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We study the dynamics of sets of independent systems, all of which are coupled to the same 

time-dependent external force.  Using optimal control theory, we compute the most efficient 

temporal pulse shape for this force that can maximize simultaneously the collective response of 

these systems.  This response can be a weighted sum of all amplitudes at the final interaction time.  

Remarkably, it turns out that for certain systems this optimal force for the collective response can 

be related to the individual forces that would optimize each system separately.  We illustrate this 

superposition principle for the simultaneous optimization of collective responses with numerical 

and also analytical solutions for sets of damped linear and non-linear oscillators.  We also apply this 

principle to predict the optimal temporal profile of a laser pulse that can maximize the final 

macroscopic polarization (total dipole moment) of a set of quantum mechanical two-level atoms. 
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1. Introduction 

 There are numerous examples in science, technology and engineering, where certain desired 

dynamical variables need to be optimized [1-8].  In physics, for example, the very fundamental laws 

of nature, such as Newton's law, the Schrödinger, Dirac or Maxwell equations, are usually given by 

differential equations that specify those solutions that optimize a certain action.  More specifically, 

the area of coherent quantum control has recently received a lot of interest [9].  Here the goal is to 

tailor external laser pulse shapes to control the final outcome of complex chemical reactions or to 

create or break a particular bond in a molecule [10,11].  Naively, one would expect that lasers that 

are tuned to particular resonances would be ideal.  However, due to internal energy conversions 

based on vibrational relaxations often the entire molecule was heated.  Most recent experiments 

have exploited rather sophisticated adaptive laser pulse-shaping techniques including closed-loop 

learning that also permits the independent shaping of the laser's polarization [12], amplitude as well 

as phase.   

 From a theoretical point of view a powerful approach is the optimal control theory, where a 

certain objective function is optimized under suitable constraints.  As this is a very intensively 

studied area, there are numerous reviews available.  In some situations, a finite number of variables 

needs to be optimized that can often be accomplished via straightforward conjugate gradient-like 

search algorithms.  Computationally more demanding are infinite dimensional problems, where, for 

example, an entire function of time needs to be computed, equivalent to an infinite-dimensional 

optimization with constraints.  What is common to most problems, however, is the fact that 

dynamical variables that characterize a single system are usually considered. 

 While it is possible in many cases to calculate the optimum signal, however, it is much more 

difficult to obtain an intuition for the best signal.  It is one of the purposes of this article to obtain an 

intuition or qualitative guidance about the properties of the optimum signal and not to introduce a 

new computational methodology for a particular system.  In particular, in this note, we examine 

dynamical situations where a collective response of several (and possible infinitely many) 

independent systems needs to be optimized.  In particular, in this note, we examine dynamical 

situations where a collective response of several (and possible infinitely many) independent 

systems needs to be optimized.  The key question studied here is whether one can learn something 

from the corresponding optimal control characteristic for each system individually. 

 In this article, we will show, that for those situations, where the coupling of the external field 

can be modeled in an additive way in the equations of motion, the optimum force field that 
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maximizes the collective response of all systems can be computed from a suitable superposition of 

the individual optimum pulse shapes, where the weight factors depend on the temporal derivative of 

the individual fields.  While the superposition principle for the simultaneous optimization of 

collective responses (or abbreviated "SPSO") is not exactly valid for non-linear systems or those 

where the control field is not coupled as inhomogeneous source terms, it can still provide a 

remarkably accurate guidance to predict the optimal control field for the collective response from 

the individual optimizers for each sub-system. 

 The goal of simultaneously optimizing several degrees of freedom has been studied for single 

optically driven multi-level systems.  For example, in the special case where the energy levels are 

cleanly separated from each other, the system can be controlled by sequentially addressing the pairs 

of levels [13].  The optimum pulse can then be accomplished by a sequence of tailored pulses, each 

of which then addresses only a prescribed pair of levels.  A control based on frequency 

discrimination is not always possible, e.g., it is not suitable for systems with equally or almost 

equally spaced or degenerate energy levels [14]. 

 The article is organized as follows, in Section 2 we derive the general theoretical framework of 

optimal control theory applied to an infinite set of general dynamical systems, all of which are 

coupled to the same external force.  We introduce the superposition principle for the simultaneous 

optimization of collective responses.  In Section 3 we illustrate this principle with analytical 

solutions for sets of damped harmonic oscillators.  In Section 4 we show that it can serve as a 

qualitative guidance to estimate the optimal force for sets of non-linear oscillators.  In Section 5 we 

examine the optimal laser field to maximize the macroscopic polarization of two-level systems. We 

conclude in Section 6 with critical questions and speculations for future projects. 

 

2. Optimal control theory for collective response of N dynamical systems 

2.1 General framework and its numerical solution technique 

 In this work, we examine the collective response of N dynamical systems, all of which are 

coupled to the same external force field, denoted by U(t).  The ultimate goal is to examine the 

properties of the optimal control field Uopt(t) that can maximize a certain collective response of all 

systems at a final time T.  In the concrete examples, examined below, this collective response will 

be the sum of all final amplitudes of harmonic as well as anharmonic oscillators, or the macroscopic 

dipole response of a collection of two-level atoms.  We will show that for some systems it is 

possible to construct this collective response exactly from the knowledge about the optimal control 
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fields associated with every single system, denoted for the n-th system by Uopt,n(t).  We denote this 

the "superposition principle for simultaneous optimization" (SPSO).  It turns out that for those 

systems for which this principle is violated (such as anharmonic oscillators or two-level systems), 

the SPSO can nevertheless provide a good guidance for the true optimal field Uopt(t).   

 In order to avoid non-sensible optimal force fields that are infinite, we restrict the total "energy" 

of the external force field to E = ∫0
T dt U(t)2.  We denote the dynamical variables of the n-th system 

by the state vector Yn(t) and require these "amplitudes" to fulfill the state-equation dYn/dt = 

Kn[Yn(t),U(t)] with a known initial condition Yn(t=0).  As a collective variable, which we like to 

maximize after an interaction time T, we could choose the combination Σn Σi wi,n Yi,n(T), where the 

given parameters wi,n would characterize the relative relevance we like to assign to the i-th state 

variable of the n-th system.  In Appendix A we review the application of the variational principles 

of optimal control theory to this set of systems and derive the following set of equations that the 

optimal control field Uopt(t) has to satisfy. 

 

  dYn/dt = Kn[Yn(t),U(t)]             with Yn(0) = Yn(t=0)   (2.1)

  dλn/dt = –λn ∂Kn/∂Yn                with λn(T) = wn   (2.2) 

                              U(t)  = (2λ0)-1 Σn λn(t) ∂Kn(Yn,U)/∂U      (2.3) 

                  

The first equation reproduces the state equation for the amplitudes, the second one is for the 

Lagrange multiplier functions and needs to be solved reversely in time as its final values are known, 

λn(T) = wn.  As the functional form of the Lagrange functions λn(t) depend on the collective U(t), 

the last equation is in general a complicated transcendental equation that the optimum field has to 

satisfy. The single Lagrange parameter λ0 needs to be chosen such that the optimal control field 

satisfies E = ∫0
T dt U(t)2.  While Eqs. (2.1) and (2.2) seem to be decoupled at first, the fact that the 

optimum function Uopt(t) in Eq. (2.3) depends on each system's solution, effectively couples all of 

these equations for different systems. 

 If only a single system is coupled to the field, such that only Σi wi,n Yi,n(T) needs to be 

optimized, then the optimizer has to fulfill Uopt,n(t)  = (2λ0,n)-1 λn(t) ∂Kn(Yn,U)/∂U.  However, as 

the solutions λn(t) in this particular expression are different from the solutions λn(t) in Eq. (2.3), 
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there is unfortunately in general no relationship between Uopt(t) and the individual optimizers 

Uopt,n(t) for each system separately. 

 

2.2 Numerical solution techniques 

 There are a wide variety of numerical techniques available to find the three solutions Yn(t), λn(t) 

and U(t), that satisfy simultaneously the set of equations (2.1), (2.2) and (2.3).  For most of the 

specific systems and parameter ranges examined in this work, we found it sufficient to use a simple 

iteration scheme that lead to convergent solutions.  It was based on an initial guess for U(t), denoted 

by U(0)(t).  Using this force field the state equation as well as the co-state equation were solved.  The 

resulting solutions Yn(t), λn(t) were then inserted into the right-hand side of Eq. (2.3).  This right 

hand side was then interpreted as an improved solution for U(t), similar to the numerical strategies 

employed in most predictor-corrector schemes, denoted by U(1)(t).  This new function was then 

inserted again as an improved guess for Uopt(t) into equations (2.1) and (2.2).  This scheme was then 

repeated until the iterates U(n)(t) and U(n+1)(t) became numerically indistinguishable from each 

other. 

 To have an independent check of the numerical solutions for Uopt(t), we also used steepest 

descent- and conjugate gradient-based approaches [15].  Here the objective J[U(t)] =  Σn Σi wi,n 

Yi,n(T) is solely a function of U(t), however, J depends on Yi,n(T) whose values need to be 

determined from the solution to the differential equation (2.1) for each given U(t).  But there is no 

need to involve any co-state variables λ n(t) and λ0.  The function U(t) was sampled at M points on 

a temporal grid, with tm=(m-1)/(M-1)T and m=1,2, …M, such that the objective J becomes a 

function of M parameters U(tm)≡Um.  For simplicity, we denote the resulting M-dimensional vector 

(U1,U2,..,UM) ≡ R.  The resulting M-dimensional maximization problem required an initial guess 

for R(0), which was used to calculate the M-component gradient vector gradJ = ∂J/∂R(0)
 ≡ 

(∂J/∂U(0)
1, ∂J/∂U(0)

2, .. ∂J/∂U(0)
M).  We then performed a line search based on the standard 

bi-section techniques to find the value for α that would maximize J(R(0)+α ∂J/∂R(0)) along this 

particular direction in this vector space, i.e. ∂J(R(0)+α ∂J/∂R(0))/∂α = 0 for α=α(0).  The next line 

search was based on the improved location R(1)= R(0)+ α(0) ∂J/∂R(0) and a new line search direction 



                                                  6            6/25/2018 

 

 

was either given by the new gradient ∂J/∂R(1) (steepest ascent method, [15]) or by a combination of 

the prior and the new gradient (Fletcher-Reeves method, [16]).  Due to the fact that the calculation 

of each component of ∂J/∂R required the solution of the differential equation (2.1), this method is 

very CPU time intensive but leads to a rapid convergence in terms of the number of required line 

searches. 

 

2.3   The superposition principle for collective responses (SPSO) 

 We will now show, that if the generator of the time evolution Kn takes a simpler form, where the 

state variables Yn of the n-th system are mutually coupled by a temporally constant matrix Mn, and 

the external force field U(t) enters as an additive term, i.e.  

 

               dYn/dt  =  Mn Yn + Vn U(t)   (2.4) 

 

then the optimizing force field of the collective response of all systems can be obtained exactly 

from the knowledge of the single-system optimizers Uopt,n(t).  The temporally constant vector Vn 

permits us to couple the external force to each amplitude Yi,n differently.  The differential equation 

is inhomogeneous such that the sum of two individual solutions is in general not a solution to the 

same differential equation.  However, due to the special coupling to the external force as a source 

term, this system can always be solved exactly based on the diagonalization of the matrix Mn.   

 In Appendix B we derive the superposition principle for the collective responses (SPSO): 

 

                                                Uopt(t)  =  (2λ0)-1 Σn an Uopt,n(t)    (2.5) 

 

where the time-independent amplitude factors are determined by an ≡  – (Mn
Twn) Vn/U'opt,n(T).  We 

consider this new principle as the main result of this article.  Each amplitude factor an depends on 

the temporal derivative of the optimal control field U'opt,n(T) at the final time t=T and can be easily 

obtained from the optimal solution Uopt,n(t) for each system.  These amplitudes an depend linearly 

on the given weight factors wn for each amplitude Yn as well as the coupling strength Vn of the 

external field to each individual state amplitude. 
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 While the magnitude of the overall factor (2λ0)-1 depends non-trivially on each individual field 

Uopt,n(t), its sole purpose is to guarantee that the collective optimal control field satisfies E = ∫0
T dt 

Uopt(t)
2.  It can therefore easily be determined at the end after the summation in Eq. (2.5) is 

calculated. 

 

3. Simultaneous optimization of coupled damped harmonic oscillators 

 In this section, we consider a special system of the form dYn/dt = Mn Yn + Vn U(t).  The 

temporally constant vector Vn permits us to couple the external force to each amplitude Yi,n 

differently.  

 We provide fully analytical solutions for Uopt,n(t) that allows for a concrete interpretation of the 

formal amplitude factors an in the expression of the superposition law Eq. (2.5).  The state equations 

for the n-th oscillator (of unit mass) are given by dxn/dt = pn and dpn/dt = –ωn
2 xn – γn pn + U(t), 

corresponding to the 2×2 matrix Mn = {{0,1},{–ωn
2, –γn}} and Vn = {0,1}.  We therefore have the 

Hamiltonian  

 

                               H ≡ Σn  λn Kn  = Σn  λ1,n pn + λ2,n [–ωn
2 xn – γn pn + U(t)]   (3.1) 

 

which should not be confused with the Hamiltonian (time-generator) for the evolution of xn(t) and 

pn(t), which exists only for γn = 0.  For simplicity, let us assume we try to optimize the sum of all 

final amplitudes J'' ≡ Σn xn(T) with equal weight, or equivalently we choose w1,n = 1 and w2,n = 0.  

Then the required co-state equations  

 

  dλ1,n/dt  =  – dH/dxn  =  ωn
2 λ2,n     (3.2a) 

  dλ2,n/dt  =  – dH/dpn   =  – λ1,n + γn λ2,n   (3.2b) 

 

can be solved analytically with λ1,n(T) = 1 and λ2,n(T) = 0, leading to the solution for λ2,n(t) 

 

            λ2,n(T)  = – 2 Exp[γn(t-T)/2] Sinh[(γn
2–4ωn

2)1/2(t-T)/2] / (γn
2–4ωn

2)1/2  (3.3) 
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 As this solution is directly related to the optimum force field Uopt,n(t), we should briefly discuss 

the time-dependence of this solution.  In the non-dissipative limit (γn=0) this simplifies to λ2,n(t)  = 

– Sin[ωn(t-T)]/ωn.  In the opposite over-damped limit (ωn=0), we obtain λ2,n(t)  = – 2Exp[γn(t-T)/2] 

Sinh[γn(t-T)/2]/γn.  For T > γn
-1 the latter function is nearly constant λ2,n(t) = γn

-1 before it 

approaches zero for t=T.  Most interestingly, for ωn ≈ γn, λ2,n(t) grows slowly in time to reach its 

maximum close to t=T, before it decays to zero at t=T.  This behavior is intuitively expected as the 

optimum force field Uopt,n(t) required to maximize the final amplitude xn(T) has only a finite energy 

E.  It is more advantageous to transfer this finite amount close to the final interaction time, as any 

early excitations are automatically damped out long before the important final time is reached. 

 According to Eqs. (A14) and (A15), and using ∂Kn(Yn,U)/∂U = Vn = {0,1}, the resulting 

optimizing force for the n-th oscillator is directly proportional to λ2,n(t),  

 

                   Uopt,n(t)  =  (2λ0,n)-1 λ2,n(t)    (3.4) 

 

with the energy normalization factor (2λ0,n) = E–1/2{∫ dt λ2,n(t)2}1/2.  This integral can be evaluated 

analytically leading to the expression 

 

∫dt λ2,n(t)2 = Exp(–γnT) {4ωn
2+νn

2 Exp(γnT) – γn [γn Cosh(νnT) +νn Sinh(νnT)]}/ (2ωn
2γn νn

2) 

     (3.5) 

where we abbreviate νn ≡ (γn
2–4ωn

2)1/2.   

 As, according to Eq. (B.3), these normalization factors (2λ0,n) are also equal to the weights an of 

the individual optimal forces with regard to the optimal control for the collective response of all 

oscillators, we obtain 

 

                                                         an  =  E–1/2 ∫dt λ2,n(t)2   (3.6) 

 

This complicated expression based on Eq. (3.5) takes an easier form in the limit for γn=0  

 

                                    an = E–1/2{[2ωnT– Sin(2ωnT)]/(4ωn
3)}1/2    (3.7) 
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 Equivalently, the same amplitude factor an also could be determined from the form – (Mn
Twn) 

Vn/U'opt,n(T).  Here we can use Mn
Twn = {{0, –ωn

2},{1, –γn}}{1,0} = {0, 1}, and Vn = {0,1} and 

using Eq. (3.2b), dλ2,n(t)/dt|t=T= –1, this leads to U'opt,n(T) = –(2λ0,n)-1 and therefore obtain for γn=0 

the same expression.  In the limit of large frequencies ωn, or, equivalently in the limit of sufficiently 

long interaction times (T>>2π/ωn), the weight factors an decrease with increasing frequency ωn as 

an ≈ E–1/2 T1/2/(21/2ωn).  In the opposite limit of very short interaction times, (T<<2π/ωn), the weight 

factors lose their frequency dependence, an ≈ E–1/2 T3.  This means, that in this case, the functional 

form of the collective optimizer is simply given by Uopt(t) ≈ (2λ0)-1 E–1/2 T3 Σn Uopt,n(t). 

 We will close this subsection with a brief numerical example of the time-dependence of Uopt(t) 

for a continuum of oscillators.  For simplicity, we assume that the distribution of the frequencies ωn 

is uniform between ωmin and ωmax = ∞.  In this special case, the summation Uopt(t) = (2λ0)-1 Σn  a n 

Uopt,n(t) = – (2λ0)-1 Σn Sin[ωn(t-T)]/ωn can be expressed as an integral 

 

                                      Uopt(t)  =  – N  ∫ωmin
∞ dω Sin[ω(t-T)]/ω      (3.8) 

 

where the normalization factor N  guarantees that the total energy of Uopt(t) is E.  The pulse shape of 

the optimal collective control field depends on the relationship between ωmin and the interaction 

time T.  For ωmin = 0, the control field is constant Uopt(t)  =  (E/T)1/2.  For slightly larger values of 

ωmin, Uopt(t) grows linearly to its maximum value close to t=T.  For an even larger ωmin, Uopt(t) 

becomes oscillatory with frequency ωmin and an exponentially increasing amplitude.  In the 

extreme limit where ωmin is very large, Uopt(t) approaches a function that basically vanishes for all 

times, except close to the final time, Uopt(t)  = (E)1/2 δ(t-T)1/2.  We display this trend for a few 

frequencies in Figure 1. 
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Figure 1  The temporal pulse shape of the optimal force field Uopt(t) that simultaneously maximizes 
sum of all final amplitudes xn(T) of a continuous set of harmonic oscillators with a uniform 
distribution of frequencies ωn between ωmin and infinity.  Inset: The optimal force field Uopt(t) for 
ωmin =1 for three interaction times T. 

 

A similar trend can also be observed for a fixed lowest frequency ωmin as a function of the 

interaction time T.  In the inset of the Figure, we show the transition for a linearly growing Uopt(t) 

for small T to one that is non-zero only close to the final interaction time T. 

 For a closely related example of a physical situation where an external force field needs to be 

optimized we refer the reader to the works by Glasgow et al. [17-19], where an optimal field was 

constructed that, for a given excitation level of a passive dielectric material, would minimize the 

necessary energy density that has to be deposited in the medium.  While the main general 

conclusions were model independent, the linear susceptibility of the medium was modelled by 

multiple Lorenz oscillators with characteristic resonance frequencies, oscillator strengths and 

damping rates.  The authors showed that there are many admissible field histories that lead to the 

same state in the medium and optimized the particular shape that would minimize the unavoidable 

energy loss.  The early time behavior of the optimum creation field was characterized by a dc 

portion, an exponential growth and a spike.  These three particular temporal features shown in [18] 

are in an interesting qualitative agreement with those graphed in Figure 1. 

 Reference [18] also embodies a similar linear superposition principle that is discussed in the 

present work.  However, in contrast to our work, where a prescribed optimum state at a finite time 
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was the objective, the prior work addresses an infinite-duration optimal excitation pulse for which 

even analytical solutions can be found.  The authors also provided several theorems applicable to 

linear as well as nonlinear dielectric media to describe the general properties of optimal fields with 

regard to extracting as well as infusing energy from and into dielectrics. 

 

4. The SPSO for anharmonic oscillators 

 In this Section, we will examine a state equation that is highly non-linear in Yn(t), but the 

external force U(t) is still coupled in an additive manner as a source term to the dynamics.  Many 

oscillator systems in atomic or molecular physics are modeled by the Morse, Lennard-Jones or 

other semi-empirical potential functions, all of which are harmonic oscillators close to equilibrium.  

Therefore, as non-linearities occur here only for very large excitations, it is obvious that the SPSO 

would naturally apply as well for lower excitations of those systems.  Here we would expect 

discrepancies to arise only if the amplitudes are driven far from equilibrium into regions where the 

re-storing forces show deviations from Hooke's law.   

 In order to study exclusively non-linear responses, we choose in this section purposely a set of 

systems that are intrinsically non-linear from the very beginning for any amplitude.  We choose a 

set of quartic oscillators, whose state equations are given by  

 

                     dxn/dt = pn                                                        (4.1a) 

                     dpn/dt = –κn xn
3 +U(t)    (4.1b) 

 

with positive coefficients of non-linearity κn.  Furthermore, to enhance the importance of the 

non-linearity, we place the particles initially at xn(t=0) = 1, such that they experience the spatial 

nonlinearity of the force field from the very beginning.  We therefore have the Hamiltonian  

 

                            H  ≡  Σn λn Kn  = Σn λ1,n pn + λ2,n [–κn xn
3 + U(t)]   (4.2) 

 

To be comparable to the conclusions of the prior Section, we try to optimize again the sum of all 

final amplitudes J'' ≡ Σn xn(T) with equal weight, or equivalently we choose w1,n = 1 and w2,n = 0.  

Then the required co-state equations take the form 
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  dλ1,n/dt  =  – dH/dxn  =  κn
 λ2,n 3 xn

2
   (4.3a) 

  dλ2,n/dt  =  – dH/dpn   =  – λ1,n  (4.3b) 

 

with λ1,n(T) = 1 and λ2,n(T) = 0.  In contrast to the co-state equations (3.2), which were entirely 

independent of U(t), this set of equations depends implicitly on U(t) due to the coupling with the 

source term κn
 λ2,n(t) 3 xn(t)2.  Obviously, this highly non-linear coupling of the state and co-state 

equations requires numerical approaches to construct Uopt,n(t) as well as Uopt(t).  We will argue 

below that the absence of an explicit dependence of U(t) in the co-state equation is extremely 

important for the validity of the superposition principle in the low-E limit for U(t). 

 In order to test the applicability of the SPSO according to Eq. (2.5), we have to compute the 

suitable weight factors an for our system. Due to the coupling of U(t) as an additive source term, we 

have here again ∂Kn(Yn,U)/∂U = {0,1}, such that Eq. (A14) predicts here the transcendental 

equation U(t) = (2λ0)-1 Σn λ2,n for the collective response, which is also consistent with Eq. (B.1).  

In contrast to the prior Section, here the co-states depend intrinsically on U(t), i.e., λ2,n = 

λ2,n[t,U(t)], such that this expression is an transcendental equation that the optimal Uopt(t) has to 

satisfy.  While the equation contains a simple sum of the co-states and suggests some kind of 

"additivity property", due to its transcendental character, it does not imply any validity of the 

superposition principle.  In fact, it also follows that the co-state solutions are therefore different 

from the co-state solutions for each system individually, i.e. λ2,n[t,Uopt(t)] ≠ λ2,n[t,Uopt,n(t)].  

However, it is nevertheless rather tempting to examine if the superposition principle has at least 

some relevance for this system.   

 In order to examine this question, we have computed Uopt,1(t) and Uopt,2(t) for two systems and 

compared it with Uopt(t) for the collective response.  In the special case of two identical systems, i.e. 

κ1 = κ2, it is clear that Uopt,1(t) = Uopt,2(t) and therefore trivially we have  [Uopt,1(t) + Uopt,2(t)]/2 = 

Uopt(t).  
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Figure 2   The optimal pulse shapes Uopt,1(t) and Uopt,2(t) for two quartic oscillators with κ1=2 and 
κ2=10. (dashed and dotted lines).  The continuous line is the optimum Uopt(t) to maximize 
simultaneously the sum of the two final amplitudes, J''= x1(T)+ x2(T).  The open circles are the 
predictions of the SPSO for Uopt(t).  The inset shows the individual orbits optimized under Uopt,1(t) 
and Uopt,2(t). (E=0.005) 

 

 Let us discuss a concrete numerical example for the opposite and more interesting case, where 

the two non-linearities are rather different, say κ1=2 and κ2=10.  In the inset of Figure 2 we show 

the time-evolution of the two amplitudes x1(t) and x2(t) associated with the two optimal fields 

Uopt,1(t) and Uopt,2(t).  In the absence of any external field, both particles (starting at x1,2(t=0) = 1) 

experience the potential V(x) = κ�/4 x4 and would initially first accelerate to the left and then 

approach their final amplitudes at time t=T=5, x1(T) = 0.610 and x2(T) = 0.942.  In order to 

maximize the final elongation, the required actions of the two optimal fields are very different.  In 

order to optimize the first oscillator, Uopt,1(t) has to deccelerate the particle first [Uopt,1(t)>0], while 

the second particle requires apparently an initial boost to the left [Uopt,2(t)<0] to accelerate it in 

order to maximize its final elongation.  As a result of the time-dependent force fields, the final 

optimized amplitudes are x1(T) = 0.757 and x2(T) = 1.06.  The amount of enhancement of the final 

amplitudes increases obviously with the available energy E of the control field.   

 The Figure also shows the optimal control field Uopt(t) for the collective response, leading to 

x1(T) = 0.723 and x2(T) = 1.02, which is slightly less than their optimal values possible under 
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individual optimization.  For comparison, the open circles show that predicted optimal response 

according to the superposition principle according to Eq. (2.5), i.e., 

 

                  Uopt(t)  =   (2λ0)-1 [a1 Uopt,1(t) + a2 Uopt,2(t)]    (4.4) 

 

with an ≡ –1/U'opt,n(T).  The qualitative agreement with the exact Uopt(t) is remarkable.  As we 

increase the available energy E of the control field, we found that the agreement deteriorates. 

  
Figure 3   Comparison of the exact Uopt(t) for the collective response of two nonlinear oscillators 
(with four nonlinearities κ1 =0, 3, 6 and 9 and κ2=10) and the corresponding prediction according to 
the SPSO denoted by the open circles.  (E=0.005). 

 

 To provide a more general idea about the quality of the SPSO for a wider range of 

non-linearities, we display in Figure 3 a comparison of the exact collective optimizing force Uopt(t) 

and the (approximate) predictions based on the SPSO, calculated from the individual optimizers 

Uopt,1(t) and Uopt,2(t) and their derivatives at t=T according to Eq. (4.4).  We have kept the 

nonlinearity κ2 of the first oscillator constant (=10) and chose selected values for κ1 in the range 

from zero to 10.  Due to the large degree of non-linearity, the forces Uopt(t) depend extremely 

sensitively on κ1.  The qualitative agreement of the predicted and exact optimizers over the entire 

parameter range is in view of the large non-linearities rather remarkable.  While for κ1 very close to 

10 the agreement is expected, as the two systems become identical, the optimal trajectories for κ1=9 

and κ2 =10 and the resulting individual optimizers U opt,1(t) and Uopt,2(t) are entirely different. 

-0.08

-0.04

0

0.08

0 1 2 3 5

0

3

6

 9 

Uopt

t (a.u.)

κ
1
 



                                                  15            6/25/2018 

 

 

 The surprising applicability of the SPSO for this highly nonlinear system (for which analytical 

solutions do not exist) can also be suggested analytically if the pulse energy E is sufficiently small.  

We can view Uopt(t) as a perturbation in the state equations and can formally insert this solution for 

xn(t) [obtained for U(t)=0 in Eqs. (4.1)] into the co-state equations (4.3), despite the fact that this 

non-linear solution is not analytically known.  As Eqs. (4.3) do not contain U(t) explicitly, the 

co-state equations therefore no longer depend on U(t) even implicitly.  As a result, the Lagrange 

functions λ1,n(t) and λ2,n(t) that determine the final Uopt,n(t) make the SPSO exact in this case.  

 In summary, while the SPSO is not expected at all to have any meaning for (intrinsically) 

non-linear oscillators, it can still serve as a surprisingly accurate guidance to predict Uopt(t) from 

Uopt,n(t) for two special cases.  In the first case, the systems are dynamically similar (κn ≈ κm) and, 

more importantly, in the second case the SPSO is valid for all systems (independently of the degree 

of non-linearity) where the energy of the optimal force is small, and the set of non-linear systems 

can be controlled perturbatively. 

 

5. The SPSO for the macroscopic dipole moment of a set of driven two-level atoms  

 In contrast to the two prior systems discussed in Sections 3 and 4, we examine here the SPSO 

for a system where the external control field is not coupled as a source term.  Here the state 

equations follow the general form dYn/dt = Ln[U(t)] Yn.  This set is linear as the generator Ln[U(t)] 

is a U(t)-dependent matrix and the sum of two individual solutions is automatically also solution to 

the same differential equation.  However, despite this additivity, analytical solutions for Yn(t) are 

possible only in very special situations, as the two generator matrices Ln[U(tj)] and Ln[U(tk)] do not 

commute in general at different times tj and tk. 

 More specifically, we will now examine the validity of the SPSO for a quantum mechanical 

system.  We consider a set of two-level atoms, each of which is coupled to the same external field 

U(t).  For a nicely written review on optimal control theory for quantum systems and on the 

optimization of a single two-level system in the rotating wave or the perturbative approximation in 

particular, see [9].  The Schrödinger-Hamiltonian (in scaled or atomic units) is given by   

 

            HQM  ≡  Σn [gn |g;n〉〈g;n| +  en |e;n〉〈e;n| + U(t)  |e;n〉〈g;n| + U(t) |g;n〉〈e;n|]    (5.1) 
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and the collective state is a product of the superpositions of the ground and excited state of the n-th 

atom, |Ψ(t)〉 = Πn ( Cg,n(t) |g;n〉 + Ce,n(t) |e;n〉).  The time-dependent amplitudes follow from the 

Schrödinger equation i  ∂|Ψ(t)〉/ ∂t= HQM |Ψ(t)〉 as 

 

  i  d Cg,n(t) /dt =  gn Cg,n(t) + U(t) Ce,n(t)   (5.2a) 

  i  d Ce,n(t) /dt =  en Ce,n(t) + U(t) Cg,n(t)    (5.2b) 

  

In order to convert the complex amplitudes into real variables, we can introduce the Bloch vector 

variables as 

  S1,n(t)  ≡  Cg,n(t)Ce,n(t)* + Cg,n(t)*Ce,n(t)   (5.3a) 

    S2,n(t)  ≡ –i [Cg,n(t)Ce,n(t)* – Cg,n(t)*Ce,n(t)]   (5.3b) 

    S3,n(t)  ≡ |Ce,n(t)|� – |Cg,n(t)|�   (5.3c) 

 

These variables also permit us to include phenomenologically various dissipative terms.  For 

example, the collisional broadening can lead to an atomic dipole’s dephasing rate γn.  The 

longitudinal decay rate is denoted by Γn [17,18].  If we abbreviate the energy-level spacing by ωn  ≡ 

en–gn, the equations of motion become: 

 

  d S1,n(t)/dt = – ωn S2,n(t) – γn S1,n(t)   (5.4a) 

  d S2,n(t)/dt =  ωn S1,n(t) – 2 S3,n(t) U(t) – γn S2,n(t)   (5.4b) 

  d S3,n(t)/dt =  2 S2,n(t) U(t) – Γn [S3,n(t) + 1]    (5.4c) 

 

to be solved with S1,n(t=0) = S2,n(t=0) = 0 and S3,n(t=0) = –1, meaning that all atoms are initially in 

their ground state.  Note the non-additive coupling of the external field, due to the terms S3,n(t) U(t) 

and S2,n(t) U(t). 

 The goal would be here to construct the properties of an optimum laser pulse Uopt(t), such that 

the final macroscopic dipole moment after the pulse Σn S1,n(T) is maximal.  The resulting 

Hamiltonian of optimal control theory is given by  
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H  =  Σn {λ1,n (– ωnS2,n–γnS1,n) + λ2,n(ωnS1,n–2S3,nU–γnS2,n)+λ3,n(2S2,nU– Γn [S3,n+1])} 

     (5.5) 

which leads to the following co-state equations for the Lagrange functions λi,n 

 

  d λ1,n(t)/dt  =  γn λ1,n(t)  –  ωn λ2,n(t)   (5.6a) 

  d λ2,n(t)/dt  =  ωn λ1,n(t)  +  γn λ2,n(t)  –  2 U(t) λ3,n(t)   (5.6b)  

  d λ3,n(t)/dt  =  2 U(t) λ2,n(t) –2 U(t) λ3,n(t)  + Γn λ3,n(t)   (5.6c)  

 

to be solved with λ1,n(T) =1 and  λ2,n(T) = λ3,n(T) = 0.  Coincidentally, the state and co-state 

equations are remarkable similar.  While this set of equations is formally decoupled from the state 

equations, due to the terms U λ2,n and U λ3,n they do not permit any relationship between the 

solutions λ1,n(t) obtained for U(t) =Uopt,n(t) and U(t) =Uopt(t), which would be required by the 

SPSO to be valid exactly.  

 However, there are two important limiting cases, where the SPSO becomes valid.  These two 

cases can be realized when either the damping Γn is sufficiently large, the pulse energy E (or 

equivalently the total interaction time T is less than the Rabi period of the atom) is short.  Then we 

can assume that the inversion S3,n(t) differs only slightly from its initial value such that S3,n(t) = –1 

+ ε(t).  Consequently, the last equation can be decoupled from S1,n(t)/dt and S2,n(t)/dt, leading to 

  

  d S1,n(t)/dt  =  – ωn S2,n(t) – γn S1,n(t)   (5.7a) 

  d S2,n(t)/dt  =  ωn S1,n(t) – γn S2,n(t) + 2 U(t)   (5.7b) 

 

 In order to test the reliability of this approximation with regard to the optimization scheme, we 

have calculated numerically the final polarization S1,n(T) for the n-th atom for the optimal laser 

pulse with a fixed total pulse energy E = ∫ dt U(t)2.  We compare the predictions according to the 

exact theory (5.6) with the approximation (5.7) as a function of the pulse energy E for ωn = 2π and 

T=11.3.   
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Figure 4   The final polarization S1(T) for the optimal pulse-shape for a driven two-level atom as a 
function of the fixed energy of the pulse.  (T=11.3, ω1=1/(2π), γn=0)   
 

 

 We find that the approximation (5.7) is surprisingly valid up to pulse energies E for which the 

polarization is almost 50% of its maximum total value [S1(T) = 1]  

 Note that in this weak-field approximation the external laser field is coupled to the equations of 

motion in an additive manner.  This means automatically that the superposition principle derived in 

Section 2 applies exactly if we optimize the collective macroscopic polarization at the end of the 

laser pulse, given by S1(t) ≡ Σn S1,n(t).  In this limit, the Hamiltonian takes the form H = Σn {λ1,n (– 

ωnS2,n–γnS1,n) + λ2,n(ωnS1,n+2U–γnS2,n)} such that the co-state equations become 

 

  d λ1,n(t)/dt  =  – ωn λ2,n(t) + γn λ1,n(t)   (5.8a) 

  d λ2,n(t)/dt  =  ωn λ1,n(t) + γn λ2,n(t)    (5.8b) 

 

which leads to the solution for λ2,n(t) = Exp[γn(t-T)] Sin[ωn(t-T)].  Applying Eq. (A14) to construct 

the collective optimal control Uopt(t) to maximize S1(t) ≡ Σn S1,n(t) then takes the form Uopt(t) = 

(2λ0)-1 Σn 2 λ2,n(t), such that we have  

 

  Uopt(t)  =  (λ0)-1 Σn Exp[γn(t-T)] Sin[ωn(t-T)]   (5.9) 
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If we assume an infinite ensemble of atoms with uniformly distributed transition frequencies ωn, 

between ωmin and ωmax such that Σn→ const. ∫dω, and assume the same damping constants γn≡γ,  

the optimum pulse shape becomes 

 

                    Uopt(t)  =  N Exp[γ(t-T)] {Cos[ωmin(t-T)]– Cos[ωmax(t-T)]}/(t-T)   (5.10) 

 

where the normalization constant guarantees that  ∫dt Uopt(t)
2 = E. 

 

                 
Figure 5   The optimal field Uopt(t) (in units of E1/2) to maximize the final macroscopic dipole 
moment of a distribution of two-level atoms with transition frequencies ω in the range 8< ω<10 and 
equal damping γ=0. 

 

 In Figure 5 we provide a typical example for Uopt(t) for γ=0.  As the damping is increased the 

oscillations at early times vanish and more of the pulses energy is shifted towards the final time T, 

approaching a single peaked-distribution close to t=T. 

 

4. Summary and outlook 

 In summary, we have pointed out a superposition principle for the simultaneous optimization 

for the final collective response of a set of dynamical systems that permits us to predict the optimal 

control field Uopt(t) from a weighted superposition of the optimal force fields Uopt,n(t) of every 

single sub-system separately.  The weights are inversely proportional to the temporal derivative at 
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the final time, U'opt,n(T).  It is interesting that this principle can be exact for systems for which a sum 

of individual solutions to the state equations is not a solution, but it is never exactly valid for those 

systems whose solutions are additive.  We have illustrated the SPSO for several systems and 

suggested that even for those systems, where it is not strictly valid (non-linear oscillators or 

two-level systems), it can provide under certain situations (small total energy of the control field or 

short interaction times) a surprisingly accurate guidance to predict the optimal control field Uopt(t). 

 The SPSO opens the door to many interesting future studies, out of which we sketch here one.  

A research area where the SPSO would find an obvious and direct application is the predicted 

laser-induced decay of the quantum field theoretical vacuum state.  Here it is predicted that the 

photon energy of an extremely focused laser pulse can be converted to the creation of 

electron-positron pairs [22].  Very recently, it was suggested by Kohlfürst et al. [23,24] and 

Hebenstreit and Fillion-Gourdeau [25] that optimal control theory could be applied to determine the 

time-dependence of the optimal electromagnetic field configuration that would lead to the largest 

number of created electron-positron pairs.  Due to the enormous requirement on CPU time, most 

studies so far in this research have focused on a finite -dimensional optimization, where typically 

some phases, amplitudes or spatial length scales [26] where optimized.  However, if the spatial 

inhomogeneity of electromagnetic field is neglected, which is sometimes non-trivial [27], then the 

interaction of the time-dependent electric field with the vacuum state can be exactly mapped onto 

an infinite set of uncoupled two-level systems, whose energy separation exceeds twice the rest mass 

energy of the electron, ωmin>2mc2.  The resulting theoretical framework is then nearly identical to 

the one examined in Section 5, where the SPSO was shown to be ideally suited to provide accurate 

predictions for short interaction times. 
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Appendix A   Optimal control theory for collective response 

 We consider N independent dynamical systems, each of which is characterized by I degrees of 

freedom, represented by the I-dimensional vector Yn(t) ≡ {Y1,n(t),Y2,n(t), ... ,YI,n(t)}.  We also 

assume that each vector has to satisfy the corresponding equations:  

 

                                                 dYn/dt = Kn[Yn, U(t)]   (A1) 

 

where the I-component vector Kn can be a non-linear function of Yn and the external force U(t).  

We assume that we know the initial values Yn(t=0).   

 The goal is to construct the best possible pulse-shape U(t) such that a certain collective quantity 

of all N systems, such as a certain weighted superposition of the final amplitudes at a given time T, 

becomes maximal.  In other words, we might want to optimize the objective J'' 

 

                                                         J'' ≡ Σn Σi wi,n Yi,n(T)   (A2) 

 

where we can choose specific factors wi,n to possibly weight the contributions of each amplitude 

Yi,n of the n-th system in a desired way.   

 In order to limit the possible range of forces U(t), we consider only those with a given "energy" 

E, i.e., U(t) has to fulfill the constraint E = ∫ dt U(t)2, where the integration limits on all temporal 

integrals are from now on from t=0 to t=T.  We can introduce the single Lagrange multiplier λ0 to 

account for this constraint and obtain a new objective J' 

 

                                J' = Σn  Σi wi,n Yi,n(T) + λ0 [E – ∫ dt U(t)2]                                      (A3) 

 

Furthermore, we introduce a set of Lagrange-functions λn(t) to account for the equations of motions 

(A1) as constraints.  As each system has several degrees of freedom, the notation λn(t) refers to a 

I-component vector with the individual components denoted by λi,n(t).  We therefore we arrive at 

the objective J, which is a function of λ0 and a functional of U(t), Yn(t) and λn(t).  
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            J = Σn {Σi wi,n Yi,n(T) + ∫ dt [λn (Kn – dYn/dt)} + λ0 [E – ∫ dt U(t)2]                  (A4) 

 

It turns out that the notation can be simplified if we define a collective Hamiltonian according to 

 

                               H ≡ Σn λn Kn  = Σn  Σi  λi,n Ki,n   (A5) 

 

then the objective functional reduces to 

 

                 J = Σn {Σi wi,n Yi,n(T) – ∫ dt λn dYn/dt} + λ0 [E – ∫ dt U(t)2] +∫ dt H    (A6) 

 

If we compute the variation of the objective δJ, we obtain 

 

δJ = Σn {Σi wi,n δYi,n(T) – ∫ dt [δλn dYn/dt + λn δ[dYn/dt]]} 

          + δλ0 [E – ∫ dt U(t)2] – λ0 ∫ dt 2UδU] + ∫ dt δΗ     (A7) 

 

After integration the terms containing δ[dYn/dt] by parts, and using δYn(t=0)=0, due to the fixed 

initial conditions, we write – λn δYn  = – Σi λi,n δYi,n and obtain 

 

             δJ = Σn {Σi[wi,n – λi,n(T)]δYi,n(T)  – ∫ dt [δλn dYn/dt – dλn/dt δYn]}  

                        +  δλ0 [E – ∫ dt U(t)2]  – λ0∫ dt 2UδU] + ∫ dt δΗ           (A8) 

 

Next, the variation of H amounts to  

 

                    δΗ =  (∂Η/∂U) δU + Σn {(∂Η/∂Yn) δYn + (∂Η/∂λn) δλn}   (A9) 

 

Using the specific definition of H, the partial derivatives simplify to ∂Η/∂λn = Kn.  If we want that 

the variation δJ vanishes for the optimal solutions, we have to require that each co-factor of each 

variation (δU, δλ0, δλn, δYn, and δYn(T)) vanishes, i.e., we obtain,  
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                             –λ0 2U + ∂Η/∂U = 0       (A10) 

  E – ∫ dt U(t)2 = 0   (A11) 

  dYn/dt = ∂H/∂λn = Kn                          with Yn(0) = Yn(t=0)   (A12) 

  dλn/dt = – ∂H/∂Yn = – λn ∂Kn/∂Yn      with λn(T) = wn   (A13) 

 

Eq. (A10) is the main control equation and can be rewritten as U(t) = (2λ0)-1 ∂Η/∂U.  Together with 

Eq. (A5) it leads to 

 

                                     U(t) = (2λ0)-1 Σn λn ∂Kn(Yn,U)/∂U      (A14) 

                  

This is in general a very complicated and possibly even transcendental equation that U(t) has to 

fulfill.  This is especially true as each system can be coupled to the force U(t) in a functionally 

different way.  The single Lagrange parameter  (2λ0)-1 needs to be chosen such that Eq. (A11) is 

satisfied, i.e., E – ∫ dt [(2λ0)-1 Σn λn ∂Kn(Yn,U)/∂U]2 = 0.  Therefore, we have the energy 

normalization factor 

 

  (2λ0)–1 = E1/2{∫ dt [Σn λn ∂Kn(Vn,U)/∂U]2}–1/2                    (A15) 
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Appendix B   The superposition principle for collective responses 

 Let us now examine special cases where the right-hand side of the equation of motion (A12) is 

given by simple matrices.  The system we consider is dYn/dt = Mn Yn + Vn U(t).  The temporally 

constant vector Vn permits us to couple the external force to each amplitude Yi,n differently.  Here 

the matrix Mn is time-independent, but the differential equation is inhomogeneous such that the 

sum of two individual solutions is in general not a solution to the same differential equation.  

However, due to the special coupling to the external force as a source term, this system can always 

be solved exactly based on the diagonalization of the matrix M.   

  The Hamiltonian reduces here to H= Σn  λn [Mn Yn + Vn U(t)], such that the control equation 

(A14) simplifies significantly to 

 

              U(t) = (2λ0)-1 Σn λn(t) Vn    (B.1) 

 

In this case, the co-state equation also simplifies significantly.  If we rewrite the products in terms 

of its components, λn Mn Yn = Σi λi,n Σj Mi,j,n Yj,n , then ∂H/∂Yk,n  leads to  ∂H/∂Yk,n  = Σi λi,n Mi,k,n 

= Σi λi,n MT
k,i,n, where the superscript T denotes the transposed matrix.  In other words, we obtain 

∂H/∂Yn = Mn
T

 λn, such that the resulting co-state equation dλn/dt =– Mn
T

 λn (with λn(T) = wn) no 

longer depends on U(t).  In other words, the transcendental equation (A14) for the optimum force 

field becomes therefore a solution solely in terms of the relevant Lagrange functions λn(t) and Vn.  

This observation has significant implications with regard to the ultimate goal of predicting the 

optimum force U(t) for the collective response for all N systems from the N optimum forces 

associated with each system separately, denoted by Uopt,n(t) and given by  

 

              Uopt,n(t) = (2λ0,n)-1 λn(t) Vn   (B.2) 

 

The collective optimum function Uopt(t) can therefore be rewritten as a linear superposition of the 

individual optimizers Uopt,n(t) with individual weight factors (2λ0,n) ≡ an.  

 

                                    Uopt(t)  =  (2λ0)-1 Σn an
 Uopt,n(t)         (B.3) 
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As a side issue, we remark that the normalization E = ∫ dt Uopt,n(t)2 =∫ dt [(2λ0,n)-1 λn Vn]2 leads to 

(2λ0,n) = E–1/2 [∫ dt (λn Vn)2]1/2.   

 As the Lagrange functions λn(t) are just mathematical auxiliary functions and cannot be 

measured directly, we have to show how the weight factors an ≡ (2λ0,n) are related to the observed 

Uopt,n(t).  The time derivative of Uopt,n(t) evaluated at the final time T is given by  

      dUopt,n(t)/dt|t=T  ≡ U'opt,n(T) 

               =  (2λ0,n)-1 (dλn(t)/dt|t=T) Vn  

    = –(2λ0,n)-1  (Mn
T

 λn|t=T) Vn  

    = – (2λ0,n)-1  (Mn
T

 wn) Vn                                                                  (B.4) 

such that the weight factors can be constructed via an = (2λ0,n) = – (Mn
T wn) Vn /U'opt,n(T).  We 

therefore arrived at the final form of the superposition principle for collective responses.  As one 

might expect, the an depend linearly on the weight factors wi,n associated with each amplitude Yi,n 

for the n-th system.  It is interesting to note that once the optimum field Uopt,n(t) is measured for 

each system, also its temporal derivative at the end point T needs to be calculated in order to predict 

the optimum force field for the collective response.  The larger the slope of the individual optimizer 

Uopt,n(t) is at the final moment in time, the less Uopt,n(t) will contribute to the optimizer of the 

collective system. 
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