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In living cells, chemical reactions form complex networks. Dynamics arising from such networks
are the origins of biological functions. We propose a novel mathematical method to analyze bi-
furcation behaviors of network systems using its structure alone. Specifically, a whole network is
decomposed into subnetworks, and for each of them, the bifurcation condition can be studied inde-
pendently. Further, parameters inducing bifurcations and chemicals exhibiting bifurcations can be
determined on the network. We illustrate our theory using hypothetical and real networks.

I. INTRODUCTION

In living cells, many chemical reactions are connected,
sharing their products and substrates and constructing a
large network. Biological functions are believed to arise
from network dynamics of chemical reactions. Many ex-
amples of chemical reaction networks in living cells are
available in databases [1-3], which are the accumulation
of experimental results in biochemistry. On the other
hand, the dynamics resulting from such complex network
systems are not understood sufficiently, because of their
complexity and limited information of kinetics and pa-
rameters.

It is widely considered that biological functions are reg-
ulated by the modulation of amounts or activities of en-
zymes. One popular experimental approach to under-
stand the dynamics of such systems is to examine their
sensitivity: each enzyme mediating a reaction in the sys-
tem is increased/decreased or knocked out separately,
and then the responses in concentrations of chemicals
or their fluxes are observed [4]. In the previous stud-
ies [5-7], we developed a mathematical method, which
determines sensitivity of steady states of chemical reac-
tion networks to perturbations of parameters (enzyme
amount/activities in the case of metabolism) from net-
work structures. The method is based on an augmented
matrix A (see Eq. (4)), where the distribution of nonzero
entries directly reflects network structures. One of the
striking results is the law of localization [6]. A substruc-
ture (subset of chemicals and reactions) in a network sat-
isfying a topological condition is called a buffering struc-
ture (Fig. 1(1), (2)), which has the property that per-
turbations of reaction rate parameters inside a buffering
structure influence only concentrations and fluxes inside
this structure, and the outside remains unchanged under
the perturbations.

* E-mail address: takashi.okada@riken.jp

Another important aspect of biological systems is qual-
itative change (i.e. plasticity) of behaviors induced by
enzyme modulations or external conditions. Mathemat-
ically, these plastic behaviors can be interpreted as bi-
furcation behaviors of chemical reaction systems. There
are some examples of mathematical studies for small and
specific biological systems, where the dynamics is phe-
nomenologically modeled by simple ordinary differential
equations [8]. However, it has been considered difficult
to analyze bifurcation properties for large complex net-
works, because of their large number of variables and pa-
rameters. At the same time, bifurcation properties have
been usually studied under the assumption of specific ki-
netics, despite our poor knowledge of the actual kinetics
in living cells. In other words, it has been considered im-
possible to study bifurcation behaviors of large systems
from network information alone.

In this paper, we establish a novel theoretical method
to study steady-state bifurcations of chemical reaction
systems from the network information (see Fig. 1). This
is achieved by (i) proving an equivalence between the Ja-
cobian matrix J of a reaction system and that of the
augmented matrix A; (ii) investigating the dependence
of the entries of A on reaction rates; and (iii) showing the
relation between the null vectors of the matrices J and
A. We call the method “structural bifurcation analysis
(SBA)”. SBA leads to three important conclusions: (i)
Factorization: bifurcation behaviors in a complex net-
work can be studied by decomposing it into smaller sub-
networks based on a topological condition on networks.
For each subnetwork, the condition for bifurcation occur-
rence is determined from its structural information. (ii)
Inducing parameters: for each subnetwork, bifurcation
parameters are identifiable on the network. (iii) Bifurcat-
ing chemicals: for each subnetwork, chemicals exhibiting
bifurcation behaviors are identifiable on the network. We
remark that our usage of “parameter” always means a
parameter associated with a reaction rate.

SBA allows us to study bifurcation behaviors based



on network information, even for large systems, by de-
composing the network into subnetworks. We apply our
method to hypothetical and real reaction networks, and
demonstrate practical usefulness to analyze complex sys-
tems.

II. REVIEW OF STRUCTURAL SENSITIVITY
ANALYSIS

We label chemicals by m (m = 1,--- , M) and reactions
by n(n = 1,---,N), and consider a spatially homoge-
neous chemical reaction system consisting of the follow-
ing reactions

M M
S ynXm = Y G Xm, n=1,...,N.
m=1 m=1

A state of the reaction system is specified by concentra-
tions x,,(t), and obeys the differential equations

N

dxpy,

% = VnnTa(@ikn), m=1,..., M. (1)
n=1

Here, the M x N matrix v is called the stoichiometric
matrix, defined as v, = ¥, — y,,. The reaction rate
functions r, depends on x and also on rate parameters
kn. See (10) and (11) for an example.

To present the key idea, we assume that v does not
have nonzero cokernel vectors (see Supplemental Mate-
rial for the general case [9]), implying that rank(v) =
M < N and the steady-state concentrations x* and
fluxes r* are continuous functions of parameters {k, }2V_;.
In steady state, the flux r* is expressed, in terms of the
basis {ca JA—M of the kernel space of v, as

K
rt = Zuo‘ca, K:=N—-M =dimkerv. (2)

a=1

Now we review the structural sensitivity analysis [5]
and the law of localization [6]. Under perturbation
ki — ka+0ks (R =1,...,N), the concentration changes
d0axy, and the flux changes 57, at the steady state x*
are determined simultaneously by solving the following
equation

A(51$

a0 ory
m) = —diag (o o gk ).

k1 Okn
(3)

where the horizontal line indicates structure of block ma-
trices, dap = (Saut, ..., 0auf)T is the change of the coef-
ficients u® in (2) under the perturbation: ks — ki + 0ka,
and the matrix A is given by

A:(g_;w:w*_cl"'_cK)' (4)

Here each entry 0r, /0, in A is given by

0L,
ory
O

(5)

Ora oL () if z,, influences reaction n,
=0 otherwise.

See (13) for an example. Note that whether each entry
in A is zero or nonzero is determined structurally (i.e.
only from information of the stoichiometric matrix v and
the qualitative dependence (5)). Also note that, qualita-
tively, the responses d;x,, and 0,57, are given by entries
of —A =1 since the right-hand side of (3) can be regarded
as -1 times the identity matrix (when Zz=dk, > 0).

For a given network I', we consider a pair I'y = (m,n)
of a chemical subset m and a reaction subset n such that
n includes all reactions influenced by chemicals in m (in
the sense of (5)). We call such a T's as output-complete.
For a subnetwork I's = (m,n), we define the index x(T's)
as

X(Fs) = |m| = [n| + (#cycle). (6)

Here, |m| and |n| are the numbers of elements of the sets m
and n, respectively. #cycle is the number of independent
kernel vectors of v whose supports are contained in n. In
general, x(T's) is non-positive (see [6]). Then a buffering
structure is defined as an output-complete subnetwork I'y
with x(T's) = 0.

Suppose I's = (m,n) is a buffering structure. By per-
mutating the column and row indices, the matrix A can
be written as follows: [6]

|m|+(#eycle)
e
b3
A= [l I st;%u?rse ‘ , (7)
0 [ Ap

where the rows (columns) of Ar_ are associated with the
reactions (chemicals and cycles) in I's. Similarly, those
of A  are associated with the complement [, :=T\T,.

The law of localization [6] is a consequence of the block
structure (7) of A: Steady-state concentrations and fluxes
outside of a buffering structure does not change under
any rate parameter perturbations in n. In other words,
all effects of perturbations of k5 in n are indeed localized
within I';.

IIT. STRUCTURAL BIFURCATION ANALYSIS

We shortly sketch the conventional bifurcation analysis
(see for example [10-14]). Set J := Vg—gw:w*- Let the
eigenvalues {0,,}M_; of J be ordered so that Reo; >
Reoy > ...> Reo,. Then the state x* is stable if all
Re o, < 0, whereas, the state * is unstable if Reoy > 0.
Moreover, a bifurcation occurs if Re o1 changes its sign as
some parameter ky is varied through some critical value,
say kj. Since detJ = H%Zl Om, a bifurcation occurs if
det J changes its sign as kj is varied through k;. Thus,



the study of onset of bifurcation is reduced to search of
zeros of det J.

The standard bifurcation analysis is based on the Ja-
cobian matrix of (1). However, the network structures
and the reaction rates are indistinguishably mixed in the
Jacobian matrix J. Thus, it is difficult to perform bifur-
cation analysis of large systems based on the Jacobian.
In the following, we present a method to perform bifur-
cation analysis directly from network structures, which
is available even when networks are large.

Now, we explain structural bifurcation analysis. The
key relation is (see Appendix A for the proof.)

det J ox det A, (8)

Then (8) implies that the study of onset of bifurcation
can be reduced to search of zeros of det A. Further, the
existence of the buffering structure I'; leads to

det J oc det Ar, - det Ap . 9)

With the use of additional facts which are stated below
and proven in Appendix, we can derive several implica-
tions from the factorization (9). First, when detJ = 0,
we have either det Ar, = 0 or det Ap_ = 0. Therefore,
the possibility of bifurcation occurrences in the whole sys-
tem can be studied by examining the possibility for each
determinant structure, based on network structures.

Second, from the law of localization, det Ap_ depends
only on parameters outside I's. By contrast, det Ar,
depends on parameters in the whole network I' (see
Appendix B2 for the rigorous proof). Thus, bifurca-
tions associated with det Ap are triggered only by tun-
ing parameters in I',, while bifurcations associated with
det Ar, can be induced by both parameters in I's and
those in I’y (see inducing parameters in Fig. 1 (4)). In
particular, in the former case, critical values (values at
bifurcation points) of parameters in I'y are independent
of parameters in I';.

Third, the null vector of J at a bifurcation point with
det Ar, = 0 has nonzero components only for chemicals
in I'y, whose proof is postponed to Appendix C for sim-
plicity. This implies that only chemicals in 'y exhibit
bifurcations at this bifurcation point. By contrast, for
bifurcations associated with det Ap , all chemicals in I"
exhibit bifurcations (see bifurcating chemicals in Fig. 1
(5))-

Equation (9) can be extended to multiple buffering
structures. For example, a nested sequence of buffer-
ing structures I'y C ... C I'p gives the relation det J
det Ar, HSL:_11 det Ap_ \r, (see Appendix B3 for non-
nested cases). Together with the above three arguments
for a single buffering structure, we can have the following
three principles for multiple buffering structures:

(i) Factorization: The bifurcation behaviors in a com-
plex network can be studied by decomposing it into
smaller subnetworks called determinant structures, which
are defined as buffering structures with subtraction of
their inner buffering structures (Fig. 1 (3)). For each

determinant structure, the condition for bifurcation oc-
currence can be examined from its network structure.

(ii) Inducing parameters: For each determinant struc-
ture D, the bifurcation parameters associated with
det Ap = 0, termed as the inducing parameters for D,
are identifiable on the network. The bifurcations are in-
duced by the parameters which are outside any buffering
structures non-intersecting with the determinant struc-
ture D (Fig. 1 (4)).

(iii) Bifurcating chemicals (and fluzes): For each deter-
minant structure D, the chemicals exhibiting bifurcation
behaviors associated with det Ap = 0, termed as the bi-
furcating chemicals for D, are identifiable on the network.
When the bifurcation condition is satisfied, the bifurca-
tion of steady-state concentrations (and fluxes) appears
only inside the (minimal) buffering structure containing
the determinant structure D (Fig. 1 (5)).

(1) Example network

‘—>!OL\—?0—>E‘ A=

(4) Inducing parameters %y

(2) Buffering structures in A
chemicals, cycles

reactions
=[]
«
o
%

7 //
Vi
(3) Factorization of /4/ )
bifurcation condition
I_F4—
Ar, =
r - [F_sj

(5) Bifurcating chemicals

FIG. 1: Summary of the structural bifurcation analysis.
(1) Buffering structures (red boxes) in an example
network. (2) Buffering structures correspond to
nonzero square blocks in A. (3) Bifurcations are
governed by the product of determinant structures:
det A = det Ar, xdet Ap,\r, xdet Ar, xdet Ar,\(r,urs)-
For each of the determinant structures,

Iy, o\ Ty, T3, Ty \ (T2 UT3), the inducing parameters
and bifurcating chemicals are shown by the shaded
region in (4) and (5) respectively.

IV. HYPOTHETICAL NETWORK

We demonstrate the structural bifurcation analysis in
the system in Fig. 2. The dynamics is described by the
following differential equations:

Tl(kl)
d T A 7’2(17A§k2>
E rB =V T3($A,$B;k3) (10)
fe ra(zp, xc; ka)

rs(xB,vc;ks)
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FIG. 2: System consisting of five reactions, Ey A,
k
A k:S, B, B kg C, C " The three blue dashed arcs
2

indicate the regulations explained in the text. The red
box indicates a buffering structure I';.

where the stoichiometric matrix v is given by

1 -1 1 0 0
v=101 -1 -1 0 |. (11)
00 0 1 —1
The kernel space of the matrix v is spanned by
¢ =(0,1,1,0,007,¢o = (1,1,0,1,1)T. (12)

Every reaction rate depends on its substrate concen-
tration. Reaction rates rs,r;, and r4 are also regu-
lated by A, B, and C, respectively. Then, this system
has a single buffering structure, I's = ({A}, {2, 3}) with
x(I's) = 1—-2+1 = 0, as shown in Fig. 2. There-
fore, this system has two determinant structures, I's; and
Is:=({B,C},{1,4,5}).

According to our theory, qualitative sensitivity (re-
sponses of concentrations and fluxes to parameter pertur-
bations) and bifurcation behaviors are determined by the
matrix A. By permutating the row index as {2,3,1,4,5}
and the column index as {4, ¢1, B, C, co}, the matrix A
and the determinant are given by

A 1] 0 0 1
T3,A 1 73,B 0 0
A_(AOFS A*ﬁ )_ 0 0] 0 0 1], (13)
Is 0 0 T4,B T4,C 1
0 0 T5,B T5,C 1

where nonzero %hg:m* is written by ., (m = A,
B, C), and, especially, the three entries, 73 4,75 8,74,C,
correspond to the three regulations in Fig. 2. We assume
that rates increase as substrate concentrations increase,
ie. rpm > 0, which is satisfied both in the mass-action
and the Michaelis-Menten schemes.

As we explained below (5), the qualitative sensitivity
is given by —A 1, although we do not study it in detail
here. Below, we study bifurcation behaviors of steady
states of the system. The onset of bifurcations can be
studied from the determinant,

det A = (194 —73.4)(r5,BT4,c — T4.BT5,C), (14)

det Ars det Af*s

where each factor corresponds to a determinant structure
(T's and I, respectively). Since 7y, > 0, the expression

of det A implies that the regulation of r3 by A (i.e. 73,4)
is necessary for the bifurcation associated with det Ap_ =
0. Similarly, both of the regulations of r4 by C and r5
by B (i.e. r4c,75 ) are necessary for the bifurcation
associated with det Ap = 0. In this way, the possibility
of bifurcations and the regulatory conditions for it can be
examined from structural information alone.

For numerical demonstration, we assume the following
kinetics:

kg AI?4
=\ ki, k k 1 .
r < 1, R2TA,R3TB < + ZCE‘ +5 )

ka,cat kb \ )
k 1 : k 1 . . (15
4517B<+x20+5 , ks +$QB+5 (15)

The parameters are classified into {ko, ks, k3 4} € T,
and {k1,ka, ks, ksc, ks 5} € T's. We remark that the
discussion in the remaining of this section is analytically
predicted by our SBA theory in section III. The special
choice of kinetics and the numerical computation are only
for illustration of our theory.

First, we consider bifurcation associated with det A .
The inducing parameters for the determinant structure
'y are the parameters in I, (the green-shaded region in
Fig. 3 (A)). As seen from the plots of det Ar, and det Ap_
in Fig. 3 (a), the parameter ks g in 'y actually induces
sign changes of det Ar_ but not those of det Ar . The
bifurcating chemicals for T’y are all chemicals {A, B, C}
(see the purple-shaded region in Fig. 3 (A)). Fig. 3 (a)
actually shows that all of A, B, and C exhibit steady-
state bifurcations.

Next, we consider the other bifurcation, which is as-
sociated with det Ar,. The inducing parameters for the
determinant structure I'y consist of all parameters in I'y
and I’y (see the green-shaded region in the left panel of
Fig. 3 (B)). The plots of det Ar, in Fig. 3 (b-1) show that
the parameter k3 4 € I's indeed induces bifurcations as-
sociated with det Ar,. The bifurcating chemicals for I's
are the chemicals in Ty, i.e. {A} (the purple-shaded re-
gion in Fig. 3 (B)). This can be confirmed from the plots
for =¥, z%,xf in Fig. 3 (b-1), where only the steady-
state of chemical A € T’y bifurcates at the bifurcation
point, while chemicals B and C € ', remains constant as
ks a € I's is varied, due to the law of localization.

There is another choice of bifurcation parameter for
the bifurcation associated with det Ar,, as the inducing
parameters for 'y are not only parameters in Iy but also
those in I'y (see the green-shaded region in the left panel
of Fig. 3 (B)). The parameter ks 5 € 'y, which was cho-
sen as a bifurcation parameter in Fig. 3 (a), also induces
the bifurcation associated with det Ap_ (see the plots for
det Ap, in Fig. 3 (b-2)). Asin the case of Fig. 3 (b-1), the
bifurcating chemicals are in I’y (see the purple-shaded re-
gion in Fig. 3 (B)). Thus we see that only chemical A € T’y
bifurcates at the critical point in Fig. 3 (b-2).

In Fig. 3 (b-2), the non-bifurcating chemicals {B, C'}
exhibit changes of their steady-state values to the change
of the parameter ks p, while their values are constant in
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FIG. 3: Left panel: In (A) and (B), the dark-colored regions (at the middle) indicate determinant structures, and
the green-shaded region (at the top) and purple-shaded region (at the bottom) indicate inducing parameters and
bifurcating chemicals, respectively. Right panel: det Ar,, det Ar_, z%, x5, x5 versus ks p in (a), k3 4 in (b-1),

k5)B in (b—2)

Fig. 3 (b-1). This difference in behaviors of the non-
bifurcating chemicals can be understood by the law of
localization: a parameter in I'y (ks ) influences all the
chemicals in T'y and T, while a parameter in T', (ks,a)
influences only the chemical (A) in Ts.

Finally, we remark that although the same bifurcation
parameter, ks g, is used in Fig. 3 (a) and Fig. 3 (b-2),
different sets of chemicals exhibit bifurcation behaviors:
While ks g induces the bifurcations of all the chemicals in
Fig. 3 (a), ks, p does not induce the bifurcations of chemi-
cals in 'y in Fig. 3 (b-2). In this way, the same parameter
may induce bifurcations for different sets of chemicals de-
pending on which factor of det Ar, and det Ay changes
its sign at the critical values of this parameter.

V. E. COLI NETWORK

The central carbon metabolic network is one of the
most important networks in many organisms. The basic
structures are shared between bacteria and human. In
this network, glucose is decomposed into smaller metabo-
lites and organisms obtain chemical energies through the
reaction processes.

A cell may exhibit qualitatively different metabolic

See Appendix E 4 for specific parameter values.

profiles, which are induced by, for example, enzyme mod-
ulations or environmental changes. A well-known exam-
ple is the Warburg effect [15], where tumor cells utilize
glycolysis to produce ATP even in the presence of oxygen.
See also [8] for a study of environmental effects on bacte-
ria. Theoretically, such qualitative change of metabolic
states can be understood as bifurcation phenomena.

In this section, as an application of SBA to a real net-
work, we study the central carbon metabolic network of
E. coli [6] shown in Fig. 4, which consists of 28 metabo-
lites and 46 reactions, including glycolysis, the tricar-
boxylic acid (TCA) cycle and the pentose phosphate
pathway. We assume that each reaction rate function
depends on its substrate concentrations.

The network possesses 17 determinant structures, as
shown in Fig. 5, where each box represents a determi-
nant structure. This in turn means that the matrix A
has the structure shown in Fig. 6, where each square
matrix corresponds to a buffering structure. In Fig. 6,
the submatrix Aps is associated with the determinant
structure colored in green in Fig. 4 (corresponding to the
glycolysis), and the submatrix A~ is associated with
the determinant structure colored in red in Fig. 4 (cor-
responding to the entrance of the TCA cycle from the

glycolysis)
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FIG. 4: Central carbon metabolic network of E. coli.
Dashed curve indicates a regulation from PEP to
reaction 11 (r11,prp > 0). Each pathway with a

specific color (red, blue, green or black) is a
determinant structure. In terms of buffering structures
Is(s=1,...,17) written in Appendix D, the blue
subnetwork is I'y U...UTI'1g, and the black
F13 U F14 U F15 U F16. The red subnetwork T is given
by I'1; with subtraction of the blue subnetwork, and the
green subnetwork I is given by the whole network I'y7
with subtraction of the black subnetwork and I';;.
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FIG. 5: Top panel: 17 determinant structures and their
relationship. Each box, containing a set of chemicals
and reactions (indicated by numbers), is a determinant
structure. A box plus its downward boxes gives a
buffering structure (see Appendix E 2 for the explicit
list of buffering structures). Bottom panel: The
schematic picture of the relationship corresponding to
the top panel.

Thus, det A is factorized into 17 determinant factors.

A

Ar

FIG. 6: The matrix A of the E. coli network. There are

17 square submatrices (enclosed by lines) each of which

corresponds to a buffering structure. See Appendix E 3
for the detailed expression of A.

Up to a constant factor, it is given by

det A = 71 Glucose X 75,F1,6P X T6,DHAP X T'8,3PC
X T44,Acetate X T45,Lactate X 746,Ethanol X 7'24,CIT
X T26,2-KG X T'27,SUC X 128 FUM X 735 Glyoxylate
X T7,G3P X T'40,R5P
X (r17,X5P7'19,87PT'21,E4P + T'18,87PT20,E4PT"21,X5P)
xdet A, x det A,
(16)

The explicit expressions for the factors det A/, det Ap»
are given in Appendix E (see (E4) and (E5)).

We can see from (16) that, among the 17 determinant
structures, only the single determinant structure I'’, col-
ored in red in Fig. 4, has sign-changing determinant fac-
tors, and so can exhibit bifurcation. The reactions asso-
ciated with the inducing parameters for the determinant
structure I are colored in red and green (corresponding
to the glycolysis and the entrance of the TCA cycle). The
bifurcating chemicals (and fluxes) are colored in blue and
red (corresponding to the TCA cycle and its entrance).
Again these conclusions are independent of the choice of
kinetics and rate parameters. For an illustration for these
analytical findings, we use the mass-action kinetics with
reaction 11 regulated by PEP in Fig. 7 (see Appendix E4
for details). Finally, the biological implications of these
aforementioned results are given in the next section.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper we proposed a mathematical method,
SBA, to study bifurcation behaviors of reaction systems
from network structures alone. In our method, bifurca-
tions of the whole complex system are studied by factoriz-
ing it into smaller subnetworks (determinant structures),
which are defined from local topology of the network. For
each determinant structure, the bifurcation condition is
studied, and a set of parameters possibly inducing the
onset of bifurcations and a set of chemicals exhibiting
bifurcation behaviors are determined. While biological
functions are considered to arise from dynamics based
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for the kinetics and the parameter values used here.

on reaction networks and modulation of enzymes, the
complexity of networks has been a large obstacle to un-
derstand such systems. Our theory should be strongly
effective to study behaviors of complex networks and pro-
mote systematic understandings of biological systems.

Our method is applicable to any steady-state bifurca-
tions even if reaction systems have cokernel vectors. In
the SM, we apply our theory to a phosphorylation system
[16] with cokernel vectors (i.e. conserved concentrations),
and the First Schlogl Model [17], exhibiting transcritical
bifurcations.

One of the advantages of our method is that our
method utilizes only information of the network struc-
ture and do not assume other quantitative details. Most
of previous theoretical studies of chemical reaction sys-
tems assume specific kinetics and parameter values for
reaction rate functions, more or less arbitrarily. In the
framework of mass-action kinetics, a plenty of theoret-
ically interesting results have been obtained (e.g. see
[18-23]). However, it is not known whether these results
could be applied to the system with different types of
kinetics. Moreover, it would be difficult to determine
actual kinetics of reactions in living cells precisely.

Another advantage of our method is that we can de-
compose a network into smaller subnetworks, through
factorization of the bifurcation condition based on net-
work topology. Our method is especially useful to study
large networks such as metabolic networks. In the central
carbon metabolism, we demonstrated that, if the net-
work information is correct, bifurcations can be induced
by enzymatic changes in the glycolysis and the entrance
part of the TCA cycle, and bifurcation behaviors can be

observed only for the metabolites and fluxes inside.

We note that, under the assumption of the mass-
action kinetics, Clarke [25-27] introduced stoichiomet-
ric network analysis to the study of complex reaction
networks. His theory allows one to conclude that the
reaction rates (r*) associated with the positive steady
states (x*) is the convex linear combination of nonneg-
ative kernel vectors of the stoichiometric matrix of the
system, which are conventionally termed as extreme cur-
rents [27]. This correspondence was rigorously shown
by Gatermann, Eiswirth, and Sensse [28] via the theory
of algebraic geometry in the mass-action scheme. The
mass-action assumption also allows one to rewrite the Ja-
cobian of the sytem evaluated at any positive steady state
as a convex combination of contributions from extreme
currents. The bifurcation analysis can be performed by
searching for all of possible convex combinations, which
were carried out for some specific examples by Clarke
and his coauthors [24, 29]. Although Clarke’s theory can
work well for the existence of positive steady states and
give a method to perform bifurcation analysis of systems
with mass-action kinetics, it cannot work for systems
with non-mass-action kinetics. Also, even if network sys-
tems obey mass-action law, the Clarke’s approach is not
efficient for detecting bifurcation points if a network is
large.

We can expect to use our theory as a tool to reveal
unknown reactions or unknown regulations of chemical
networks by combining theory with experimental mea-
surements. Our knowledge of chemical reaction networks
of many organisms is possibly incomplete, at present.
We can compare our prediction of bifurcation behaviors



based on a “known” network with experimental observa-
tions. If our prediction disagrees with the experimental
results, it will imply incompleteness of the network infor-
mation.

Finally, our study might suggest an evolutional origin
of bifurcation behaviors. The theory implies that bifur-
cation behavior, qualitative change of behavior, emerges
modularly in reaction systems, and that the modular-
ity originates from network structures, i.e. determinant
structures. It is suggestive, from evolutionary view-
points, that, in the metabolic network, mathematically
defined modules of plasticity (i.e. determinant struc-
tures) overlap with pathways identified from biological
functions: the green in Fig. 4 corresponds to the glycoly-
sis, the black to the pentose-phosphate pathway, the blue
to the TCA cycle, and the red to the entrance of the TCA
cycle.
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Appendix A: The equivalence between the Jacobian
matrix and the matrix A when K. =0

To establish (8) (or more precisely (A6)), we first note
that the assumption dim cokerv := K. = 0 implies that
N > M and K = N — M, where K := dim ker v. Note
that, in general, for any M x N matrix v, the identity
M +dim ker v = N +dim coker v holds. Then employing
the QR decomposition to the matrix v”, we can factor
the vT as the product of an N x N unitary matrix Q
and an NV x M upper triangular matrix ST where ST is
the transpose of the matrix S. As the bottom K rows
of an N x M upper triangular matrix consist entirely of
zeroes, we thus have

ST
Ox %M

v = Q8" =[Q: Q. { } =Qis”, (A1)

where ST is an M x M upper triangular matrix, 0 x s
is the K x M zero matrix, Q; is a N x M matrix, Q2 is
a N x K matrix, and both Q; and Qs have orthogonal
columns. Further, the column space of Q; is equal to the
row space of v, whereas the column space of Qs is equal
to the null space of v, which follows from the fact that
the row space of any nontrivial matrix is the orthogonal
complement to its null space. To summarize, we have v =

SQT. For simplicity, we let the basis {—c,}X_; consist
of the columns of Q.

Set w = [wy wo]? = QTg—;Z, where wy is a M x M
matrix, and wo is a K x M matrix. Recall that QQ” =
In. Then we can rewrite the matrix g—g of r at the steady

state * as follows:

or = Q(QTg—;) = [Ql QQ] {x; ] = Q1w + Qows.

ox
(A2)
Together with (Al) and the orthogonal property of Q,
we can deduce that

J = Vg_:[: = (SQ{)(Qlwl + QQWQ) = SWl.

This in turn implies det(J) = det(S) det(w1). Recall that
the rank (rank(v)) of the matrix v is M. Then we have
rank(S) = rank(SQ7) = rank(v) = M. Hence S is a
square matrix of full rank, and so we can conclude that

(A4)

On the other hand, in view of the orthogonal properties
of Q, Q1, and Q2, the matrix A (defined in the main text)
can be written as

0
A =[5 Quf = [Qw Qi = Qlw Qs = Q[ ! J¥¥

wa Ig

(A3)

det(wy) = (det(S)) ™" det ().

Since Q is a square orthogonal matrix with det(Q) = +1,
we can thus deduce

det(wy) = £det(A). (A5)
Then from (A4) and (A5), we obtain the following result.

Theorem 1

~ det(J)
det(A) = idet(S)'

(A6)

Appendix B: Structural Factorization of det A
when K. =0

Here, we explain the factorization of A after review-
ing buffering structures and the law of localization when
K.=0.

1. Buffering structure and the law of localization
when K. =0 (review of [6])

We construct a subnetwork I's = (m, n), a pair of chem-
icals and reactions, as follows:

1. Choose a subset m C X of chemicals.

2. Choose a subset n C E of reactions such that n
includes any reaction n whose rate function r, ()
is regulated by (at least one member in) m (namely,
gm% # 0 for some m € m). In other words, we can
construct n by collecting all reactions n that are

regulated by m plus any other reactions.



We call a subnetwork satisfying the above conditions
output-complete. ~ Below, we consider only output-
complete subnetworks. To proceed, we introduce the def-
inition that a kernel vector v € R” has support contained
in n. Indeed, for the reaction subset n, we can associate
the vector space V' (n):

V(n) := span{v|v € kerv, P'v =v}.

Here, P" is an N x N projection matrix onto the space
associated with n defined by

" = O if n,n" € n. Otherwise Py, = 0.
Then we say that a kernel vector v € RY has support
contained in n if v € V(n).

For a subnetwork I's = (m,n), we define the index

X(T's) by the relation

X(Ts) = Im| = [n] + (#eycle). (B1)
Here, |m| and |n| are the number of elements in the sets
m and n, respectively. The #cycle is the number of in-
dependent kernel vectors of the matrix v whose supports
are contained in n. In general, x(T's) is non-positive (see
[6])-

Then a buffering structure is defined as a subnetwork
I's with x(I's) = 0.

It was proved in [6] that, for a buffering structure
I's = (m,n), the steady state values of chemical con-
centrations and reaction rates outside I'y are indepen-
dent of the reaction rate parameters k,, of reactions in
n. Specifically, let * = (z7,...,z},) be the steady state

of (1). Note that x* depends on the parameter vector
k= (/Cl, N ,kN)T. Set
r =0r],...,ry) = (r(x* k1), ... rn (x5 k).

Then, for any n’ € n, and any m € m¢ and n € n°, one
has

oz}, ory
D 0, O =0, (B2)

where m® = X\ m and n® = E \ n are the complementary
set of m and n, respectively. For ease of notation, we set

I := (m®n°).

We remark that a whole network I' always satisfies
the condition of the law of localization because x(T') =
M—-N+K=K.=0.

2. Factorization of the matrix A for a single
buffering structure when K. =0

Suppose that I'y is a buffering structure. Then, by
permuting the columns and rows of the matrix A, the

resulting matrix (still denoted by A for simplicity) can
be written in the following form [6]:

_( Ar. Arr,
A= <0nc|x|n| Ar, )
In the following, for ease of presentation, for a subnet-
work Ty = (m,n), if no confusions can arise, we write
(m,n) € T instead of “m € m and n € n”. The en-
tries of A, consist of components of the constant vectors
v € V(n), and the term g;:; peg- With (m,n) € Ty,
which corresponds to self-regulations inside T'y (regula-
tions from chemicals in I'y to reaction rate functions in
I's). Similar characteristics for the entries of Ag can
be observed, which corresponds to self-regulations inside
the complementary part I'y. The non-constant entries of
the upper-right matrix A correspond to regulations
from 'y to I'y. Finally, the lower-left block in (B3) is the
zero matrix because (i) the kernel vectors in I'y do not
have support on reactions in n® and (ii) 9ry,/0z,, = 0 for
n € n°, m € m, which follows from the condition that I'g
is output-complete (see also [6]).
We have the following results.

(B3)

Theorem 2 The followings hold for a reaction network
T with a buffering structure T'.

(i) The determinant of the matriz A can be factorized
as follows:

det A =det Ar, x det Af . (B4)

Note that A . does not contribute to det A.
(i)
OAr.

mzo for n € n.

(B5)
Thus the complementary part Ap_ is independent
of the rate parameters k,, with n € n.

The assertion (i) follows from the block structure
shown in (B3). The assertion (ii) can be proved as fol-
lows: The entries of Ap consist of the term 86;::, .
with (m/,n’) € (m°,n°) and the components of the kernel
vectors of the matrix v, which is obviously independent
of k, for each n = 1,..., N. From the construction of
the subnetwork I'y, 7,/ are functions of variables x,,, with
m’ € m¢ (because, if the function r,, depended also on
T, With m € m, such a reaction n’ should be included

into T's, by construction of the subnetwork I's). There-

aTn/ . .
Drr |l p—g €A1 be written in terms

of %, with m’ € m®. Then, these derivatives

fore, the derivatives
or,/
0x 1 | L=T*

are independent of k,, for n € n due to (B2).

An important remark is that the above theorem can be
applied not only to a single buffering structure but also
for nested buffering structures. For example, a buffer-
ing structure within another larger buffering structure is



studied similarly, by regarding I" as a larger buffering
structure and I'y as a smaller buffering structure in it.
Note that, as we remarked before, a whole network I' is
always a buffering structure.

In summary, for a buffering structure I'y inside a net-
work I', we have proved

det Ap =det Ap, x detAp (B6)

independent of
kg

where kr, denotes the set of parameters of reactions in-
side I';.

3. Factorization of the matrix A for multiple
buffering structures when K. =0

We generalize the above factorization formula (B6)
into multiple buffering structures.

First, we consider a network I' containing L non-
intersecting buffering structures I'y,...,I'r. We write
the complement of the buffering structures as f1,..., L=
M\ U...uI'y), and so I' can be decomposed as

I'=Tyu...ul'y Ufl,...,L- (B?)

For each buffering structure I'y, the columns associated
with chemicals and cycles in I's; have nonzero entries only
for reactions in I'y, by the same reason explained below
(B3). Thus, the matrix A can be written in the following

form:
[Ar,] 0 - 0 App
0 AF2 e 0 AF27F1 ..... L
0 0 o AFLarl ..... L
O N O Fl ))))) 13
where each square matrix Ar, (s = 1,...,L) enclosed

by lines is associated with the buffering structure I'g and
defined as

Ar, = ( (%)Fs

e CSKS). (B9)

Here, the left block, (%)ps, consists of gzL:l with

(m,n) € T, and the right block corresponds to the in-

dependent kernel vectors of v whose support are on re-

actions in T'y (K is the number of the kernel vectors).
Then, we can prove that

L

det A = (H

s=1

det Ar, ) x det Ap,
——

dependent on
kp, and kp

dependent on

where kr: denotes the set of parameters associated with
reactions inside a subnetwork I''. The parameter depen-
dence is determined by using (B6) for every buffering
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FIG. 8: Example network I'. Rectangular boxes,
T'y, I's, 'z, indicate buffering structures. The law of
localization indicates that kr, influences (steady-state
values of chemicals and fluxes in) I'y, kr, influences I's,
krs, ., influences I'y, and kg s influences the whole
network T'.

structure I's (s = 1,...,L). For example, (B6) for the
buffering structure I'y implies that the determinant fac-
tors except for det Ar, is independent of kr, and so on.

We can also factorize a nested sequence of buffering
structures. Consider a network I' consisting of a nested
sequence of L buffering structures I'y C ... C ' :=T.
In this case, the matrix A can be written as

Ar, * * %
0 Ar,r, *
A=1||o0 0 Ar,r, : , (B11)
: . . %
0 0 0 APL\FL—l

where *’s indicate nonzero blocks, and the nested block
structure (indicated by lines) corresponds to the nested
sequence of the buffering structures, I'1,...,I';. By using
(B6) iteratively, we can prove

L—-1

det A= detAr, []detAr  \r.. (B12)
— -

s=
dcpcnkdcnt on dependent on
Ty kr‘s+1 \T's

By using (B10) and (B12), we can factorize the de-
terminant of A for multiple buffering structures and de-
termine the parameter dependence for each factor. We
illustrate the procedure of factorization in an example
network (see Fig. 8): Suppose that a whole network I'
contains two non-intersecting buffering structures I'y and
I'3, and I's further contains a smaller buffering structure
I's inside it;

F=T,Ul3UT3

=T UT2UT32) Ul 3. (B13)

Here, I'y 3 := I'\(I'y UT's) and T'3\2:=I'3\TI'z. In this case,
the matrix A can be written as

AF 0 0 *
Arl 0 * L
0 [Ar * *
A= (0 e )= o A
T 0 0 0 Arp,
(B14)



where each square matrix enclosed by lines corresponds
to a buffering structure. The determinant of A is factor-
ized as

det A= detAr, x detAr, x detAp .
depends on depends on depends on
kpy and kg o kry and kg Rry g
= det Apl X ( det AF2 x det AF3\2 )
N—— ~—— ~———

depends on depends on depends on
kpl and kfl,S kr2'kra\2' and kfl,S kF3\2 and kfl 3
X det Af1,3 . (B15)
—_———
depends on
kp
1,3

In the first line, we have used (B10) with L = 2 for the
whole network T'. In the second line, we have used (B12)
with L = 2, namely (B6), for the buffering structure
I's, where the factor det Ar, is factorized further and its
dependence on kr, is determined more finely.

Appendix C: Equivalence between null vectors of A
and J, and bifurcating chemicals when K. =0

Suppose that a chemical reaction system I' with a
buffering structure I'gy exhibits steady-state bifurcations.
At a bifurcation point, there exist null vectors for the ma-
trix A and the Jacobian matrix J, since det A = det J =
0. Note that, here, for J and A, we call their eigenvectors
with eigenvalue 0 null vectors, rather than kernel vectors,
in order to distinguish them from kernel vectors of v. In
the presence of a buffering structure I'y, the bifurcation
is associated with either det Ar, = 0 or det Ap_ = 0.

In this section, we show that, for a bifurcation associ-
ated with det Ar, = 0, the corresponding null vector v
of the Jacobian matrix J satisfies

vm = 0 for chemical m € Ts. (C1)
Namely, the null vector v of J has support inside chem-
icals in I's when det Ar, = 0. This implies that, for a
bifurcation associated with det Ar, = 0, only chemicals
inside I'y undergo a bifurcating behavior.

The strategy for showing (C1) is to use the null vectors
of Ar, to construct the associated null vector v of the
Jacobian matrix J.

We consider a chemical reaction system of M chemicals
and N reactions where the cokernel space of v consists
only of the zero vector. Suppose that det Ar, = 0 whose
associated buffering structure I's = (m,n) contains |m|
chemicals, |n| reactions, and K; = |n|—|m| kernel vectors,
{c!,...,c®}, of v. By construction, each c® € RV (a =
1,..., Ky) has support on reactions inside I'y, and thus
has the following form,

CIOt
“=(7)

(C2)
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where the upper |n| components (resp. lower N — |n

components) are associated with reactions in I'y (resp.
T's). By using ¢*, Ap, in (B3) can be written as
or
Ar, = ( — ... —cK- > , C3
&, (©3)

r . .

a—)rs is an |n| x |m| matrix whose (n,m) com-
T

ponent is given by 5 9%y with n € n and m € m.
Since det Ap, = 0 there exist a null vector us €

RIM+Xs guch that

where (

AFS’U,S =0. (04)

If we write us = (11, ... sMm|>C1s - - - Cx, ) and substitute

Ar_ in (C3) into Eq. (C4), we obtain

K
orn, :

%nm - Z(C/a)nga =0

=1

(C5)

mem

for any reaction n € n. Note that all indices in (C5) are
associated with T';.

In order to relate (C5) with the Jacobian matrix J of
the whole system I', we rewrite (C5) using indices of the
whole system. First, by using (C2) and g”” = 0 for
m € m,n € n¢ correspondmg to the fact that chemical
concentrations in a buffering structure does not appear
in the arguments of rate functions of reactions outside
the buffering structure, we can rewrite (C5) as

KS

ory, o B
%nm - QZ(C )n<a — 0,

=1

(C6)

mem

where n is any reaction in the whole system I' =
(X,E). Note that ¢ has been replaced by e¢. Fur-
thermore, by introducing an M-dimensional vector v as

v=(n,0,...,0), (C6) can be rewritten as
——

M—|m]|
or X
Z 3xm Z(C Jna =0, (C7)
meX a=1

where the summation of m is taken over all chemicals in
I'. Finally, by multiplying (C7) with the stoichiometry
matrix v and using the fact that ¢ is a kernel vector of
v, we obtain

6rn
Zum n Z 3xm 0, (C8)
n€ek meX
or, equivalently,
> Tt nm = 0. (C9)

meX

Thus, we have proved that det Ar, = 0 is associated with
the null vector v of the Jacobian matrix J, whose support
is inside chemicals in I';. Thus, (C1) is proved.



A similar argument cannot be applied into a bifurca-
tion associated with det Ap = 0: While null vectors of
J associated with det Ar, = 0 do not have support on
chemicals in T, those associated with det Ar =0 gen-
erally have support on both chemicals in I'y and those in
I's This difference comes from the nonsymmetric struc-
ture of the matrix A in (B3); while columns associated
with chemicals and kernels in I'y do not have support on
reactions in Ty (see zero entries in the lower-left block in
(B3)), those associated with T’y generally have support on
both reactions in T'y and those in T’y (see nonzero entries
in the upper-right block in (B3)).

The discussion in this section can be generalized
straightforwardly into a network with multiple buffering
structures. The result is summarized as follows: when the
determinant factor of a particular determinant structure
becomes zero, the corresponding null vector v of J does
not have support inside the minimal buffering structure
containing the determinant structure. This implies that
the bifurcation behavior is observed only inside the min-
imal buffering structure.

Appendix D: Parameters used in Fig. 3 of the main
text

The dynamics of the hypothetical example in the main
text is given by the following ODEs,

. ks az3
Tp =k — koxa + k3xB <1+ 2 15

. ks az3 ky,ca?,
=k —k 1+ =2 _Fk 14+ ==
TB 2TA 3TB ( + 5512& 5 478 + xQC 5

. ky,cxd, ks prd
=k 1 ’ —k 1+——=5—=.
Tc 433B( +xé+5 52C +x213+5

(D1)

In Fig.3 of the main text, we used the following pa-

rameters. For Fig. 3 (a), ko= (80, 85, 20,46, 43)
and (ksa,ksc) = (5,70). For Fig. 3 (b-1), k =
(7,54,8,25,40) and (k4.c, ks 8) = (5,5). For Fig. 3 (b-
2), k = (7,54,8,25,40), (ks A, ks.c) = (99.9,5).

Appendix E: Structural bifurcation analysis for the
E. coli network

1. Reaction list for the E. coli

The central carbon metabolism of the E. coli in the
main text consists of the following reactions:
1: Glucose + PEP — G6P + PYR.
G6P «+ F6P.
F6P — G6P.
F6P — F1,6P.
F1,6P — G3P + DHAP.
DHAP — G3P.
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7: G3P — 3PG.

8: 3PG — PEP.

9: PEP — 3PG.

10: PEP — PYR.

11: PYR — PEP.

12: PYR — AcCoA + CO2.

13: G6P — 6PG.

14: 6PG — RubP + CO2.

15: Rub5P — X5P.

16: Rub5P — R5P.

17: X5P + R5P — G3P + S7P.
18: G3P + S7P — X5P + R5P.
19: G3P + S7P — F6P + E4P.
20: F6P + E4P — G3P + S7P.
21: X5P + E4P — F6P + G3P.
22: F6P + G3P — X5P + E4P.
23: AcCoA + — CIT.

24: CIT — ICT.

25: ICT — 2-KG + CO2.

26: 2-KG — SUC + CO2.

27: SUC — FUM.

28: FUM — MAL.

29: MAL — OAA.

30: OAA — MAL.

31: PEP + CO2 — OAA.

32: OAA — PEP + CO2.

33: MAL — PYR + CO2.

34: ICT — SUC + Glyoxylate.
35: Glyoxylate + AcCoA — MAL.
36: 6PG — G3P + PYR.

37: AcCoA — Acetate.

38: PYR — Lactate.

39: AcCoA — Ethanol.

40: R5P — (output).

41: OAA — (output).

42: CO2 — (output).

43: (input) — Glucose.

44: Acetate — (output).

45: Lactate — (output).

46: Ethanol — (output).

2. Buffering structures in the E. coli network

Assuming that each reaction rate function depends on
its substrate concentrations, we find 17 different buffer-
ing structures in the E. coli system [6]. The inclusion
relation between them is summarized in Fig. 5. For each
box in Fig. 5, the set of chemicals and reactions (indi-
cated by numbers) in the box plus those in its downward
boxes gives a buffering structure. In other words, the
set of chemicals and reactions in each box gives a sub-
network, which is a buffering structure with subtraction
of its inner buffering structures, namely a determinant
structure. We remark that, in Fig. 5, while a box with-
out emanating arrows from it, such as ({Glucose}, {1}),
corresponds to a buffering structure, a box with emanat-
ing arrows from it, such as ({R5P}, {40}), itself is not a
buffering structure. The determinant det A are factor-
ized according to these 17 determinant structures.

We write down explicitly the 17 buffering structures:
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(E1)
(E2)

is irrelevant for

network
b)

{F1,6P},{5}),
{DHAP}, {6}),

({Glucose, PEP, G6P, F6P, F1, 6P, DHAP, G3P, 3PG,
PYR, 6PG, Ru5P, X5P, R5P, STP, E4P, AcCoA, OAA, CIT,
ICT, 2-KG, SUC,FUM, MAL, CO2, Glyoxylate, Acetate,

(
(

Structural bifurcation analysis for the E. coli

For the E. coli network, we construct the matrix A.

The inclusion relation of the 17 buffering structures
shown in Fig. 5 implies that, after permutation of the
indices, the matrix A can be written as shown in Fig. 9.

I'is =
I'i6
N1

3.

16,17, 18,19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,

Lactate, Ethanol}, {1,2,3,4,5,6,7,8,9,10, 11,12, 13, 14, 15,
34,35, 36,37, 38, 39, 40, 41, 42, 44, 45, 46}).

malization of kernel vectors of v in A

FIG. 9: The detailed expression of the matrix A of the E. coli network.

{X5P, R5P, STP, EAP}, {17, 18, 19, 20, 21, 40}),

({Glucose, PEP, 3PG, PYR, AcCoA, OAA, CIT,ICT,
{G3P, X5P, STP, E4P}, {7,17, 18, 19, 20, 21, 22})

2-KG, SUC, FUM, MAL, CO2, Glyoxylate, Acetate, Lactate,
({X5P, S7P, EAP}, {17, 18, 19, 20, 21}),

{Glucose}, {1}).
{3PG}, {8})

{CIT}, {24}),
{2-KG}, {26}),
{SUC}, {27}),
{FUM}, {28}),
{Glyoxylate}, {35}),
{Acetate}, {44}),
{Lactate}, {45}),
({Ethanol}, {46}),

(
(
(
(
(
(
(
(
(
(
(

{1,2,3,4,5,6,7,8,9,10, 11,12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 36, 30, 31, 32, 33, 34, 35,

37,38,39,40,41, 42, 43, 44, 45, 46}.

6
7
8
9
In the matrix A in Fig. 9, the column indices (28 chemicals and 18 kernel vectors) are ordered as follows (from left

to right):
The overall constant of det A, which depends on nor-

I'1o
I
I'i2
I'is
'y =

M=K

{Glucose, 3PG, ¢1, CIT, 2 — KG, SUC, FUM, Glyoxylate, Acetate, Lactate, Ethanol, PEP, PYR, AcCoA, OAA, CIT,
) MAL, CO2, C2,C3,C4, C5, Cg, C7, Cg, Cg, C10, Fl, 6P, DHAP, G3P, X5P, S?P, E4P, C11,C12,C13, R5P, G6P, FGP, GPG,

RubP, €14, €15, €16, €17, €18},
and the row indices (46 reactions) are ordered as follows (from top to bottom):

Ethanol}, {1,8,9,10, 11, 12, 23, 24, 25, 26, 27, 28, 29, 30, 31,

32,33,34, 35,37, 38,39, 41,42, 44, 45, 46}),
Each r in Fig. 9 represents the corresponding 7, p,.



our discussion. Up to a constant factor, the determi-
nant det A is factorized as

det A = 71 Glucose X 75,F1,6P X 76,DHAP X T'8,3PC
X T'44,Acetate X 745, Lactate X 746,Ethanol X 724,CIT
X T26,2-KG X 727,SUC X T'28 FUM X 735,Glyoxylate
X T7,G3P X T'40,R5P
X (T17,X5PT19,87PT21,E4P + T'18,S7PT'20,E4PT'21,X5P)
xdet Ar, x det Apn
(E3)
Here, rpm = g;; |e=x+- Each of the 17 fac-

tors in (E3) is associated with a subnetwork in
Fig. 5. Here, the first three lines are the fac-
tors detAp,(s = 1,3,4,6,9,10,11,12,13,15,16,17),
each of which is associated with a buffering (de-
terminant) structure I'y with a single chemical. In
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the fourth and fifth lines, 77.gsp, 740rRsP, and the
factor inside (...) are associated with the three de-
terminant structures, ({G3P},{7}), ({R5P},{40}),
and T'yo = ({X5P,S7P,E4P}, {17,18,19,20,21,22})
in Fig 5, respectively. The factor det Aps in the
last line of (E3) is associated with the subnetwork

I'=({G6P, F6P, 6PG, Ru5P}, {2, 3,4, 13, 14, 15, 16, 36, 43})
(the green box in Fig. 5) and given by

det Ar/ = 72,GepT4,F6P (T15,Rus5P + T16,RusP ) (T14,6PG + T36,6PG)

+ 713,G6P (T4,F6P (r15,RusP + 716,RusP) (r14,6PG + T36,6PC )

+73,76P (714,6PGT16,RusP + (715,RusP + 716,RusP) 736,6PG )
(E4)
The last factor detApr in (E3) is as-
sociated with the subnetwork r” =
({PEP,PYR, AcCOA, OAAICT,MAL, CO2},
{10, 11,12, 23, 25,29, 30, 31, 32, 33, 34, 37, 38, 39, 41, 42})
(the red box in Fig. 5) and given by

det A = 710, PEP (738, PYR (723,0AA (737, AcCoA + 739, AcCoA )(T25,10T (2729 MALT31,C02

+ 733, MAL (231,002 — T42,c02) + 734,1CT (33, MAL (731,02 — T42,c02) + T20,MAL (731,c02 + T42,c02)))
— (r23,AcCoa (125,1CT + 27r34,10T) + (25, 10T + 734,107 ) (737, AcCoA + 739, AcCoA ) (120, MAL (731,002741,0AA

+ (732,0AA + T41,0AA)742,c02) + 733 MAL(731,002741,0AA + (730,0AA + 732,0AA + T41,0AA)T42,C02)))

+7r12,pYR(—(r25,10T + 734,10T ) (737, AcCoA + 739,AcCoA ) (720, MAL(2731,C02741,0AA

+ (732,0AA + T41,0AA)742,c02) + 733 MAL(2r31,c02741,0AA + (730,0AA + 732,0AA + T41,0AA)T42,CO2))

+723,0AA(737,AcCoA + 739, AcCoA ) (T25,1CT (2120, MALT31,CO2 + 733, MAL(2731,c02 — T42,C02))

+ 734, 10T (133, MAL(2731,cO2 — T42,c02) + 729, MAL(2731,c02 + T42,c02)))

— 723, AcCoA (725,1CT (733, MAL (4731,c02741,0AA + (730,0AA

+732,0AA)742,002) + 720, MAL (4731,c02741,0AA + (732,0AA + T41,0AA)T42,C02))

+ 734, 10T (733, MAL (4731,c02741,0AA + (730,0AA + 732,044 )742,C02)
+ 7129 MAL(4731,c02741,0AA + (732,0AA + 2741,0A4)742,002)))))

—731,PEP(—711,PYR(T20,MAL + 733, MAL)(723,0AA734,1CT (737, AcCoA + 739, AcCoA )

— (723,AcCoA (T25,1CT + 2734,1CT) + (725, 10T + 734,1CT) (737, AcCoA + 739, AcCoA ))T41,0AA )

+ 738,PYR(723,AcCoA (725, 10T + 2734,10T ) (730,0AAT33, MAL + (720, MAL =+ 733 MAL)741,0AA)

+ (r37,AcCoA + 739,AcCoA )(T23,0AA (725 1CTT33, MAL + (733, MAL — 7'29,MAL)734,ICT)

+ (r25,1cT + 734,10T)(730,0AAT33,MAL + (729, MAL + 733, MAL)741,0AA)))

+ 712, PYR(723,AcCoA (725,10T (730,0AAT33, MAL

+ 729, MALT41,0AA) + 734,1CT (730,0AAT33,MAL + 2720, MALT41,0AA)) + (737, AcCoA

+ 739,AcCoA )(723,0AA (25,1CT 733, MAL + (733, MAL — 729,MAL)"34,ICT)

+ (r25,10T + 734,107 )(730,0AA 733 MAL + (729 MAL + 733 MAL)T41,0AA))))T42,C02- (E5)

Since ., > 0, we see that, among the 17 factors in (E3),
only the last factor det Ap~ contains both of plus and
minus signs. Therefore, if this system exhibits a steady-
state bifurcation (under parameter change), it should be
the subnetwork T whose determinant changes its sign
at the bifurcation point.

4. Numerical analysis

In the discussion so far, we have not assumed any spe-
cific kinetics for reaction rates. To numerically demon-
strate bifurcation behaviors in the E. coli system, we
first consider the case that all the reactions obey the
mass-action kinetics with reaction rate constant k,, (n =
1,...,47). In this case, we found that, for any parame-
ter choices, the E. coli system has either a single stable
solution or a blow up solution, and no steady-state bi-



furcations were observed. We also performed the same
analysis in the case of the Michaelis-Menten kinetics, and
again no bifurcations were observed.

In order to demonstrate bifurcation behaviors, we next
consider the case that the reaction 11 : PYR — PEP is
positively regulated by PEP. Specifically, we modified the
rate of reaction 11 from 717 = k112pyr into

LPEP
r11 = ki1Tpyr (1 + ki1, PEP o + K) (E6)
where ki1 pgp represents the strength of the regulation.
All reactions except reaction 11 obey the mass-action ki-
netics as before.

We remark that the regulation from PEP to reaction 11
does not change the buffering structures in Appendix E 2
since adding this regulation does not ruin the condition
of output-completeness. This is generally the case, if an
additional regulation is within a buffering structure I,
i.e. from a chemical in I'y to a reaction in I'y. Thus, the
inclusion relation of buffering structures shown in Fig. 5

is also intact under the modification (E6) of the kinetics.
As explained previously, only bifurcations associated
with I'”” (the red box in Fig 5) are possible for this system.
The inducing parameters are then given by parameters
associated with reactions in the green and red boxes in
Fig 5. As a candidate bifurcation parameter, we choose
the parameter ki1, pgp, which is associated with reaction
11 and is an inducing parameter for I'””. The reaction rate
constants of the mass-action kinetics were set as

(k1,...,ka7) = (18.9, 55.9, 20.5, 5.17, 8.14, 107, 15.7, 2.38, 32, 3.08,
38.8, 471, 7.54, 1.28, 24.4, 84.9, 23.1, 1.64, 90.6, 132,
65, 47, 237, 1.19, 11.7, 1.80, 98.5, 27, 1090, 3.15,
484, 1.44, 543, 12.2, 20, 89.5, 2.98, 7.23, 48.9, 2.96,

21.6, 37.6, 85, 131, 28.2, 2.37). (E7)
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500f
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FIG. 10: det A~ versus k11, pepp. The red curves (in
the region det A, > 0) correspond to two stable
solutions, and the blue curve (in the region
det A~ < 0)corresponds to an unstable solution.

Fig. 10 shows the numerical result for det Ay, versus
k11,pep. Forlarge k11, pEp, there are two stable solutions
(red curves) and one unstable solution (blue curve). As
ki1,prp is decreased, the magnitudes of det Ar» for a
stable and unstable solutions decreases and eventually
approach zero. Thus, the parameter ki1, pgp, which is
one of the inducing parameters for I', actually induces
a bifurcation associated with T,

The bifurcating chemicals for I are those in the blue
and red boxes. Fig. 7 shows the numerical results
for the steady-state concentrations versus the parame-
ter ki1, pep. We see that saddle-node bifurcations are
observed only for the bifurcating chemicals.

[1] Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono,
H., Kanehisa, M. (1999). KEGG: Kyoto encyclopedia of
genes and genomes. Nucleic acids research, 27(1), 29-34.

[2] Joshi-Tope, G., Gillespie, M., Vastrik, 1., D’Eustachio,
P., Schmidt, E., de Bono, B., Stein, L. (2005). Reac-
tome: a knowledgebase of biological pathways. Nucleic
acids research, 33(suppl 1), D428-D432.

[3] Karp, P. D., Ouzounis, C. A., Moore-Kochlacs, C.,
Goldovsky, L., Kaipa, P., Ahrén, D., Lépez-Bigas, N.
(2005). Expansion of the BioCyc collection of path-
way /genome databases to 160 genomes. Nucleic acids re-
search, 33(19), 6083-6089.

[4] Ishii, N., Nakahigashi, K., Baba, T., Robert, M.,
Soga, T., Kanai, A., Tomita, M. (2007). Multiple high-
throughput analyses monitor the response of E. coli to
perturbations. Science, 316(5824), 593-597.

[5] Mochizuki, A., Fiedler, B.,Journal of theoretical biology,
367, 189-202 (2015).

[6] Okada T. and Mochizuki A., Phys. Rev. Lett. 117.4
(2016), 048101.

[7] Okada T. and Mochizuki A., Phys. Rev. E 96, 022322
(2017).

[8] Ozbudak, Ertugrul M., et al. Nature 427.6976: 737-740
(2004).

[9] See Supplemental Material at [URL will be inserted by
publisher| for the generalization to networks with con-
served concentrations.

[10] J. Carr, ”Applications of center manifold theory”,
Springer (1981).

[11] A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G.
Maier, “Theory of bifurcations of dynamical systems on
a plane”, Israel Program Sci. Transl. (1971). (In Russian)

[12] V.I. Arnol’d, “Geometrical methods in the theory of or-
dinary differential equations” , Grundlehren math. Wiss.,
250, Springer (1983). (In Russian)

[13] J. Guckenheimer and Ph. Holmes, ”Nonlinear oscil-
lations, dynamical systems and bifurcations of vector
fields”, Springer (1983).

[14] Yu.A. Kuznetsov, "Elements of applied bifurcation the-
ory”, Springer (1995).

[15] Warburg, O. Naturwissenschaften, 12(50), 1131-1137.
(1924).

[16] Conradi, Carsten, Dietrich Flockerzi, and Jorg Raisch.
American Control Conference, 2007. ACC’07. IEEE,



2007.

[17] F. Schlogl, Zeitschrift fiir Physik A Hadrons and Nuclei
253.2 (1972): 147-161.

[18] M. Feinberg, Arch. Rational Mech. Anal. 132 (1995), pp.
311-370.

[19] M. Feinberg, Arch. Rational Mech. Anal. 132 (1995), pp.
371-406.

[20] G. Craciun and M. Feinberg, SIAM J. Appl. Math. 65
(2005), pp. 15261546

[21] G. Craciun and M. Feinberg, STAM J. Appl. Math. 66
(2006), pp. 1321-1338.

[22] Mincheva, M., & Roussel, M. R. (2007). Journal of math-

16

ematical biology, 55(1), 61.

[23] Shinar, G., & Feinberg, M. (2010). Science, 327(5971),
1389-1391

[24] B.D. Aguda and B.L. Clarke, J. Chem. Phys. 87 (1987),
pp. 3461-3470.

[25] B.L. Clarke, J. Chem. Phys. 62 (1975), pp. 773-775.

[26] B.L. Clarke, J. Chem. Phys. 62 (1975), pp. 3726-3738.

[27] B.L. Clarke, Adv. Chem. Phys. Wiley, New York, vol 43,
pp 1-216.

[28] K. Gatermann, M. Eiswirth, and A. Sensse, J. Symb.
Comput. 40 (2005), pp. 1361-1382.

[29] B.L. Clarke and W. Jiang, J. Chem. Phys. 99 (1993), pp.
4464-4476.



