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Precise time dissemination and synchronization have been some of the most important tech-
nological tasks for several centuries. No later than Harrison’s time, it was realized that precise
time-keeping devices having the same stable frequency and precisely synchronized can have impor-
tant applications in navigation. In modern times, satellite-based global positioning and navigation
systems such as the GPS use the same principle. However, even the most sophisticated satellite
navigation equipment cannot operate in every environment. In response to this need, we present
a computational and analytical study of a network-based model of a high-precision, inexpensive,
Coupled Crystal Oscillator System and Timing (CCOST) device. A bifurcation analysis (carried
out by the authors in a related publication) of the network dynamics shows a wide variety of collec-
tive patterns, mainly various forms of discrete rotating waves and synchronization patterns. Results
from computer simulations seem to indicate that, among all patterns, the standard traveling wave
pattern in which consecutive crystals oscillate out of phase by 2π/N , where N is the network size,

leads to phase drift error that decreases as 1/N as opposed to 1/
√
N for an uncoupled ensemble.

The results should provide guidelines for future experiments, design and fabrication tasks.

PACS numbers: 74.81.Fa, 85.25.Dq, 43.25.-x, 85.25.-j

I. INTRODUCTION

Precise time is crucial to a variety of economic activi-
ties around the world. Communication systems, electri-
cal power grids, and financial networks all rely on pre-
cision timing for synchronization and operational effi-
ciency. The free availability of GPS1 time has enabled
cost savings for industrial and scientific developments
that depend on precise time and has led to significant
advances in capability. For example, wireless telephone
and data networks use GPS time to keep all of their base
stations in synchronization. This allows mobile handsets
to share limited radio spectrum more efficiently. Simi-
larly, digital broadcast radio services use GPS time to
ensure that the signals from all radio stations arrive at
receivers in lockstep, so that listeners can tune between
stations with minimum delay.

However, even the most sophisticated satellite navi-
gation equipment cannot operate in every environment.
And even under perfect weather and environmental con-
ditions, mechanical failure can still occur and hinder ac-
cessibility. In fact, many of the 32 satellites in the GPS
constellation are operating past their intended lifespan or
suffering from equipment failure. There have been a few
launch incidents in past years, and the Air Force, which
maintains the 30-year-old network, is overburdened with
competing space priorities. Thus it is reasonable to won-
der what would happen if the U.S. Global Positioning
System is not available due to environmental or to com-
plete mechanical failure.

In response to this need, we investigate in this
manuscript the timing error response of a coupled crystal
oscillator system (CCOST) device as a proposed solution.
The fundamental idea is to exploit the collective response
of a coupled network system to significantly reduce phase
drift or phase error. Thus, in previous work2, we studied
in great detail the various patterns of oscillations that
can emerge in network topologies in the form of unidi-
rectionally and bidirectionally coupled rings of crystals
oscillators. In a nutshell, the study led to the classifi-
cation of two classes of patterns. One class includes a
variety of discrete rotating waves which emerge via the
equivalent of symmetry-breaking Hopf bifurcations from
a trivial equilibrium. Another class includes symmetry-
preserving bifurcations that yield synchronization states.
Then a natural issue to investigate is which pattern,
among all possible choices, can yield the smallest tim-

ing error or phase error. It should be noted that in this
paper we use the terms “timing error” and “phase error”
interchangeably. Regardless of the terminology, phase er-
ror refers to the changes or variations in the phase of an
oscillator over a long period of time. In simpler words,
it shows how much time is lost every second. Possible
sources of phase drift include environmental fluctuations,
noise, and imperfections of materials. Thus, performance
or robustness of a precision timing device is evaluated
by examining its phase error response through computer
simulations that incorporate the effects of noise in the
corresponding mathematical models. In this manuscript
we use the results of the corresponding bifurcation analy-
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sis to investigate how the phase error scales as function of
the number of nodes in the network and of the strength
of the coupling parameter.
The standard practice in precision timing is to average

out the timing of multiple (uncoupled) clocks. For in-
stance, at the United States Naval Observatory time is
measured by averaging the time of an ensemble of (un-
coupled) atomic clocks. In this case, phase error scales

as 1/
√
N . In this manuscript, we seek to show proof of

concept that an ensemble of coupled crystal oscillators
can produce a phase error that scales, at least, as 1/N .
Crystal oscillators were chosen because they are readily
available, inexpensive and require low power for opera-
tion. However, the fundamental idea of performance en-
hancement via collective behavior is a model-independent
feature which should apply to any network of coupled
nonlinear oscillators, provided that the collective oscilla-
tions are, qualitatively, the same.
This paper is organized as follows. First, some histori-

cal information and background information on precision
timing and crystal oscillators, including circuit diagrams
and model equations for one single CCOST system, are
presented in Sections II and III. The network topologies
with governing equations, along with a description of the
patterns of oscillation from2 are found in Section IV. In
Section V the model equations are recast to include a
stochastic component in order to model environmental
fluctuations and noise in electronic circuits. The stochas-
tic process allows us to define and study phase error, our
tool for measuring the timing performance.
This section on phase error is presented as an experi-

ment in simulation. First an uncoupled ensemble is stud-
ied to serve a control group for comparison. Then two
coupled networks are examined, these networks are uni-
directionally and bidirectionally coupled. The next sec-
tion presents some preliminary results from experiments
from SPAWAR Systems Center Pacific. This paper con-
cludes with a discussion on the presented results and fu-
ture works.

II. HISTORY OF PRECISION TIMING

Historically, the inability to determine longitude ac-
curately made navigation on the open seas difficult and
treacherous. In the Renaissance era, when Europe began
its exploration, determining longitude required compar-
ing the time at the current location with the time at a
known location, say the Greenwich meridian. However,
no shipboard clocks could determine time to an accu-
racy sufficient for navigational purposes. Heads of several
seafaring nations offered great prizes for a solution to the
problem of longitude. In the early 18th century, the Lon-
gitude Prize offered by Britain led to the development of
the ship’s chronometer. 3 This device was so amazingly
workable that it remained in use unchanged in its essen-
tial elements until the electronic era of the early 20th cen-
tury. Following World War I and the development of the

electronic oscillator and radio communications, the U.S.
Navy took an ever more active role in the development
of emerging Precision Time and Time Interval (PTTI)
technologies. The U.S. Naval Observatory (USNO), the
Naval Research Laboratory (NRL) and, after World War
II, the Office of Naval Research (ONR), the Defense Ad-
vanced Research Projects Agency (DARPA) and the Na-
tional Science Foundation4 were important players in the
development of the technology that makes up the current
state of the art in PTTI5.

The advances that had been made in high-frequency
electronics during the second World War, specifically
radar research, set the stage for the development of
atomic clocks. In 1942 the Joint Chiefs of Staff estab-
lished a Radio Propagation Laboratory at the National
Bureau of Standards (NBS), now the National Institute
of Standards and Technology (NIST). The Radio Prop-
agation Laboratory developed the world’s first atomic
clock in 1948. This clock was based on the measure-
ment of a spectroscopic absorption line of ammonia. Be-
cause the stability of this design was no better than their
high-quality quartz oscillators, the ammonia system was
quickly abandoned for the greater potential accuracy of
the cesium atomic beam device. The heart of the cesium
device was a microwave cavity developed in 1948 by Nor-
man Ramsey of Harvard University (Ramsey received the
Nobel Prize for this work in 1989.)

Immediately following the launch of the first artificial
Earth-orbiting satellite, Sputnik, by the Soviet Union
in 1957, the Navy set up the Naval Space Surveillance
System (NAVSPASUR). In 1964, Roger Easton of the
NRL put forward a concept for an improved naviga-
tion system that would orbit precision clocks. Signals
from such a satellite could provide more precise naviga-
tion as well as precise time signals that were available
worldwide. To achieve this goal, NRL started programs
to develop improved quartz frequency standards suitable
for spaceflight. Soon thereafter, the Timation program,
which involved atomic clocks in space, was established.
These space-qualified atomic clocks were then used in the
Global Positioning System (GPS), GPS became a joint
service program in 1973, with the Air Force designated
executive agent for the system.

Since 1976 the length of a second has been defined as
the frequency of a specific resonant mode of the cesium
atom. The frequency inaccuracy of the cesium clocks
is approximately 8.64ns/day. In comparison the typi-
cal watch crystal has an error of about 20ppm, which
is about 1.73s/day. The increased accuracy and preci-
sion comes with a price. Typical cost range of crystal
oscillators are in the few dollars while a cesium clock can
be in the order of $40,000. Currently, the accuracy of
the NIST atomic clock, called NIST-F26, is on the or-
der of 1x10−16, making it on the order of three times as
accurate as its predecessor NIST-F1, which had served
as the standard since 1999. Both clocks use a ‘foun-
tain’ of cesium atoms to determine a precise measure of
a second. The key operational difference is that F1 oper-
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FIG. 1: Two-mode crystal oscillator circuit. A second set
of spurious RLC components (R2, L2, C2) are introduced by
parasitic elements.910

ates near room temperature whereas the atoms in F2 are
shielded within a much colder environment7 and, thus,
less portable. Lack of portability makes the case for a
CCOST device even stronger.

III. MODELING

When a crystal of quartz is properly cut and mounted,
it can be made to distort in an electric field by apply-
ing a voltage to an electrode near or on the crystal. This
property is known as electrostriction or inverse piezoelec-
tricity. When the field is removed, the quartz generates
an electric field as it returns to its previous shape, and
this can generate a voltage. The result is that a quartz
crystal behaves like a circuit composed of an inductor, ca-
pacitor and resistor, with a precise resonant frequency8,
see Fig. 1.
A crystal oscillator circuit sustains oscillations by ap-

plying a voltage signal from the quartz resonator, ampli-
fying it, and feeding it back to the resonator. The rate
of expansion and contraction of the quartz is the reso-
nant frequency, and is determined by the cut and size of
the crystal. When the energy of the generated output
frequencies matches the losses in the circuit, an oscilla-
tion can be sustained. The frequency of the crystal can
be slightly adjusted by modifying the attached capaci-
tances. A varactor, a diode with capacitance depend-
ing on applied voltage, is often used in voltage-controlled
crystal oscillators, VCOs. The analog port of the VCO
chip is modeled by a nonlinear resistor R−, see Fig. 1,
that obeys the voltage-current relationship11

v = −ai+ bi3,

where a and b are constant parameters. This analog port
of the VCO is the expression of the crystal as an elec-
tronic oscillator. A major reason for the wide use of
crystal oscillators is their high Q factor. This is a di-

mensionless parameter that indicates how underdamped
an oscillator is. For a crystal oscillator, it can be de-
fined as the ratio of the resonant frequency with respect
to the half-power bandwidth, i.e., the bandwidth over
which the power of vibration is greater than half the
power at the resonant frequency. Higher Q indicates that
the oscillations die out more slowly. A typical Q value
for a quartz oscillator ranges from 104 to 106, compared
to perhaps 102 for an LC oscillator. The maximum Q
for a high stability quartz oscillator can be estimated as
Q = 1.6E07/f , where f is the resonance frequency in
megahertz.

A. Two-Mode Oscillator in Dimensionless Form

The inductance of the leads connecting the crystal to
the VCO port is represented by Lc. In addition, parasitic
elements can be represented by a series resonator (L2,
C2, R2) connected in parallel with the nonlinear resistor.
The resulting circuit, depicted in Fig. 1, forms a two-
mode resonator model. Applying Kirchhoff’s voltage law
yields the following governing equations

Lj

d2ij
dt2

+Rj

dij
dt

+
1

Cj

ij =
[

a− 3b(i1 + i2)
2
]

[

di1
dt

+
di2
dt

]

,

(1)
where j = 1, 2 and Lc has been included in L1. Lau-
rin and Balmain11 employed the method of averaging to
study the response of the two-mode oscillator Eq. (1).
Next we provide a brief review of their analysis. The aim
is not to duplicate their work but rather to introduce a
dimensionless version of the equations and a different no-
tation, which facilitates a natural extension of the aver-
aging method to the coupled network system. We start
by re-scaling time as t =

√
L1C1τ . Letting Ω2

1 = 1,

Ω2
2 = L1

L2

C1

C2
, Lr = L1

L2
, and ε =

√

C1

L1
, and relabeling τ

as time t, Eq. (1) becomes:

d2i1
dt2

+ Ω2
1i1 =

ε

{

−R1
di1
dt

+
[

a− 3b
(

i1 + i2
)2]
[

di1
dt

+
di2
dt

]}

d2i2
dt2

+ Ω2
2i2 =

εLr

{

−R2
di2
dt

+
[

a− 3b
(

i1 + i2
)2]
[

di1
dt

+
di2
dt

]}

.

(2)
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B. Averaging

Applying the following invertible coordinates transfor-
mation to Eq. (2),

i1 = x1 cosφ1; i′1 = −Ω1x1 sinφ1;

i′′1 = Ω1x
′
1 sinφ1 − Ω2

1x1 cosφ1 − Ω1x1ψ
′
1 cosφ1;

i2 = x2 cosφ2; i′2 = −Ω2x2 sinφ2;

i′′2 = Ω2x
′
2 sinφ2 − Ω2

2x2 cosφ2 − Ω2x2ψ
′
2 cosφ2;

φ1 = Ω1t+ ψ1; φ2 = Ω2t+ ψ2,

(3)

we can then re-write Eq. (2) in a more suitable form for
averaging. That is,





x
′

ψ′

φ′



 =





0
0
Ω

0



+ ε





X
[1](x, φ, ε)

Ω
[1](x, φ, ε)

0



 , (4)

where x = (x1, x2), φ = (φ1, φ2), ψ = (ψ1, ψ2), Ω
0 =

(Ω1,Ω2), X
[1] = (X

[1]
1 , X

[1]
2 ) and Ω

[1] = (Ω
[1]
1 ,Ω

[1]
2 ). Ex-

plicitly

X
[1]
1 =

1

Ω1

{

R1Ω1x1 sinφ1+
[

a− 3b
(

x1 cosφ1 + x2 cosφ2)
2
]

[

− Ω1x1 sinφ1 − Ω2x2 sinφ2
]}

sinφ1

X
[1]
2 =

Lr

Ω2

{

R2Ω2x2 sinφ2+
[

a− 3b
(

x1 cosφ1 + x2 cosφ2)
2
]

[

− Ω1x1 sinφ1 − Ω2x2 sinφ2
]}

sinφ2

Ω
[1]
1 =

1

Ω1x1

{

R1Ω1x1 sinφ1+
[

a− 3b
(

x1 cosφ1 + x2 cosφ2)
2
]

[

− Ω1x1 sinφ1 − Ω2x2 sinφ2
]}

cosφ1

Ω
[1]
2 =

Lr

Ω2x2

{

R2Ω2x2 sinφ2+
[

a− 3b
(

x1 cosφ1 + x2 cosφ2)
2
]

[

− Ω1x1 sinφ1 − Ω2x2 sinφ2
]}

cosφ2

Observe that now the first two equations in (4) are in
standard form12, so that averaging over the phase vari-
ables yield





x
′

ψ′

φ′



 =





0
0
Ω

0



+ ε







X̄
[1](x, φ)

Ω̄
[1](x, φ)

0






, (5)

Isotropy Solution Type

Z2 × Z2 (x1, x2) = (0, 0) Trivial

Z2(1,−1) (x1, x2) =

(
√

4(a−R1)

3b
, 0

)

Mode 1

Z2(−1, 1) (x1, x2) =

(

0,

√

4(a−R2)

3b

)

Mode 2

1 (x1, x2) = (x∗
1, x

∗
2) Mixed-Mode

TABLE I: Classification of solutions of Eq. (6) based on
isotropy subgroups.

where

X̄
[1](x, φ) =

1

(2π)2

∫

T
2
X

[1](x, φ, 0) dφ1 dφ2

Ω̄
[1](x, φ) =

1

(2π)2

∫

T
2
Ω

[1](x, φ, 0) dφ1 dφ2.

After simplifying, we find that Ω̄[1](x, φ) = (0, 0), i.e.,
ψ′
1 = ψ′

2 = 0, so we can re-write the averaged system (5)
more explicitly

x′1 = ε(a−R1)x1 − ε
3b

4

(

x21 + 2x22
)

x1

x′2 = εLr(a−R2)x2 − εLr

3b

4

(

x22 + 2x21
)

x2

φ′1 = Ω1

φ′2 = Ω2.

(6)

Details of the stability analysis of the solutions of
Eq. (6) can be found in2. We now re-write Eq. (6) in
complex form by letting z1 = x1e

φ1i and z2 = x2e
φ2i.

ż1 = (εµ1 +Ω1i)z1 − ε
3b

4

(

|z1|2 + 2|z2|2
)

z1

ż2 = (εµ2 +Ω2i)z2 − εLr

3b

4

(

|z2|2 + 2|z1|2
)

z2,

(7)

where µ1 = a− R1 and µ2 = Lr(a − R2). Observe that
in these coordinates, Eq. (7) commutes with a 2-Torus
T

2 = SO(2)×SO(2), which acts on R
4 = C

2 diagonally
by

(θ1, θ2) · (z1, z2) = (eiθ1z1, e
iθ2z2),

where (θ1, θ2) ∈ T
2 and (z1, z2) ∈ C

2. Observe also that
the phase equations in (6) decouple from the amplitude
equations due to the nonresonance conditions and they
commute only with the standard action of the Z2 × Z2

symmetry group in the plane13, which is what remains
of the 2-torus T2 phase-shift symmetries.

This type of reflectional symmetry appears commonly
in engineering applications of nonlinear oscillators. In
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FIG. 2: CCOST concept with unidirectionally coupled crystal
oscillators.

particular, it is found in classical systems such as: the
pendulum equations14, Duffing oscillators15,16 and van
der Pol oscillators17–21. In recent works, the same type
of odd symmetry has appeared in moderns systems that
include: vibratory gyroscopes22–26 and energy harvesting
systems27,28. We can now classify the four distinct type
of solutions, i.e., steady states, periodic solutions, and
invariant two-tori, of the original model Eq. (2) based
on the isotropy subgroups of Z2 × Z2. Table I provides
a classification of all four solutions of Eq. (2) based on
their isotropy subgroups.
The success of the averaging technique in the analysis

of a single crystal oscillator model has lead us to consider
a similar approach for the analysis of a network of coupled
crystal oscillators. We discuss next the coupled system.

IV. COUPLED SYSTEM

In this section we consider a Coupled Crystal Oscil-
lator System (CCOST) made up of N , assumed to be
identical, crystal oscillators. We consider first the case
of unidirectional coupling in a ring fashion, as is shown
schematically in Fig. 2. Each node is represented by the
circuit diagram found in Fig. 1. The spatial symmetry of
the ring is described by the group ZN of cyclic permuta-
tions of N objects. In the case of bidirectional coupling,
the spatial symmetry is captured by the dihedral group
DN of permutations of an N -gon.

A. Governing Equations

Applying Kirchhoff’s law to the CCOST network with
unidirectional coupling yields the following governing
equations

Lk,j

d2ik,j
dt2

+Rk,j

dik,j
dt

+
1

Ck,j

ik,j =

[

a− 3b
(

ik,1 + ik,2 − λ
[

ik+1,1 + ik+1,2

])2]

[

dik,1
dt

+
dik,2
dt

− λ

(

dik+1,1

dt
+
dik+1,2

dt

)]

,

(8)

where k = 1, 2, . . . , N mod N , j = 1, 2. Since we as-
sume identical components in each crystal oscillator, then
the set of parameters reduces to: Lk,1 = L1, Lk,2 = L2,
Rk,1 = R1, Rk,2 = R2, Ck,1 = C1 and Ck,2 = C2. Letting

t =
√
L1C1τ , Ω

2
1 = 1, Ω2

2 = L1

L2

C1

C2
, Lr = L1

L2
, ε =

√

C1

L1
,

and relabeling τ as time t, we write Eq. (8) in dimension-
less form

d2ik,1
dt2

+ Ω2
1ik,1 =

ε

{

−R1
dik,1
dt

+
[

a− 3b
(

ik,1 + ik,2 − λ
[

ik+1,1 + ik+1,2

] )2]

[

dik,1
dt

+
dik,2
dt

− λ

(

dik+1,1

dt
+
dik+1,2

dt

)]}

d2ik,2
dt2

+ Ω2
2ik,2 =

εLr

{

−R2
dik,2
dt

+
[

a− 3b
(

ik,1 + ik,2 − λ
[

ik+1,1 + ik+1,2

] )2]

[

dik,1
dt

+
dik,2
dt

− λ

(

dik+1,1

dt
+
dik+1,2

dt

)]}

.

(9)

After applying the following set of invertible coordi-
nates transformations

ikj = xkj cos φkj ;

i′kj = −Ωjxkj sinφkj ;

i′′kj = −Ωjx
′
kj sinφkj − Ω2

jxkj cos φkj − Ωjxkjψ
′
kj cos φkj ;

φkj = Ωj t+ ψkj ;
(10)

for j = 1, 2 we arrive at the following set of equations,
written symbolically as:

[

x
′
k

φ′k

]

=

[

0
Ω

0

]

+ ε

[

X
[1](xk, φk, φk+1, ε)

Ω
[1](xk, φk, φk+1, ε)

]

, (11)

where xk = (xk1, xk2), φk = (φk1, φk2) and Ω
0 =

(Ω1,Ω2). The vector X[1] has polynomial functions con-
taining linear and cubic terms in xk1, xk2, xk+1,1 and

xk+1,2 while Ω[1] has terms only dependent on φk and at
most quadratic terms in xk+1 divided by xk.

Next we remove the O(ε) dependence in the equation
for φk by using coordinates φk 7→ φk + φs and φk+1 7→
φk+1+φs, where φs = (φs1, φs2). Then Eq. (11) becomes





x
′
k

φ′k
φ′s



 =





0
0
Ω

0



+ε





X
[1](xk, φk + φs, φk+1 + φs, ε)

Ω
[1](xk, φk + φs, φk+1 + φs, ε)

0



 .

(12)

The explicit form of these equations is shown in Ap-
pendix VIII.

In the bidirectional case, the dimensionless equations
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are

d2ik,1

dt2
+ Ω2

1ik,1 =

ε

{

−R1
dik,1

dt
+

[

a− 3b
(

ik,1 + ik,2−

λ
[

ik+1,1 + ik+1,2 + ik−1,1 + ik−1,2

] )2]

[

dik,1

dt
+

dik,2

dt
−

λ

(

dik+1,1

dt
+

dik+1,2

dt
+

dik−1,1

dt
+

dik−1,2

dt

)]}

d2ik,2

dt2
+ Ω2

2ik,2 =

εLr

{

−R2
dik,2

dt
+

[

a− 3b
(

ik,1 + ik,2−

λ
[

ik+1,1 + ik+1,2 + ik−1,1 + ik−1,2

] )2]

[

dik,1

dt
+

dik,2

dt
−

λ

(

dik+1,1

dt
+

dik+1,2

dt
+

dik−1,1

dt
+

dik−1,2

dt

)]}

.

(13)

The transformation (10) leads to the following network
equations




x
′
k

φ′
k

φ′
s



 =





0
0
Ω

0



+ε





X
[1](xk, φk + φs, φk+1 + φs, φk−1 + φsε)

Ω[1](xk, φk + φs, φk+1 + φs, φk−1 + φsε)
0





(14)

with X
[1] is a vector of polynomial functions contain-

ing linear and cubic terms in xk1, xk2, xk+1,1, xk+1,2,

xk−1,1 and xk−1,2 and Ω
[1] has a similar structure as de-

scribed above. The complete set of equations is shown in
Appendix VIII.

We now write explicitly the averaged equations for
a network of crystal oscillators coupled unidirectionally.
We rescale time by τ = εt and the amplitude dynamics
are

ẋk1 = (a − R1)xk1 −

3

4
b(x2

k1 + 2x2
k2)xk1 −

3

2
bλ2(x2

k+1,1 + x2
k+1,2)xk1 − aλ xk+1,1 cosαk1+

3

4
bλ (3x2

k1 + 2x2
k2)xk+1,1 cosαk1 + 3 bλ xk1xk2xk+1,2 cosαk2 −

3

4
bλ2xk1x

2
k+1,1 cos 2αk1−

3

2
bλ2xk2xk+1,1xk+1,2 (cos(αk1 + αk2) + cos(αk1 − αk2)) +

3

4
bλ3(x2

k+1,1 + 2x2
k+1,2)xk+1,1 cosαk1

ẋk2 = Lr(a −R2)xk2 −

3

4
Lrb(x

2
k2 + 2x2

k1)xk2 −

3

2
Lrbλ

2(x2
k+1,1 + x2

k+1,2)xk2 − Lraλ xk+1,2 cosαk2+

3

4
Lrbλ (3x2

k2 + 2x2
k1)xk+1,2 cosαk2 + 3Lrbλ xk1xk2xk+1,1 cosαk1 −

3

4
Lrbλ

2xk2x
2
k+1,2 cos 2αk2−

3

2
Lrbλ

2xk1xk+1,1xk+1,2 (cos(αk1 + αk2) + cos(αk1 − αk2)) +
3

4
Lrbλ

3(x2
k+1,2 + 2x2

k+1,1)xk+1,2 cosαk2,

where αk1 = φk1 − φk+1,1 and αk2 = φk2 − φk+1,2. Similarly, the phase dynamics are

xk1φ̇k1 = aλ xk+1,1 sinαk1 −

3

4
bλ (x2

k1 + 2x2
k2)xk+1,1 sinαk1 +

3

4
bλ2xk1x

2
k+1,1 sin 2αk1−

3

4
bλ3(x2

k+1,1 + 2x2
k+1,2)xk+1,1 sinαk1 +

3

2
bλ2xk2xk+1,1xk+1,2 (sin(αk1 + αk2) + sin(αk1 − αk2))

xk2φ̇k2 = Lraλ xk+1,2 sinαk2 −

3

4
Lrbλ (x2

k2 + 2x2
k2)xk+1,2 sinαk2 +

3

4
Lrbλ

2xk2x
2
k+1,2 sin 2αk2−

3

4
Lrbλ

3(x2
k+1,2 + 2x2

k+1,1)xk+1,2 sinαk2 +
3

2
Lrbλ

2xk1xk+1,1xk+1,2 (sin(αk1 + αk2) + sin(αk1 − αk2))

A similar set of equations are obtained for the bidi-
rectional case. The complete equations are omitted for
brevity as they are very long, but they are found in2.
The symmetry of these averaged amplitude-phase equa-
tions is captured by the groups ZN ×O(2) ×O(2) and
DN × O(2) × O(2) for the unidirectional and bidirec-
tional coupling cases, respectively. A complete analysis
of the equations can be found in2. We summarize the
main results. Steady-states of the averaged system with
symmetry group Σ ⊂ Γ × SO(2), with Γ = ZN and
Γ = DN lead to periodic solutions with spatio-temporal
symmetry Σ ⊂ Γ × S

1. Then, the tangent space to the

trivial steady-state can be decomposed along irreducible
representations of the ZN and DN actions and thus we
obtain a block diagonalization of the linearization of the
complexified governing equations. Symmetry-preserving
and symmetry-breaking bifurcations are then determined
by examining the eigenvalues computed directly from the
block diagonalization. Criticality computations are also
performed to determine the direction of bifurcations.
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V. PHASE ERROR

Phase error is defined as the drift of the period of os-
cillation of an oscillating system away from the expected
period length. Reducing this phase error will allow a po-
tential network-based precision timing device to produce
more accurate time measures, and with a longer dura-
tion. In order to simulate phase error in the proposed
CCOST system, Eq. (12) and Eq. (14) must be cast as
a stochastic model, with colored noise added to simulate
fluctuations due to electronic components–that is, the
noise is assumed to be Gaussian, band-limited, having a
zero mean, a variance σ2, and have a specific correlation
time, τc. The noise is assumed to not drive the dynamics
of the system, this corresponds to τf ≪ τc, where τf is
the time-constant of each oscillator29,30. These assump-
tions lead us to re-write Eq. (12) and Eq. (14) together
in a more general Langevin form:

dtXk = F (Xk)− λ

N
∑

j→k

h(Xj, Xk) + ηk

dtηk = −ηk
τc

+

√
2D

τc
ξk,

(15)

where Xk = [ik1, i
′
k1, ik2, i

′
k2] is the state variable of each

crystal oscillator, τc, D are correlation time and inten-
sity respectively, F represents the internal dynamics of
each oscillating unit, i.e., each crystal oscillator as is de-
scribed by Eq. (1), h is the coupling function between
two oscillators, in which the summation is taken over
those cells j that are coupled to each cell k, λ is the (as-
sumed to be identical) coupling strength, and each ηk
describes the noise function applied to the kth oscilla-
tor, ξk is a Gaussian distributed random variable with
zero mean, and standard deviation σ. Each colored noise
function is characterized by 〈ηi(t)〉 = 0 and 〈ηi(t)ηj(s)〉 =
(D/τc) × exp [−|t− s|/τc], where D = σ2τ2c /2

31. As
τc → 0 the noise becomes white, however in practice all
noise is band limited32. For the purpose of our simula-
tions, τc = 1× 10−3 and D = 5× 105.
The model Eq. (15) is numerically integrated using the

Euler-Maruyama scheme29. Since the stochastic process
in Eq. (15) is additive and independent of the solution
X , more advanced stochastic numerical schemes, like the
Milstein method, reduce to Euler-Maruyama33. Figure 3
illustrates a typical solution of this stochastic model with
strong positive coupling, where N = 3. Note that only
one noise function is plotted. In these simulations, we
raised the resistance parameter R2 from 181.1Ω (in2) to
1000Ω. This change forces the model outside of the pa-
rameter space in which the 66MHz solution (the para-
sitic oscillation) exists. The high frequency solution is
removed because, this solution is not dominant in the
physical experiments.
Phase error is calculated by first locating the zeros of

each individual solution Xk, i.e., each oscillatory node in
the network. The zeros are approximated using a stan-

FIG. 3: This figure displays 22MHz rotating wave solution,
RW 1

1 , of the unidirectional CCOST model, with 3 nodes and
coupling strength λ = 0.99. (Top) The current, Xi, is plotted
over a period of 1.0× 10−7 seconds. (Bottom) Noise function
is displayed over the same duration.

dard three point quadratic interpolation method. From
the location of the zeros, the periods of oscillation are
calculated. Let Pk = {pki}ni=1 be the sequence of periods
of solution Xk, and σp be the mean absolute deviation of
the periods. Then phase error in the kth component of
the collective network oscillation is defined as

Phase Errork =
σPk

E(Pk)

where σPk
is the mean absolute deviation of the periods

Pk and E(Pk) is the expected period length. Under nor-
mal conditions the standard deviation is normally used
for phase error; however due to the natural length of the
periods, the squared error for each period is smaller than
machine epsilon leaving those measurements unreliable.
The mean absolute deviation does not square the values
so that the calculations stay away from machine epsilon,
O(1× 10−16). Phase error in the work is then computed
by averaging out the phase error of all individual units

Phase ErrorNetwork =
1

N

N
∑

k=1

Phase Errork (16)

When noise is removed from the equation the phase er-
ror is 0. The size of the sequence of periods is dictated by
the saved integration time. The integration time used for
the data sets considered in this paper was 3.5× 10−5 sec-
onds. The corresponding period for the 22MHz solution
is approximately 4.5× 10−8 sec. Therefore, the phase
error is the sample standard deviation of approximately
778 cycles. The data presented in the following sections
displays the mean phase error for 50 simulations for each
value of N . The simulation samples were calculated and
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FIG. 4: The uncoupled-averaged (λ = 0) log scaled phase er-
ror as a function of array size. This figure displays the average
taken over 50 samples for each N . A least squares regression
line shows that the scaling exponent is −0.5, corresponding
to a phase error reduction of 1/

√
N .

collected utilizing the High Performance Computing Cen-
ter (HPC) at SPAWAR Systems Center Pacific, Naval
Base Point Loma in San Diego, California. Correlation
time, τc, of the additive noise does not affect the compu-
tation of phase error as long as it is significantly larger
that the time constant τf of each oscillator, so the that
collective behavior is not driven purely by noise.

A. Uncoupled Control Group

Naturally, the performance of an ensemble of uncou-
pled oscillator system will serve as a baseline to compare
the performance of the patterns generated by the cou-
pling topology in a CCOST system. Observe that the
uncoupled model is a reduction of Eq. (15) when λ = 0.
At the United States Naval Observatory, it has been ob-
served that an averaged time signal collected from an
(uncoupled) ensemble of atomic clocks has a phase er-

ror reduction of approximately 1/
√
N , where N is the

number of oscillators in the particular system. Figure 4
illustrates the simulation test of the uncoupled ensemble.

Each point is the average of 50 simulations. The log
scaled phase error is fitted with a least squares regression.
This line shows that the reduction follows a scaling expo-
nent of −0.5, a 1/

√
N curve in normal space, consistent

with the measurements at the Naval Observatory. The
uncoupled simulation serves as a baseline to compare the
performance of the patterns induced by coupling.

B. Unidirectional Coupling

We consider the model equation under the unidirec-
tional topology, that is, when the coupling function is
of the form h(Xj , Xk) = h(Xk, Xk+1). Specifically, the

governing equations become:

dtXk = F (Xk)− λh(Xk, Xk+1) + ηk

dtηk = −ηk
τc

+

√
2D

τc
ξk,

(17)

for all k = 1, . . . , N , again where N is the total num-
ber of oscillators in the system. All other parameters are
the same as in Eq. (15). This network experiences dif-
ferent patterns of oscillation depending on the strength
of the coupling parameter, λ. Notably, there are three
patterns of interest: a rotating wave solution where each
consecutive node is T/N out of phase (denoted RW1), a
rotating wave where every other node is T/2 out of phase
(when N is even), where even and odd nodes are synchro-
nized (denoted RW2), and a fully synchronized pattern.
Both rotating waves exist and are stable when λ > 0.
In the parameter regime of our simulations, the pattern
RW1 is stable for odd N , whereas the pattern RW2 exists
only when N is even. The synchronized pattern is stable
when λ < 0. This subsection illustrates which pattern
has the best phase error reduction. Detailed information
on the nature of the symmetry-breaking bifurcations that
lead to the emergence of patterns, and their stability, for
both the unidirectional and bidirectional networks can
be found in2.
A sorting algorithm was developed to separate phase

error values depending on which pattern was observed.
This algorithm finds the first peak of each oscillator in
the system, after transient integration, and calculates the
time difference between them. For example, let N = 3,
ǫ be a specified tolerance, and T be the expected period.
If td = |tpeak(i) − tpeak(i+1)| and td − T/3 < ǫ, for each
i ≤ N − 1, then the algorithm sorts the pattern as RW1,
the T/N rotating wave. However, if td < ǫ for all i < N ,
then the algorithm sorts the pattern as synchronized.
Figure 5 is composed of the logarithmic scaled data and

their respective least squares regression line. The purple
circles are the data points for the synchronized pattern.
The simulation of this pattern shows that the phase er-
ror data best fits a scaling exponent, m, of m = −0.4868
close to the uncoupled performance. The blue data points
shows the phase error reduction for the standard rotat-
ing wave RW1. This pattern best fits a scaling exponent
of m = −0.9716, performing better than the uncoupled
ensemble and closely resembling a 1/N phase error re-
duction. The green data points show the performance
of the rotating wave RW2. This pattern performs much
like the synchronized solution with a scaling exponent of
m = −0.4736.
The previous results presented so far represent a sam-

ple of phase errors for specific values of coupling strength,
i.e., λ = −0.99 for synchronized solutions, λ = 0 for
uncoupled ensemble, and λ = 0.99 for rotating waves.
Since there is a significant variation between the uncou-
pled scaling and the scaling for RW1, the phase error
analysis was expanded to examine the phase reduction
along the interval 0 < λ < 0.99. Figure 6 illustrates the
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FIG. 5: The log scaled phase errors for the synchronized,
the T/N rotating wave, and the T/2 rotating wave solutions.
λ = −0.99 for the synchronized solution and λ = 0.99 for
the rotating waves. This figure displays the average of 50
samples taken for each N . A least squares regression is fitted
to the logged data to illustrate the scaling exponent, m, of
each pattern.
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FIG. 6: Phase error scaling for the RW1 pattern as a function
of λ such that λ ∈ (0, 1), with dashed lines indicating 1/

√
N

and 1/N scalings.

performance with respect to the scaling exponent, i.e.,
this figure is a log plot phase error, Err(N, λ) = Nm(λ).
Samples are taken for 100 values of λ. For each value of λ,
the mean phase error for 50 repeated simulations is cal-
culated for N = 3, 5, . . . , 21. Then a least squares regres-
sion is performed on the log of these values, producing the
scaling exponents depicted in Fig 6. This analysis sug-
gests that strong coupling is preferable to weak coupling
to produce optimal scaling. From Fig 6, the optimal scal-
ing is found at λ = 0.99 with m = −0.8947. Notice that
for λ ∈ (0, 0.387), the coupled system performs poorly
compared to the uncoupled standard, having a scaling
exponent m(λ) > −0.5. When the circuit is coupled the
inherent noise of each node is amplified by the coupling,
and in the case of 0 < λ < 0.387 the coupling is too
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FIG. 7: Phase error scaling for a larger number of oscillators
in an unidirectionally coupled array. Coupling strength is
held fixed at λ = 0.95. The observed variations from the 1/N
scaling are due to transient behavior in the system.

weak to overcome the amplification in noise. For values
of coupling strength in the interval λ > 1, all traveling
wave patterns and discrete rotating waves are unstable,
so they could not be used in an actual CCOST device
and we do not need to consider them in here.
In order to obtain more statistically meaningful results

of scaling law, we conducted additional simulations of the
unidirectionally coupled network with larger values of N .
The simulations are very time consuming. Thus, instead
of sweaping through the entire range of values of coupling
strength, we held the coupling strength fixed, and near
the region of strong strength, i.e., near λ = 1.0. Figure 7
shows that phase drift error still follows, approximately,
a 1/N scaling law. The observed variations, mainly for
large values of N , are due to transient behavior in the
simulations. That is, as N increases, the transient time
that we must wait until collecting phase drift data must
increase significantly. But this also increases the time it
takes to run the simulations, thus a tradeoff choice must
be made to be able to report results in a timely manner.

From a physics standpoint we can explain the observed
results of phase drift by examining the phase relations
among nearest neighbor oscillators. Consider a generic
pattern of oscillation described as

X(t) =
(

i1
(

t+ k1
T
N

)

, i1
(

t+ k2
T
N

)

, i1
(

t+ k3
T
N

)

,

i1
(

t+ k4
T
N

)

, . . . , i1
(

t+ kN
T
N

))

.

The standard traveling wave pattern corresponds to
k1 = 0, k2 = 1, . . . , kN = N − 1. Discrete rotating waves
would follow a different sequence. For instance, withN =
5, a commonly observed wave is one in which the phase
difference skips one oscillator at a time, it has the form

X(t) = (i1(t), i1(t+ 3T/5), i1(t + T/5), i1(t + 4T/5), i1(t+ 2T/5)) .
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FIG. 8: Discrete rotating wave predicted by symmetry-
breaking Hopf bifurcations in a network of five crystal os-
cillators coupled unidirectionally.

This discrete rotating wave corresponds to k1 = 0,
k2 = 3, k3 = 1, k4 = 4, and k5 = 2. Observe that
the constant phase difference of T/5 follows the follow-
ing order of the oscillators: 1, 3, 5, 2, 4. The pattern can
be easily visualized with the aid of Fig. 8. Notice that
it is also possible for the phase difference to skip two os-
cillators instead of one. However, this would lead to a
similar rotating wave oscillating in the opposing direc-
tion, i.e., a conjugate pattern. But for larger arrays it is
quite possible for a discrete rotating wave to have phase
differences that skip a larger number of oscillators. As
the number of oscillators that are skipped increases, the
coherence between nearest neighbors is reduced so that
the network tends to behave more as an “uncoupled” ar-
ray and, consequently, the phase drift converges toward
that of an uncoupled ensemble. On the other hand, in the
standard traveling wave pattern, nearest neighbors have
the smallest phase difference and phase drift decreases.
In future work, we expect to follow this line of thought
to provide a mathematical proof for the scaling law by
taking into account the phase difference between nearest
neighbors.

C. Bidirectional Coupling

We now consider Eq. (15) under the bidirectional
topology, that is, when the coupling function is of the
form h(Xj , Xk) = h(Xk−1, Xk, Xk+1). Specifically, the
governing equations become:

dtXk = F (Xk)− λh(Xk−1, Xk, Xk+1) + ηk

dtηk = −ηk
τc

+

√
2D

τc
ξk,

(18)

FIG. 9: Log scale phase error for the synchronized and RW2

solutions in a bidirectionally coupled ring. The average of 50
simulations is plotted for each value of N . The synchronized
solution performs slightly worse than the uncoupled scaling,
while the RW2 pattern is fitted to a reduction exponent of
m− 0.47611.

for all k = 1, . . . , N , again where N is the total number
of oscillators in the system. All other parameters are the
same as in Eq. (15). The bidirectional topology yields
two generically stable patterns. The synchronized solu-
tion for λ ∈ (−0.5, 0) and the RW2 solution where each
node is T/2 out of phase, appearing when λ ∈ (0, 0.5)
and N is even. The numerical computations in2 suggest
that for λ > 0 and N odd, there are no stable patterns.
Figure 9 illustrates phase error diagrams for both pat-
terns in the bidirectional coupling scheme. Interestingly,
the synchronized state seems to have a worse scaling than
the averaged uncoupled case, whereas the pattern RW2

matches both the uncoupled and it’s unidirectional coun-
terpart with a close to 1/

√
N scaling.

VI. PRELIMINARY EXPERIMENTS

A system of coupled crystal oscillators are being con-
structed and tested at the nonlinear dynamics labora-
tory at Space and Naval Warfare Systems Center Pacific,
San Diego, California. Programmable Integrated Cir-
cuits were used as designing blocks for fabricating net-
works of coupled crystal oscillators. They are essentially
computers with a crystal clock inside to synchronize flow
of data. They are found in alarm systems, phones, in fact
almost any electronic device. They can be programmed
to control a production line or, in our case, to be timers.
The experimental CCOST design has a base clock of 32
KHz. This is achieved through the choice of RLC compo-
nents, so that only one mode oscillates at 32 KHz while
the other (parasitic) mode is unstable. Furthermore, the
condition on correlation time of noise being significantly
larger than the time constant of the oscillators guarantees
that the network dynamics is not driven purely by noise,
so noise-induced switching between modes of oscillation
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FIG. 10: (Top) Experimental realization of a network of cou-
pled crystal oscillators implemented via PIC boards. Each
PIC board includes the oscillator circuitry and a port for
coupling to create a network. RLC components guarantee
that one mode oscillates at the desired frequency of 32 KHz
while the other (parasitic) mode is unstable. The external
small box contains the potentiometer to control the gain of
the operational amplifiers and, in this way, manipulate the
desired coupling strength across the network. (Bottom-left)
Experimental measurements for N = 2 and N = 3 reveal,
as expected, a traveling wave pattern among the oscillations.
(Bottom-right) When the oscillators are uncoupled the pat-
tern disappears.

can be prevented. And even for (uncommonly) larger val-
ues of noise, the system would eventually switch back to
the desired mode of oscillation as soon as the noise levels
would decrease to more normal values. Recall also that a
major reason for the wide use of crystal oscillators is their
high Q factor. Higher Q indicates a lower rate of energy
loss relative to the stored energy of the resonator; the os-
cillations die out more slowly. Figure 10(top) illustrates
the design and network response captured by an oscillo-
scope. The white box in the figure contains appropriate
potentiometers to control the gain of the operational am-
plifiers, which in turn, are used to manipulate coupling
strength, and thus, control the network response to the
desired pattern of oscillation.
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FIG. 11: Experimental phase error measured by averaging the
phase error of a control group, i.e., an uncoupled ensemble of
experimental crystal oscillators. The data points are plotted
as well as least squares regression. The experimental phase
error shows a reduction exponent of m = −0.41254.

Data from the experimental device was retrieved us-
ing the BI220 Time Interval Analyzer. This time ana-
lyzer has a measuring threshold of 8ps, and a maximum
measurable frequency of 2.5 GHz34. For comparison pur-
poses, an uncoupled control group of crystal oscillators
rated at 32 KHz was also examined and phase error data
extracted. Figure 11 illustrates the data collected from
this experiment. The figure is plotted using a base 10 log
scale. The data shows that the scaling exponent for the
uncoupled control group is m = −0.41254.
Figure 12 illustrates now preliminary results from the

experimental 32 KHz CCOST device with unidirectional
coupling. Coupling strength in the experiment is tuned
up to operate the device over the region where the RW1

traveling pattern becomes stable. The data provided best
fits a scaling exponent of m = −0.8947, which is rela-
tively close to the expected 1/N scaling law predicted
by the numerical simulations. Additional experiments
are necessary to further investigate the robustness of the
CCOST device. Those experiments and additional test-
ing are all part of ongoing work, which we expect to re-
port in future publications.

VII. DISCUSSION

This manuscript investigates the effects of colored noise
on a network of N identical nonlinear crystal oscillators
coupled together, either unidirectionally or bidirection-
ally, in a ring configuration. The robustness of the unidi-
rectional and bidirectional networks under additive noise
was investigated focusing on phase error. The primary
interest was the scaling of the phase error reduction. We
discovered that the unidirectionally coupled network pre-
formed better than the uncoupled control in terms of
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FIG. 12: Experimental phase error for a unidirectional
CCOST device with the RW1 pattern selected on a log 10
scale. The scaling exponent from the experimental data is
m = −0.8947.

phase error reduction. However, not all of the patterns
contained in the unidirectional coupling do. Indeed, a
standard discrete rotating wave pattern, in which consec-
utive crystals oscillate out of phase by 2π/N , performed
better than other patterns and, significantly better that
the average of an uncoupled ensemble. If one wanted to
decrease the phase error by a factor of ten, one would
simply need to couple ten more oscillators and induce
them to oscillate in a similar traveling wave pattern. For
comparisons purposes, to obtain a similar phase error
reduction with an uncoupled ensemble, it would be nec-
essary to average out the phase of about 100 oscillators.
The tradeoff between uncoupled and coupled networks
then becomes obvious. As the number of oscillators, N ,
grows to be large, coupling becomes less expensive than
averaging.
Preliminary results from corresponding experiments

support the results of the analysis and simulations. In
fact, even with the slow circuits, a close to 1/N scal-
ing law of phase error is readily obtained with a coupling
circuitry. The experimental device was constructed using
a solderless breadboard, and had variation within com-
ponents. When an integrated circuit is constructed, we
expect the components will be closer to uniform and the
phase error scaling values will better align to the ones pre-
dicted in simulation. Further, when the device is fully de-
veloped, SPAWAR will be able to test the device against
the Precise Intermediate-term Computer-controlled Os-
cillator (PICO) advanced clock, an averaged crystal oscil-
lator device that is corrected by central processing units
and low pass filters 35. The PICO advanced clock was an-
other precision timing solution that had been examined
in the past. Overall, further experiments and testing are
needed to investigate the fundamental limit of phase error
reduction as N increases to very large values. However,
in experiments with uncoupled and coupled topologies,

the phase error scaling is slightly less than what is ob-
served in simulations.

The emphasis of this work is on homogeneous networks
of crystal oscillators, coupled instantaneously. This em-
phasis is not exhaustive by any means but it serves to
identify directions and tasks for future work. One im-
mediate task involves an analysis of the effects of de-
lay. Indeed, while the mathematical model equations of
the network of crystal oscillators assume instantaneous
coupling, in practice we must account for the fact that
even high-speed, high-precision, circuit components can
introduce a delay in the coupling signal. Similarly, we
expect uncertainty in networks of crystal oscillators to
arise from two sources: fluctuations in parameter val-
ues due to material imperfections (inductances, resistors
and capacitances) and signal contamination due to noise
in the electronics. The former case may lead to non-
homogeneities in parameters, which, in turn, translates
into differences in the internal dynamics of each crystal
oscillator. Thus, it is also important that we consider the
effects of non-homogeneous electronic components.

The coupling type studied in this paper is simple ad-
ditive coupling. Other forms of coupling could also be
studied. For example, the coupling parameter could be a
function ofXk and its neighbors, that is λ = λ(X). There
are a multitude of ways to couple electronic circuits such
as, direct coupling, magnetic field coupling, power cou-
pling and many more. The additive coupling presented
in this paper, models direct signal coupling of electrical
circuits. The CCOST device is being developed using di-
rect coupling because the coupling strength in this strat-
egy is more easily controlled. Coupling strategies such as
power or magnetic field coupling are not easily controlled
by the user. However, different coupling strategies may
prove to have better phase error reduction and stability
properties, than the one presented here. Additionally,
the pattern analysis in2 is oscillator independent. Some
future work would be to examine the phase error reduc-
tion in other oscillator systems, such as using a Colpitts
oscillator as the base node. These types of oscillators can
offer additional advantages not found in crystals. For
instance, one immediate advantage is that they do not
require the use of crystals to oscillate, so implementa-
tion in an integrated circuit can be done inside a single
silicon layer, as opposed to crystals that have to exter-
nally connected. In addition, they can also be tuned up
to oscillate over a wide frequency spectrum, whereas the
frequency of oscillation of crystals is predetermined by
how they are cut and mounted, so their frequency can
only be slightly adjusted. However, in order to obtain a
high Q factor in Colpitts, they may have to be fabricated
over a preferred frequency. These tradeoffs will have to
be examined in more detail as part of future work.

Finally, other symmetric coupling schemes should also
be taken into consideration. Under new symmetries, dif-
ferent patterns of collective behavior may emerge with
different conditions for their existence and stability. All
of these tasks are part of ongoing work with the ulti-
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mate goal of guiding the design rules and operation of a
precision timing device.

VIII. ACKNOWLEDGEMENT

We acknowledge support from ONR Code 30. A.P.
was supported by DoD Office of Naval Research Grant
N00014-16-1-2134. PLB (Discovery Grant) and CD

(USRA) acknowledge funding from NSERC Canada.

Appendix A: Averaged Equations for Unidirectional

Coupling

ẋk,1 = −

ǫ

Ω1
sin(φk1 + φs1)

[

R1xk,1Ω1 sin(φk1 + φs1)+

(

a − 3 b
(

xk,1 cos(φk1 + φs1) + xk,2 cos(φk2 + φs2)− λ
(

xk+1,1 cos(φk+1,1 + φs1)+

xk+1,2 cos(φk+1,2 + φs2)
) )2

)(

−Ω1xk,1 sin(φk1 + φs1)− Ω2xk,2 sin(φk2 + φs2)+

λ
(

Ω1xk+1,1 sin(φk+1,1 + φs1) + Ω2xk+1,2 sin(φk+1,2 + φs2)
)

)]

,

(A1)

ẋk,2 = −

ǫ

Ω2
Lr sin(φk2 + φs2)

[

R2Ω2xk,2 sin(φk2 + φs2)+

(

a − 3 b
(

xk,1 cos(φk1 + φs1) + xk,2 cos(φk2 + φs2)− λ
(

xk+1,1 cos(φk+1,1 + φs1)+

xk+1,2 cos(φk+1,2 + φs2)
) )2

)(

−Ω1xk,1 sin(φk1 + φs1)− Ω2xk,2 sin(φk2 + φs2)+

λ
(

Ω1xk+1,1 sin(φk+1,1 + φs1) + Ω2xk+1,2 sin(φk+1,2 + φs2)
)

)]

,

(A2)

φ̇k1 = −

ǫ

Ω1xk,1
cos(φk1 + φs1)

[

R1xk,1 sin(φk1 + φs1)+

(

a− 3 b
(

xk,1 cos(φk1 + φs1) + xk,2 cos(φk2 + φs2) − λ
(

xk+1,1 cos(φk+1,1 + φs1)+

xk+1,2 cos(φk+1,2 + φs2)
) )2

)(

− Ω1xk,1 sin(φk1 + φs1)− Ω2xk,2 sin(φk2 + φs2)+

λ
(

Ω1xk+1,1 sin(φk+1,1 + φs1) + Ω2xk+1,2 sin(φk+1,2 + φs1)
)

)]

,

(A3)

φ̇k2 = −

ǫ

Ω2xk,2
Lr cos(φk2 + φs2)

[

R2Ω2xk,2 sin(φk2 + φs2)+

(

a− 3 b
(

xk,1 cos(φk1 + φs1) + xk,2 cos(φk2 + φs2) − λ
(

xk+1,1 cos(φk+1,1 + φs1)+

xk+1,2 cos(φk+1,2 + φs2)
) )2

)(

− Ω1xk,1 sin(φk1 + φs1)− Ω2xk,2 sin(φk2 + φs2)+

λ
(

Ω1xk+1,1 sin(φk+1,1 + φs1) + Ω2xk+1,2 sin(φk+1,2 + φs1)
)

)]

.

(A4)

Appendix B: Averaged Equations for Bidirectional

Coupling
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ẋk,1 = −

ε

Ω1
sin

(

φk,1 + φs,1
)

[

R1xk,1Ω1 sin
(

φk,1 + φs,1
)

+

(

a− 3 b
(

xk,1 cos
(

φk,1 + φs,1
)

+ xk,2 cos
(

φk,2 + φs,2
)

− λ
(

xk+1,1 cos
(

φk+1,1 + φs,1
)

+

xk+1,2 cos
(

φk+1,2 + φs,2

)

+ xk−1,1 cos
(

φk−1,1 + φs,1

)

+ xk−1,2 cos (φk−1 + φs,2)
))2

)

(

−Ω1xk,1 sin
(

φk,1 + φs,1
)

−Ω2xk,2 sin
(

φk,2 + φs,2
)

+ λ
(

Ω1xk+1,1 sin
(

φk+1,1 + φs,1
)

+Ω2xk+1,2 sin
(

φk+1,2 + φs,2
)

+Ω1xk−1,1 sin
(

φk−1,1 + φs,1
)

+

Ω2xk−1,2 sin (φk−1 + φs,2)
)

)]

,

(B1)

ẋk,2 = −

εLr

Ω2
sin

(

φk,2 + φs,2
)

[

R2Ω2xk,2 sin
(

φk,2 + φs,2
)

+

(

a− 3 b
(

xk,1 cos
(

φk,1 + φs,1
)

+ xk,2 cos
(

φk,2 + φs,2
)

− λ
(

xk+1,1 cos
(

φk+1,1 + φs,1
)

+

xk+1,2 cos
(

φk+1,2 + φs,2
)

+ xk−1,1 cos
(

φk−1,1 + φs,1
)

+ xk−1,2 cos (φk−1 + φs,2)
))2

)

(

−Ω1xk,1 sin
(

φk,1 + φs,1

)

−Ω2xk,2 sin
(

φk,2 + φs,2

)

+ λ
(

Ω1xk+1,1 sin
(

φk+1,1 + φs,1

)

+Ω2xk+1,2 sin
(

φk+1,2 + φs,2
)

+Ω1xk−1,1 sin
(

φk−1,1 + φs,1
)

+

Ω2xk−1,2 sin (φk−1 + φs,2)
)

)]

,

(B2)

φ̇k1 = −

ε

Ω1xk,1
cos(φk1 + φs1)

[

R1xk,1 sin(φk1 + φs1)+

(

a− 3 b
(

xk,1 cos(φk1 + φs1) + xk,2 cos(φk2 + φs2)− λ
(

xk+1,1 cos(φk+1,1 + φs1)+

xk+1,2 cos(φk+1,2 + φs2) + xk−1,1 cos(φk−1,1 + φs1) + xk−1,2 cos(φk−1,2 + φs2)
))2

)

(

− Ω1xk,1 sin(φk1 + φs1)− Ω2xk,2 sin(φk2 + φs2) + λ
(

Ω1xk+1,1 sin(φk+1,1 + φs1)+

Ω2xk+1,2 sin(φk+1,2 + φs2) + Ω1xk−1,1 sin(φk−1,1 + φs1) + Ω2xk−1,2 sin(φk−1,2 + φs2)
)

)]

,

(B3)

φ̇k2 = −

ε

Ω2xk,2
cos(φk2 + φs2)

[

R2Ω2xk,2 sin(φk2 + φs2)+

(

a− 3 b
(

xk,1 cos(φk1 + φs1) + xk,2 cos(φk2 + φs2)− λ
(

xk+1,1 cos(φk+1,1 + φs1)+

xk+1,2 cos(φk+1,2 + φs2) + xk−1,1 cos(φk−1,1 + φs1) + xk−1,2 cos(φk−1,2 + φs2)
))2

)

(

− Ω1xk,1 sin(φk1 + φs1)− Ω2xk,2 sin(φk2 + φs2) + λ
(

Ω1xk+1,1 sin(φk+1,1 + φs1)+

Ω2xk+1,2 sin(φk+1,2 + φs2) + Ω1xk−1,1 sin(φk−1,1 + φs1) + Ω2xk−1,2 sin(φk−1,2 + φs2)
)

)]

.

(B4)
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