, then ε
increases monotonically with increasing W (Supplementary
Material). If the mechanism itself operates away from equi-
librium, then

ε > ε0

(
lC +m+W

lD +m+W

)
> ε2

0 (5)

for all positive values of the parameters (Supplementary Mate-
rial). Hopfield shows that ε approaches the minimal error, ε2

0,
as certain parametric quantities become small (Supplementary
Material) and suggests how this could be achieved in practice
by expending energy to drive the transition from 2X to 3X
through the label m′. This is kinetic proofreading.

There are two aspects of Hopfield’s analysis which have
not always been fully appreciated. First, increasing m′ is not
sufficient of itself for ε to approach ε2

0. Indeed, it follows
from equation (4) that, when W = 0, ε → ε0 as m′ → ∞.
Too much energy expenditure can increase the error fraction,
which behaves non-monotonically with respect to m′. (Simi-
lar non-monotonicity has been observed for kinetic proofread-
ing with the T-cell receptor mechanism in Supplementary Fig.

1 [18].) The parameter m′ must neither be too high nor too
low for the error fraction to approach ε2

0. Second, parame-
ters other than m′, m and W must also take adequate val-
ues for the accuracy to approach this bound: the “on-rate” for
1 → 2X must be much larger than that for 1 → 3X , so that
l′D/k

′
D = l′C/k

′
C → 0 (Supplementary Material). The lower

bound of ε2
0 is only reached asymptotically as several param-

eters take limiting values.
For more complex systems, the appropriate parameter

regime for the minimal error is not readily found using Hop-
field’s approach. We therefore sought an alternative strategy.
If we let x = e∆ = ε−1

0 and substitute kD = xkC and
lD = xlC into equation (4), we see that, if no other parameters
change, the error fraction ε behaves like x−1 as x increases.
We reasoned that to approach the minimal error of x−2, the
fold change in other parameter values should be some func-
tion of x. By retaining only the highest-order term in x as
x → ∞, the behaviour of ε could be determined while by-
passing the parametric complexity. Let R(x) ∼ Q(x) mean
that R(x)/Q(x) → c as x → ∞, where 0 < c < ∞. It
can be seen from equation (4) that if either k′D = k′C ∼ x or
l′C = l′D ∼ x−1, while none of the remaining parameters de-
pend on x, then ε ∼ x−2 = ε2

0. This scaling of the “on-rates”
corresponds to what was required in the previous paragraph
for Hopfield’s limiting procedure. This suggests a strategy for
exploring parameter space that can be extended to more com-
plex systems. We exploit this below to examine the relation
between energy, speed and accuracy.

V. DISSOCIATION-BASED MECHANISMS

We introduce here a class of discrimination mechanisms for
which such a relation can be determined. We consider a dis-
criminatory butterfly graph of the form G = GC ⊕1 GD con-
sisting of structurally symmetric subgraphs GC and GD of
arbitrary complexity. The vertex nX is taken to be the only
exit microstate in which product is generated, so that there is
a return edge nX → 1. No further structural assumptions are
made but the product generation rate, W , makes an additive
contribution to the label of the return edge nX → 1, as in Fig.
1(a).

Multiple internal microstates and transitions are allowed in
GX as well as multiple returns to the empty microstate, 1, al-
though only a single one of these, through nX , also generates
product. As in Hopfield’s original scheme, we think of the
mechanism as coupled to sources and sinks of energy, which
may alter the edge labels. In Hopfield’s scheme, the labels on
edges which do not go to the reference microstate 1 were as-
sumed to be the same between C and D (Fig. 1(a)). In other
words, there was no “internal discrimination” between correct
and incorrect substrates. Here, we allow internal discrimina-
tion between C and D: when j 6= 1, the label on iC → jC
may be different from that on iD → jD.

Graphs of this form been widely employed in the litera-
ture. In addition to the original Hopfield mechanism (Fig.
1(a)), they include the “delayed” mechanism [10], the multi-
step mechanism [12, 13, 43], the T-cell receptor mechanism
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FIG. 2. Structure of dissociation-based mechanisms. Shown is a
schematic of a labelled, directed “butterfly” graph illustrating the
structure of any dissociation-based mechanism, which consists of the
subgraph GD for the incorrect substrate D and the subgraph GC for
the correct substrate C sharing the common vertex 1. GC and GD

are assumed to be symmetric, but the internal transitions within them
can be arbitrary, as suggested by the “clouds.” nX is taken to be the
only exit microstate in which product is generated, so there is a re-
turn edge nX → 1. As in Fig. 1(a), cyan and magenta denote correct
and incorrect substrate binding, respectively.

[14, 18] and generalised proofreading mechanisms [15–17].
We follow Hopfield in using the steady-state error fraction

and work from now on with probabilities. Let p∗ be the vector
of steady state probabilities. The discrimination error fraction,
ε, is the steady-state probability ratio of the incorrect exit mi-
crostate, nD, to the correct exit microstate, nC ,

ε =
p∗nD

p∗nC

. (6)

We will analyse the behaviour of G under the assumption
that some of the labels are functionally dependent on the non-
dimensional variable x ∈ R. A function R(x) is said to be al-
lowable if it is positive,R(x) > 0 for x > 0, and has a degree,
deg(R), given by R(x) ∼ xdeg(R) as x → ∞. This is well
defined because xa ∼ xb if, and only if, a = b. The degree
determines the asymptotics of allowable functions: R ∼ Q if,
and only if, deg(R) = deg(Q). Note that deg(R) = 0 if, and
only, R(x)→ c as x→∞, where c > 0, which is the case if
R does not depend on x.

The labels in the graphG are assumed to be allowable func-
tions of x. (The product generation rate W couples the mech-
anism to the environment and is assumed not to depend on x.)
If R and Q are allowable functions, then so are R−1, RQ and
R+Q and (Supplementary Material)

deg(R−1) = −deg(R)
deg(RQ) = deg(R) + deg(Q)

deg(R+Q) = max(deg(R),deg(Q)) .
(7)

Accordingly, any rational function of the labels with only pos-
itive terms, such as p∗, which acquires this structure through
equation (2) and equation (1), or ε, which acquires it through
equation (6), becomes in turn an allowable function of x.

We define a dissociation-based mechanism to be a general
discrimination mechanism for which, for the edges between
the exit microstates and 1,

deg(`1→nD
) = deg(`1→nC

)
deg(`nD→1) = deg(`nC→1) + 1.

(8)

Here, we use `i→j to denote the label on the edge i → j. Eq.
8 is analogous to the assumption l′C = l′D and xlC = lD for
the Hopfield mechanism. Unlike the Hopfield mechanism, we
do not restrict what happens at non-exit microstates.

With such general assumptions on the labels, a dissociation-
based mechanism may not reach thermodynamic equilibrium.
However, if it can, with W > 0, so that the overall system
remains open, then equation (8) ensures that the equilibrium
error fraction, εeq , has a simple form. Since detailed balance
requires that each pair of edges is independently at steady state
[36], the exit states, nX , satisfy `nX→1p

∗
nX

= `1→nX
p∗1, so

that

εeq =
p∗nD

p∗nC

=

(
`1→nD

`1→nC

)(
`nC→1

`nD→1

)
. (9)

Applying equation (8) and using equation (6), we see that, if
equilibrium is reached, the resulting error fraction, εeq , satis-
fies

εeq ∼ x−1 . (10)

VI. THE ASYMPTOTIC RELATION

We now define the measures of speed and energy expen-
diture in terms of which our main result will be stated. A
reasonable interpretation for the speed of the mechanism, σ,
is the steady-state flux of correct product [44],

σ = Wp∗nC
. (11)

As for energy expenditure, this is determined at steady state
by the rate of entropy production. Schnakenberg put forward
a definition of this [42] that has been widely used [2, 7]: for
a pair of reversible edges, i � j, the steady-state entropy
production rate, P (i � j), is the product of the net flux,
J(i� j) = `j→ip

∗
j − `i→jp∗i , and the thermodynamic force,

A(i� j) = ln(`j→ip
∗
j/`i→jp

∗
i ):

P (i� j) = J(i� j)A(i� j) . (12)

Here, we omitted Boltzmann’s constant kB for convenience,
so that P has units of (time)−1. If T is the absolute tem-
perature, then kBTP (i � j) is the power irreversibly ex-
pended through i � j. The total entropy production rate of
the system is then given by P =

∑
i�j P (i � j). Note that

P (i � j) ≥ 0 (and so also P ≥ 0) with equality at ther-
modynamic equilibrium when detailed balance implies that
J(i � j) = 0. Positive entropy production, with P > 0,
signifies energy expenditure away from thermodynamic equi-
librium.

Both σ and P are functions of x and σ is evidently allow-
able. However, A(i � j) is not a rational function with pos-
itive terms and ln(x) 6∼ xα for any α, so P (i � j) and P
are not allowable functions. Nevertheless, the asymptotic be-
haviour of P can be estimated. Some further notation is help-
ful to do this. If R(x) and Q(x) are functions which are not
necessarily allowable, then R ≺ Q means that R/Q → 0 as
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x → ∞. This relation is transitive, so that, if S ≺ R and
R ≺ Q, then S ≺ Q. If both functions are allowable, then
R ≺ Q, if, and only if, deg(R) < deg(Q). We will say that
R - Q if R/Q → c, where 0 ≤ c < ∞, and corresponding
remarks about transitivity and allowable degrees hold for this
relation. Note that ≺ and - dominate over ∼ when forming
products, so, for instance,

if T - S and R ∼ Q then RT - SQ , (13)

which we will make use of below.
Each summand P (i � j) has the form (R −Q) ln(R/Q),

where R and Q are allowable. Let α = deg(R), β = deg(Q)
and c1 = limR/xα and c2 = limQ/xβ as x → ∞. By
definition, c1, c2 > 0. Note that, if S is allowable, then (Sup-
plementary Material)

ln(S) ∼
{

ln(x) if deg(S) > 0
ln(x−1) if deg(S) < 0. (14)

The asymptotic behaviour of P (i � j) then falls into the
following three cases (Supplementary Material), as specified
on the right:

case 1: α 6= β ∼ xmax(α,β) ln(x)
case 2: α = β , c1 6= c2 ∼ xα
case 3: α = β , c1 = c2 ≺ xα.

(15)

The third case is awkward because the leading-order asymp-
totics are lost, which leads to the ≺ relation instead of ∼.
However, c1 and c2 are rational expressions in the parame-
ters which do not involve x and the equation c1 = c2 de-
fines a hypersurface in the space of those parameters. The
reversible edges which fall into case 3 therefore determine a
set of measure zero in the space of parameters. Provided this
set is avoided, the asymptotic behaviour of the summands in
P fall into the first two cases and can be controlled. In particu-
lar, suppose that the total entropy production rate P is written
as P =

∑
u Pu, where Pu is a term coming from a pair of re-

versible edges i� j, as in equation (12). In Appendix A, we
show that, if Pk is any summand in case 1 of equation (15),
then, outside the measure-zero set defined by case 3, Pk - P .

Let us now assume, for any dissociation-based mechanism
as defined previously, that

ε(x) ≺ x−1 . (16)

This forces the error fraction to be asymptotically better than
if the system were able to reach equilibrium (equation (10))
and thereby ensures that energy expenditure is contributing to
an improvement in accuracy. Consider any general discrimi-
nation mechanism which is dissociation-based, as described in
equation (8). If its error fraction obeys equation (16) then, out-
side the measure-zero set in parameter space defined by case 3
of equation (15), we show in Appendix B that the mechanism
satisfies the asymptotic relation,

σ ln(ε−1) - P . (17)

The exact asymptotics of σ ln(ε−1)/P are difficult to es-
timate for a general dissociation-based mechanism with al-
lowable labels because each pair of reversible edges must be

examined. However, for the Hopfield mechanism (Fig. 1(a)),
under the conditions described above for which ε ∼ x−2, we
find (Supplementary Material)

lim
x→∞

σ ln(ε−1)

P
=

2W

lc +W
(18)

outside the parametric set of measure-zero noted above.

VII. A NON-DISSOCIATION BASED MECHANISM

The requirements in equation (8) for being dissociation-
based are necessary for the validity of equation (17). In the
Supplementary Material, we consider a discrimination mech-
anism with a structure identical to that of the Hopfield mecha-
nism (Fig. 1(a)) but with labels that do not follow equation (8)
(Supplementary Fig. 3). If the mechanism reaches thermody-
namic equilibrium, then it follows from equation (9) that its
equilibrium error fraction satisfies εeq ∼ x−1. However, with
a particular choice of allowable functions for the labels, for
which the mechanism is no longer at equilibrium, its error
fraction improves asymptotically, with ε ∼ x−3/2, while its
speed remains constant, σ ∼ 1, and its entropy production is
either constant or vanishes, P - 1, outside a set of measure
zero. This evidently does not obey equation (17) and shows
the existence of a different asymptotic interplay between en-
ergy, speed and accuracy.

VIII. NUMERICAL CALCULATIONS OUTSIDE THE
ASYMPTOTIC REGIME

To examine further the energy-speed-accuracy relation
found by the asymptotic analysis above, we used more restric-
tive assumptions on the allowable labels to facilitate numeri-
cal exploration. We considered discrimination-based mecha-
nisms in which the x-dependency was similar to Hopfield’s
original analysis. For any return edge to 1 from a non-exit
microstate, we assumed that

`iD→1 = `iC→1x (i 6= n) , (19)

with an additive contribution of W in the exit microstate (i =
n), `nD→1 = ax + W , `nC→1 = a + W with a ∈ R>0. As
for the other edges, we assumed no internal discrimination, so
that the labels were the same for C and D,

`iD→jD = `iC→jC (j 6= 1) , (20)

with no x-dependency. By equation (9), the equilibrium er-
ror function when the system is closed (W = 0) satisfies
ε0 = x−1. We set x = e20, sampled the values ln(`iC→jC ),
ln(a), and ln(W ) uniformly in [−100, 100], and determined
`iD→jD from equations (19) and (20). We plotted P/σ against
ln(ε0/ε), when ε < ε0, for the Hopfield mechanism (Fig.
3(a)), the T-cell receptor mechanism (Supplementary Fig. 1)
and for a mechanism different from both of these (Supplemen-
tary Fig. 2). In each case, the resulting region was confined
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FIG. 3. Numerics for the Hopfield mechanism. (a) Plot of P/σ
against ln(ε0/ε) for the Hopfield mechanism (Fig. 1(a)) for approx-
imately 105 points. The sampling and the dashed lines are described
in the text. (b) Similar plot to (a) for the Hopfield mechanism with
internal discrimination between correct and incorrect substrates, as
described in the text, with the light blue points having a lower asym-
metry range (A = 1) and the dark blue points having a higher range
(A = 5). The coloured overlays represent values from experimental
data for ribosomes (orange, red and brown regions) and DNA poly-
merase (green point), with the former being samples of values esti-
mated for a parameter for which no experimental data exists. Only
those samples for which ε > ε0 are shown and the asterisks, *, give
the averages of the plotted values. The inset gives the plotted av-
erages (for the ribosome variants) and values (for DNAP) of error
fractions, ε and ε0, speed, σ and entropy production rate, P (all in
units of s−1). The data from which these values were calculated are
shown in Supplementary Table 1. See [45] and the caption of Sup-
plementary Table 1 for more details.

to the left of a vertical line (Fig. 3(a), black dashed line) and
above the diagonal (Fig. 3(a), red dashed line). For the Hop-
field mechanism, the vertical bound comes from equation (5)
and similar bounds on ε exist for the other mechanisms (not
shown). The diagonal bound, however, is unexpected and im-
plies the bound

σ ln(ε0/ε) < P (for ε < ε0) (21)

for finite parameter values. It is possible that equation (21)
holds for any discrimination-based mechanism whose edge la-
bels satisfy equations (19) and (20).

The calculations leading to equation (21) assumed no inter-
nal discrimination between correct and incorrect substrate, as
specified in equation (20). We were interested to find that ex-
perimental data for ribosomes and DNA polymerase, based on
the original Hopfield mechanism, showed substantial internal
discrimination, extending even to the product generation rate
W [19]. To examine the impact of this, we proceeded as fol-
lows. For any return edge to 1 from a non-exit microstate, we
introduced an asymmetry between C and D so that

`iD→1 = αi1`iC→1x (i 6= n) . (22)

For the exit state (i = n), the product generation rate makes
an additive contribution, WX , which now depends on the sub-
strate X , so that `nC→1 = a + WC and `nD→1 = αn1ax +
WD, where a ∈ R>0 and WD = αWWC . For the other

edges, we similarly introduced an asymmetry

`iD→jD = αij`iC→jC (j 6= 1). (23)

The multiplicative factors αij and αW carry the asymmetry
between C and D in internal discrimination.

In view of the asymmetry in product generation rates, it is
natural to redefine the error fraction as

ε =
WDp

∗
nD

WCp∗nC

.

Using equation (9), the equilibrium error fraction when
the system is closed (W = 0) is given by ε0 =
`1→nD

a/(`1→nC
αn1a).

We chose the asymmetry factors by sampling ln(αij) and
ln(αW ) uniformly in the range [−A,A], for A = 1 and
A = 5, and chose the other parameters as described previ-
ously for Fig. 3(a). Fig. 3(b) shows that both the vertical
bound and the diagonal bound in Fig. 3(a) are broken, with the
extent of the breach increasing with increase in the asymme-
try range from A = 1 (Fig. 3(b), light blue points) to A = 5
(Fig. 3(b), dark blue points). Similar results were found for
the other mechanisms that we numerically calculated (Sup-
plementary Figs. 1(c) and 2(c)). We see that the absence of
internal discrimination is essential for the vertical and diago-
nal bounds shown in Fig. 3(a) and Supplementary Figs. 1(b)
and 2(b).

Banerjee et al. have provided parameter values for the Hop-
field mechanism based on experimental data for discrimina-
tion in mRNA translation by the E. coli ribosome, includ-
ing also an error-prone and a hyperaccurate mutant, and in
DNA replication by the bacteriophage T7 DNA polymerase
(DNAP) [19]. We used these parameter values to calculate
entropy production, speed and accuracy as defined here and
overlaid the resulting ln(ε0/ε), P/σ points on the previous
numerical calculation (Fig. 3(b)) [45].

The data show a striking difference between mRNA trans-
lation and DNA replication (Fig. 3(b)). All three ribosome
variants (orange, wild type; brown, error-prone; red, hyper-
accurate) have much higher P/σ values than DNAP (green),
with the former lying comfortably above the diagonal bound
given by (21) and the latter lying well below. Nevertheless,
all systems exhibit substantial internal discrimination (Sup-
plementary Table 1). As the inset in Fig. 3(b) shows, the
separation between translation and replication arises from a
decrease of two orders of magnitude in entropy production
rate and an increase of two orders of magnitude in speed. Fur-
thermore, DNAP not only shows the smallest error fraction, ε,
by three orders of magnitude, but also the greatest fold change
over the equilibrium error fraction, ε0/ε. In contrast, the ri-
bosome variants, while showing the expected differences in
error fraction, have lower fold changes over their equilibrium
error fractions. Evolution seems to have tuned the energy dis-
sipation, speed and accuracy of the replication machinery to a
much greater degree than the translation machinery.



7

IX. DISCUSSION

One of the challenges in dealing with nonequilibrium sys-
tems in general has been the algebraic complexity, as epito-
mized by the enumeration of spanning trees in the MTT, Eq.
(1). For a complicated graph, the combinatorial explosion in
enumerating spanning trees can be super-exponential in the
size of the graph [8]. This difficulty may have been apparent
to earlier workers like Hill [41] and Schnakenberg [42] and
may have discouraged a more analytical approach. The com-
binatorial complexity has largely been avoided by focussing
on simple or highly-structured examples and by astute use of
approximation.

In this paper, we have developed a way to address this
complexity that is inspired by Hopfield’s analysis of kinetic
proofreading. Here, the minimum error fraction can only be
reached asymptotically (equation (5)) and only when multiple
labels change their values consistently. This has suggested
a method of exploring parameter space by treating the labels
as allowable functions of a scaling variable x. In this way, a
system of arbitrary structure can be analysed away from equi-
librium, with relaxed assumptions on how energy is being de-
ployed, while rising above the combinatorial explosion from
history dependence.

Perhaps the most interesting conclusion from this analysis
is the emergence of the quantity σ ln(µ)/P . Our main result,
as expressed in equation (17), says that this quantity is asymp-
totically finite, for any graph obeying the dissociation-based
condition on exit edges (equation (8)) and for any scheme of
allowable scaling through which energy increases (deg > 0)
or decreases (deg < 0) the rates, provided that the accuracy
improves over equilibrium (equation (16)).

The advantage of the asymptotic analysis undertaken here
is that it reveals a universal behaviour in σ ln(µ)/P that tran-
scends network structure and parametric complexity. Inter-
estingly, our numerical calculations suggest that universality
may still be found for finite parameter values, in the form of
the bound in equation (21), as shown in Fig. 3 and Supple-
mentary Figs. 1 and 2. However, this bound depends crucially
on the absence of internal discrimination between correct and
incorrect substrates, in contrast to the asymptotic behaviour
in equation (17), for which internal discrimination is allowed.
Experimental data shows that evolution has discriminated in-
ternally to a substantial extent but with very different effects
on this bound. All E. coli ribosome variants for which we have
data comfortably obey the bound, while the T7 DNA poly-
merase breaks it. This reflects a striking reduction in P/σ for
the latter, with far less difference between the ribosomes and
the DNA polymerase in the fold change over their equilibrium
error fractions (Fig. 3(b)). It would be interesting to know if
these same comparative relationships are maintained for other
ribosomes and polymerases. While recent work has shown
that local trade-offs between speed and accuracy can differ
markedly between different parametric regions [19], the quan-
tities introduced here may be helpful for more global compar-
isons between discriminatory mechanisms.

As noted in the Introduction, the previous work of [17, 25,
35] shows formal similarities to the results presented here and

it may be helpful to clarify these connections. In [35], Eng-
land and colleagues determine the minimal energy dissipa-
tion cost for a general finite-state Markov process to main-
tain an arbitrary nonequilibrium steady-state. While their set-
ting is similar to our graph-theoretic approach, they assume
that energy is introduced through additional control transi-
tions and their analysis of maintenance does not involve no-
tions of speed or accuracy as used to analyse discrimination.
In [25], Tu and colleagues study the costs of adaptation and
derive an approximate relationship between the rate of energy
dissipation and the speed and accuracy of adaptation (their
equations (5) and (S18)). Their formulas resemble our equa-
tion (17). They infer their results from a continuum model
of a three-state negative-feedback system, using the Fokker-
Planck equation for the time evolution of the probability den-
sity and undertake the approximation by steepest descent on
the adaptation error. The similarity in results despite the very
different methods supports the analogy that has been drawn
previously between adaptation and discrimination [3]. How-
ever, the work of [25] is limited to a three-state system, while
our results apply to systems of arbitary complexity. In [17],
Sartori and Pigolotti determine the thermodynamic cost of
copying a biopolymer. The copying process includes a dis-
crimination mechanism that chooses between right and wrong
monomers for incorporation in the polymer. They adopt a
general finite-state Markov process, as in [35], and rely on
the second law of thermodynamics to derive a bound for the
total entropy production per wrongly incorporated monomer
(their equation (3)). They identify three operating regimes, of
which the third, called “error correction”, resembles that stud-
ied here and yields a formula which is similar to our equation
(17). Their formula expresses a finite bound and involves only
quantities related to discrimination of the wrong monomer,
while our formula is valid asymptotically and compares right
and wrong discriminations. The two studies can be seen as of-
fering complementary approaches to the problem of algebraic
complexity away from thermodynamic equilibrium: Sartori
and Pigolotti appeal to the second law of thermodynamics
while we exploit leading-order asymptotics as x→∞.

In summary, our work offers methods to rise above the al-
gebraic complexity characteristic of nonequilibrium Markov
processes and suggests that the quantity σ ln(µ)/P may be
significant for a broader context of cellular information pro-
cessing that includes discrimination, adaptation, and other
processes required for life. Because of their generality, the
methods used here may be particularly useful for developing
such a broader perspective.

ACKNOWLEDGMENTS

F.W. was supported by the National Science Foun-
dation (NSF) Graduate Research Fellowship under grant
DGE1144152. A.A. was supported by the Alfred P. Sloan
Foundation. J.G. was supported by NSF grant 1462629. We
thank P.-Y. Ho and J. Horowitz for discussions.



8

APPENDIX A: PROOF OF Pk - P

Suppose that Pk ∼ xαk ln(x). If Pi is also in case 1 and
Pi ∼ xαi ln(x), then Pi/Pk → c, where c = 0, 1,∞, de-
pending on the relative values of αi and αk. Similarly, if Pj
is in case 2 and Pj ∼ xαj , then Pj/Pk → c, where c = 0,∞,
depending on the relative values of αj and αk. By assump-
tion, there are no other cases to consider (if Ph were in case 3,
we could not estimate limx→∞ Ph/Pk). Since Pk is one of the
summands in P , it follows that P/Pk → c, where 1 ≤ c ≤ ∞.
Equivalently, Pk/P → c−1, where 0 ≤ c−1 ≤ 1. In particu-
lar, Pk - P , as required.

APPENDIX B: PROOF OF THE ASYMPTOTIC RELATION

Suppose first that 1� nC falls into case 1 in equation (15).
Let α = deg(`nc→1p

∗
nC

) and β = deg(`1→nC
p∗1), so that

α 6= β. Then, xα ln(x) - xmax(α,β) ln(x) ∼ P (1 � nC).
Since the product generation rate, W , appears additively,
`nC→1 = W + U(x), for some allowable function U . It fol-
lows from equation (7) that α = deg(`nC→1) + deg(p∗nC

) =
max(0,deg(U)) + deg(p∗nC

) ≥ deg(Wp∗nC
) = deg(σ).

Hence, σ - xα. Furthermore, since equation (16) tells
us that deg(ε) < −1, it follows from equation (14) that
ln(ε−1) ∼ ln(x). Using equation (13), we deduce that

σ ln(ε−1) - P (1� nC) .

If 1 � nC does not fall into case 1 in equation (15),
then α = β. Let us then consider 1 � nD. Accord-
ing to equations (6) and (16), deg(p∗nD

) < deg(p∗nC
) − 1.

Using equation (7) to combine this with equation (8.2), we
see that deg(`nD→1p

∗
nD

) < deg(`nC→1p
∗
nC

) = α = β =
deg(`1→nC

p∗1). But now, by equation (8.1) and equation (7),

deg(`1→nC
p∗1) = deg(`1→nD

p∗1) . (24)

It follows that

deg(`nD→1p
∗
nD

) < deg(`1→nD
p∗1) , (25)

so that 1 � nD falls into case 1 even though 1 � nC does
not. Therefore, by equation (15), P (1 � nD) ∼ xγ ln(x),
in which, because of equation (25), γ = deg(`1→nD

p∗1). But
according to equation (24), γ = deg(`1→nC

p∗1) = β = α.
Hence, by the same argument as above for 1 � nC , we de-
duce that

σ ln(ε−1) - P (1� nD) .

We can now appeal to the result in Appendix A to complete
the proof.

[1] Berg, H. C. and Purcell, E. M. Physics of chemoreception, Bio-
phys. J. 20, 193 (1977).

[2] Mehta, P. and Schwab, D. J. Energetic costs of cellular compu-
tation, Proc. Natl. Acad. Sci. USA 109, 17978 (2012).

[3] Hartich, D., Barato, A. C. and Seifert, U. Nonequilibrium sens-
ing and its analogy to kinetic proofreading, New J. Phys. 17,
055026 (2015).

[4] ten Wolde, P. R., Becker, N. B., Ouldridge, T. E. and Mugler,
A. Fundamental limits to cellular sensing, J. Stat. Phys. 163,
1395 (2016).

[5] Singh, V. and Nemenman, I. Simple biochemical networks al-
low accurate sensing of multiple ligands with a single receptor,
PLoS Comput. Biol. 13, e1005490 (2017).

[6] Qian, H. and Cooper, J. A. Temporal cooperativity and sensi-
tivity amplification in biological signal transduction, Biochem-
istry 47, 2211 (2008).

[7] Tu, Y. The nonequilibrium mechanism for ultrasensitivity in a
biological switch: sensing by Maxwell’s demons, Proc. Natl.
Acad. Sci. USA 105, 11737 (2008).

[8] Estrada, J., Wong, F., DePace, A. and Gunawardena, J. Infor-
mation integration and energy expenditure in gene regulation,
Cell 166, 234 (2016).

[9] Hopfield, J. J. Kinetic proofreading: a new mechanism for re-
ducing errors in biosynthetic processes requiring high speci-
ficity, Proc. Natl. Acad. Sci. USA 71, 4135 (1974).

[10] Ninio, J. Kinetic amplification of enzyme discrimination, Bio-
chemie 57, 587 (1975).

[11] Bennett, C. H. Dissipation error tradeoff in proofreading,

BioSystems 11, 85 (1979).
[12] Blomberg, C. and Ehrenberg, M. Energy considerations for

kinetic proofreading in biosynthesis, J. Theor. Biol. 88, 631
(1981).

[13] Savageau, M. A. and Lapointe, D. S. Optimization of kinetic
proofreading: a general method for derivation of the constraint
relations and an exploration of a specific case, J. Theor. Biol.
93, 157 (1981).

[14] McKeithan, T. W. Kinetic proofreading in T-cell receptor signal
transduction, Proc. Natl. Acad. Sci. USA 92, 5042 (1995).

[15] Murugan, A., Huse, D. A. and Leibler, S. Speed, dissipation,
and error in kinetic proofreading, Proc. Natl. Acad. Sci. USA
109, 12034 (2012).

[16] Murugan, A., Huse, D. A. and Leibler, S. Discriminatory proof-
reading regimes in nonequilibrium systems, Phys. Rev. X 4,
021016 (2014).

[17] Sartori, P. and Pigolotti, S. Thermodynamics of error correc-
tion, Phys. Rev. X 5, 041039 (2015).

[18] Cui, W. and Mehta, P. Optimality in kinetic proofreading and
early T-cell recognition: revisiting the speed, energy, accuracy
trade-off (2017). Arxiv.org/abs/1703.03398v2.

[19] Banerjee, K., Kolomeisky, A. B. and Igoshin, O. A. Elucidating
interplay of speed and accuracy in biological error correction,
Proc. Natl. Acad. Sci. USA 114, 5183 (2017).

[20] Banerjee, K., Kolomeisky, A. B. and Igoshin, O. A. Accuracy
of substrate selection by enzymes is controlled by kinetic dis-
crimination, J. Phys. Chem. Lett. 8, 1552 (2017).

[21] Rao, R. and Peliti, L. Thermodynamics of accuracy in kinetic



9

proofreading: dissipation and efficiency trade-offs, J. Stat.
Mech. Theor. Exp. 2015, P06001 (2015).

[22] Ehrenberg, M. and Blomberg, C. Thermodynamic constraints
on kinetic proofreading in biosynthetic pathways, Biophys. J.
31, 333 (1980).

[23] Freter, R. R. and Savageau, M. A. Proofreading systems of mul-
tiple stages for improved accuracy of biological discrimination,
J. Theor. Biol. 85, 99 (1980).

[24] Sartori, P. and Pigolotti, S. Kinetic versus energetic discrimina-
tion in biological copying, Phys. Rev. Lett. 110, 188101 (2013).

[25] Lan, G., Sartori, P., Neumann, S., Sourjik, V. and Tu, Y. The
energy-speed-accuracy trade-off in sensory adaptation, Nat.
Phys. 8, 422 (2012).

[26] Holy, T. E. and Leibler, S. Dynamic instability of microtubules
as an efficient way to search in space, Proc. Natl. Acad. Sci.
USA 91, 5682 (1994).

[27] Lang, A. H., Fisher, C. K., Mora, T. and Mehta, P. Thermody-
namics of statistical inference by cells, Phys. Rev. Lett. 113,
148103 (2014).

[28] Sartori, P., Granger, L., Lee, C. F. and Horowitz, J. M. Thermo-
dynamic costs of information processing in sensory adaptation,
PLoS Comp. Biol. 10, e1003974 (2014).

[29] Parrondo, J. M. R., Horowitz, J. M., and Sagawa, T. Thermody-
namics of information, Nat. Phys. 11, 131 (2015).

[30] Still, S., Sivak, D. A., Bell, A. J., and Crooks, G. E. Thermody-
namics of prediction, Phys. Rev. Lett. 109, 120604 (2012).

[31] Das, J. Limiting energy dissipation induces glassy kinetics in
single-cell high-precision responses, Biophys. J. 110, 1180
(2016).

[32] Ahsendorf, T., Wong, F., Eils, R. and Gunawardena, J. A frame-
work for modelling gene regulation which accommodates non-
equilibrium mechanisms, BMC Biol. 12, 102 (2014).

[33] Qian, H. Reducing intrinsic biochemical noise in cells and its
thermodynamic limit, J. Mol. Biol. 362, 387 (2006).

[34] Nguyen, M. and Vaikuntanathan, S. Design principles for
nonequilibrium self-assembly, Proc. Natl. Acad. Sci. USA 113,
14231 (2016).

[35] Horowitz, J., Zhou, K. and England, J. Minimum energetic cost
to maintain a target nonequilibrium state, Phys. Rev. E. Stat.
Nonlin. Soft Matter Phys. 95, 042102 (2017).

[36] Gunawardena, J. A linear framework for time-scale separa-
tion in nonlinear biochemical systems, PLoS ONE 7, e36321
(2012).

[37] Mirzaev, I. and Gunawardena, J. Laplacian dynamics on gen-
eral graphs, Bull. Math. Biol. 75, 2118 (2013).

[38] Gunawardena, J. Time-scale separation: Michaelis and
Menten’s old idea, still bearing fruit, FEBS J. 281, 473 (2014).

[39] Thomson, M. and Gunawardena, J. Unlimited multistability in
multisite phosphorylation systems, Nature 460, 274 (2009).

[40] Dasgupta, T., Croll, D. H., Owen, J. A., Vander Heiden, M. G.,
Locasale, J. W., Alon, U., Cantley, L. C. and Gunawardena, J. A
fundamental trade off in covalent switching and its circumven-
tion by enzyme bifunctionality in glucose homeostasis, J. Biol.
Chem. 289, 13010 (2014).

[41] Hill, T. L. Studies in irreversible thermodynamics IV. Diagram-
matic representation of steady state fluxes for unimolecular sys-
tems, J. Theoret. Biol. 10, 442 (1966).

[42] Schnakenberg, J. Network theory of microscopic and macro-
scopic behaviour of master equation systems, Rev. Mod. Phys.
48, 571 (1976).

[43] Johansson, M., Lovmar, M. and Ehrenberg, M. Rate and accu-
racy of bacterial protein synthesis revisited, Curr. Opin. Micro-
biol. 11, 141 (2008).

[44] Hill, T. L. Free Energy Transduction and Biochemical Cycle
Kinetics (Dover Publications, New York, USA, 2004).

[45] We note that Banerjee et al. imposed one additional constraint
on their numerical values, following [3], by assuming that the
correct and incorrect substrates used the same external chemi-
cal potential to break thermodynamic equilibrium; see equation
(2) in [19]. While this is reasonable, we have followed Hopfield
here and not made that assumption in our analysis and calcula-
tions. We also had to estimate two parameter values for the ri-
bosome variants in Fig. 3(b), for which experimental data were
not available, and did so by random sampling, as explained in
Supplementary Table 1.


