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Abstract

From the gambling logs of an online lottery game we extract the probability distribution of

various quantities (e.g., bet value, total pool size, waiting time between successive gambles) as well

as related correlation coefficients. We view the net change of income of each player as a random

walk. The mean squared displacement of these net income random walks exhibits a transition

between a super-diffusive and a normal diffusive regime. We discuss different random walk models

with truncated power-law step lengths distributions that allow to reproduce some of the properties

extracted from the gambling logs. Analyzing the mean squared displacement and the first-passage

time distribution for these models allows to identify the key features needed for observing this

crossover from super-diffusion to normal diffusion.

1



I. INTRODUCTION

Recent years have seen a tremendous increase in online gambling, as witnessed by the

emergence of numerous online gambling sites. This surge has yielded numerous recent sci-

entific studies, with a focus on legal, social and psychological aspects, see [1–16] for some

recent references. In parallel to this, the quick expansion of the video gaming industry has

resulted in the formation of a huge market for virtual (in-game) item economy. Due to its

easy accessibility, low entry barrier, and immediate outcome, virtual item gambling has be-

come popular among game players. In virtual item gambling, instead of directly using cash,

gamblers place bets with virtual items as virtual currencies [13–15]. The virtual items here

particularly refer to in-game cosmetic skins from video games like Counter-Strike: Global

Offensive, Team Fortress 2, DOTA 2, etc., which can be obtained through regular game-

play, in-game purchase, community market purchase, or trading among players. Based on

current estimations, virtual item gambling industry has reached multi-billion level [17] and

is expected to continue increasing. For such a booming industry, it becomes important to

be able to model the complex virtual item gambling behaviors at both the individual and

the aggregate level. Indeed, understanding online gambling patterns is quickly becoming a

pressing need for adolescent gambling prevention, virtual gambling regulation, and online

irrationality research.

In this paper we apply the methods of statistical physics in order to develop an under-

standing of the behavior of online gamblers. This is supplemented by the study of different

random walk models that allow to recover some of the features extracted from the empirical

data. While we are not aware of any previous similar attempts to investigate online gam-

bling, we point out that related approaches have been used in the past in the study of horse

race betting [18, 19]. More recently, online lowest unique bid auctions have been the subject

of different studies that successfully applied the toolbox of statistical and non-linear physics

[20–25].

We focus in the following on a specific type of virtual item gambling, namely jackpot, a

lottery style game which occupies about half of the virtual item gambling market [17]. Our

analysis is based on the publicly available gambling logs from a medium-sized skin gambling

site [26]. The rules of jackpot gambling are simple: players purchase lottery tickets with

skins, there will be only one winning ticket, and the winner takes it all. In another way
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of speaking, this is a parimutuel betting type of gambling, where players place wagers in a

pool, whereas only one player is chosen as the winner and wins all the wagers in the pool.

The chance of winning equals the share of the player’s wagers to the total wager pool.

In the next Section we provide a more in-depth discussion of jackpot gambling and of the

data used in our analysis. We also discuss the models used for describing the distributions

of different quantities as well as the model selection and parameter estimation. Section III

summarizes results that we obtain from a statistical analysis of the gambling logs. In Section

IV we view the net income of players as random walks, whereas in Section V we discuss some

random walk models that allow to understand some of the behavioral data at the aggregate

level. We conclude in Section VI.

II. DATA AND METHODS

A. Online jackpot game and gambling logs

The rules of the jackpot game are very simple. The gambling site constantly hosts a

single jackpot game that any player can attend. A round can last from a few seconds to

several minutes. To take part in the game, a player needs to place a bet with lottery tickets

purchased with one or several in-game skins deposited to the gambling site. Each ticket is

usually equivalent to 1 US cent, and the values of the skins are calculated based on their

prices listed in the community market. There is only one winning ticket in each round of

game. This winning ticket is drawn when the total number of skins deposited as wagers

in that round exceeds a certain threshold. The draw is based on a uniformly distributed

random number with a range equal to the total number of tickets purchased in that round.

The player who holds the winning ticket will be the winner. The winner wins all the wagers,

which are the deposited skins in that round, after a site cut (percentage cut) has been

subtracted.

From the rules follows that in each round a player’s winning chance is determined by the

fraction their bet contributes to the total wager value of that round. With a site cut c the

expected payoff η for one player with bet value b in a round with total wager j is then

η = (1− c) j × b

j
− b = −c b, (1)

which is always negative due to the site cut. If the random number generator is well designed,
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FIG. 1: Net income vs the number of rounds played by an online gambler. Typically, these curves

exhibit a large number of small steps and a small number of large steps.

then winning or losing a game is totally chance based, with no skill effort, similar to roulette

in casinos. It is interesting to explore the players’ gambling behaviors knowing that the

expected net income is always negative. Fig. 1 provides an example of the total net income

for a typical gambler. The movement consists of a large number of small steps and a few

large jumps which suggest the use of a random walk based model to describe the change of

net income.

The publicly available gambling logs used in the following are published in the history

page of the gambling site [26]. We collected the logs of 118590 gambling rounds, containing

943216 bets placed by 105307 players in 232 days, from March 10, 2015, the date the site

was established, to October 28, 2015. The total wager in our study sums up to 2029835330

tickets, which is equivalent to about 20 million US Dollars, as calculated based on the players’

deposited skin values. The competition is exclusively among players: the gambling site only

takes cuts (3% of the total wager in each round), but is not directly involved in gambling,

except through the drawing of the winning tickets. In each round, the winning ticket will be

drawn when there are more than 50 skins placed as wagers. The dataset contains information

on bet ID, round index, player ID, time stamp, number of tickets purchased, and winner ID.

Various other quantities, such as current total number and final total number of purchased

tickets, winning chance, net gain or net loss with and without site cut, can be calculated
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from these data.

The gamblers’ wealth data have been collected in June 2017 from the game statistics site

CS:GO BACKPACK [27], which provides the gamblers’ inventory values based on the item

prices listed in the community market in June 2017. The wealth data therefore have been

collected two years after the gambling activities. In this way we obtained information on

the wealth data of 83249 out of the 105307 players that gambled in the time frame given

above.

B. Ethics of data analysis

The data we analyzed in our study only contain publicly available information of gambling

logs and in-game inventories, with no personally identifiable information included. On each

dataset, we performed passive analysis with completely no interaction with any human

subject. Before using the data, we acquired consent from the website administrators who

host the data. We are not associated with any of those websites in any way. The purpose

of our study is to help future researchers better understand human gambling behaviors in

order to prevent adolescent gambling and problematic gambling.

C. Distributions and fitting models

Our analysis focuses on the probability distribution functions as well as on the comple-

mentary cumulative distribution functions (CCDF) of various quantities extracted from the

empirical data. Whereas P (X = x) is the probability that a random variable X takes on

the value x, the corresponding complementary cumulative distribution function is given by

F (x) = 1− P (X ≤ x) = P (X > x) . (2)

Power law distributions and their variants have been found in previous studies of very

different human activities [20, 28–30]. In online gambling quantities of interest often take on

discrete values which needs to be taken into account when selecting possible fitting models.

We consider six different fitting models in our distribution analysis. The discrete version

of a power-law distribution is given by [31]

P1(x) =
1

ζ(α, xmin)
x−α, (3)
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with x ≥ xmin, α > 1, and ζ(·, ·) is the incomplete Zeta function. Here and in the following

x is a positive integer value taken on by a random variable X. For some data sets a fat

tail is terminated by an exponential decay, which can be taken into account by the discrete

power-law distribution with exponential cut-off [30]

P2(x) =
1

Liα
(
e−λ
)
−

xmin−1∑
k=1

k−αe−λk

x−αe−λx, (4)

where x ≥ xmin, λ > 0, α > 0, and Liα(·) is the polylogarithm function. Another heavy-

tailed distribution is the log-normal distribution with the discrete version [30]

P3(x) =
Φ
(

ln(x+1)−µ
σ

)
− Φ

(
ln(x)−µ

σ

)
Φ
(

ln(xmin)−µ
σ

) , (5)

where x ≥ xmin, σ > 0, and Φ(·) is the normal cumulative distribution. A forth basic model

is the discrete exponential function [31]

P4(x) = (1− e−λ)eλxmine−λx, (6)

where x ≥ xmin and λ > 0. Finally, we also consider two more complex models, namely the

discrete shifted power-law distribution with exponential cut-off

P5(x) = C
(x− δ)−α

1 + eλ(x−β)
, (7)

where x ≥ xmin, λ > 0, δ < xmin, β > xmin, and C =

(
∞∑

k=xmin

(k − δ)−α

1 + eλ(k−β)

)−1

is the

normalization factor, and the discrete pairwise power-law model [30]

P6(x) =

C x−α, xmin ≤ x < xtrans

Cxβ−αtrans x
−β, xtrans ≤ x

, (8)

where α > 0, β > 1, xtrans > xmin, and the normalizing factor C =(
ζ(α, xmin)− ζ(α, xtrans) + xβ−αtransζ(β, xtrans)

)−1

.

We note that all these probability distributions contain a minimal value xmin that defines

the range of values used for the modeling. For most quantities we choose as xmin the value

of x that minimizes the Kolmogorov-Smirnov statistics between the empirical and fitted

distributions [31].
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For a given data set we estimate for each distribution the model parameters with the

maximum likelihood method. The best fitting model is then selected using the Akaike

Information Criterion (AIC). We refer the interested reader to Appendix B in reference [30]

for a detailed discussion.

III. BEHAVIORAL ANALYSIS

A. Some basic statistics

In Table I we provide some basic statistics for the data used in our study. The huge

diversity of the data is obvious from the very large values of the standard deviations. A

meaningful analysis of the gambling data needs to consider probability distributions (or,

equivalently, complementary cumulative distribution functions).

mean minimum maximum standard deviation 50% percentile

bet value 2309.86 2 278247 8429.46 91

total net income −578.88 −773524 751635 15513.36 −150

number of rounds a player attended 8.34 1 1931 31.94 2

number of players in a round 7.41 1 25 2.15 7

jackpot value 17116.41 100 396760 24399.50 7548

TABLE I: Basic statistics for the gambling data used in this study.

B. Distributions

A fundamental quantity for our analysis is the bet value, and the distribution of bet

values allows one to gain a quick understanding of betting patterns. As shown in Fig.

2, the complementary cumulative distribution function for the bet value at the aggregate

level is described by a shifted power law with an exponential cutoff: bet values smaller

than β ∼ 4.6× 104 follow a power-law distribution, whereas very large bets are distributed

exponentially (such guaranteeing a finite variance). The heavy-tail property of the bet dis-

tribution is also readily identified when studying the bet value distributions of individual

gamblers. Fig. 3 shows the wager distribution for the nine players which played the largest

7



10
1

10
2

10
3

10
4

10
5

b

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

F(
b)

data
fit

FIG. 2: The complementary cumulative distribution function for bet values. The best fit is obtained

for a shifted power law with an exponential cutoff, see Eq. (7), with bmin = 25 and the maximum

likelihood estimators α = 1.297, λ = 3.429× 10−5, δ = 9.905, and β = 4.629× 104.
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FIG. 3: Wager probability distributions for the nine players with the largest numbers of bets

(ranging from 1931 bets for player 1 to 1286 for player 9). Heavy tails are present in all nine

distributions.
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FIG. 4: The complementary cumulative distribution function of the gambler’s wealth w, where

one unit corresponds to 1 US Cent. These data have been collected in June 2017 from the game

statistics site CS:GO BACKPACK [27]. The best fit of the data is achieved with a pairwise power-

law distribution (8) with the maximum likelihood estimator α = 1.128 and β = 2.442 as well as

with the parameters wmin = 100 and wtrans = 33928.

numbers of rounds (between 1931 and 1286). While there is some variability in these distri-

butions, they all exhibit heavy tails in the form of power laws with exponents typically in

the range [1.1, 1.7].

In gambling a player’s wealth provides a natural upper limit for possible bet values.

Studies have shown that the net wealth distribution in human society follows a distribution

that combines an exponential decay for small values and a power-law tail for large values

[32]. For the online gamblers’ wealth, this is different, see Fig. 4. We still have a power-law

tail for large values (with an exponent β = 2.442), but for small values the exponential decay

is replaced by a power-law decay with an exponent α = 1.128. For this figure we computed

the wealth of each player by taking the sum of the values (community market price) of the

skins in each player’s inventory.

In each round a gambler either loses their wager or wins the whole pool (minus the site

cut), resulting in the random walk like behavior of the net income shown in Fig. 1. The

probability distribution of the pool size is described by a power-law distribution with an

exponent a = 0.650 that ends in an exponential cut-off, see Fig. 5. The same functional
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FIG. 5: The complementary cumulative distribution function of the pool size (i.e. the total wager

in one round) p. The fitting curve is a power-law with exponential cut-off (4) with the maximum

likelihood estimators α = 0.650 and λ = 2.577× 10−5.

form is found if we consider the wins instead of the pool sizes (see Section IV).

The available logs also allow to discuss time dependent quantities, as for example the

waiting time tw, defined as the time measured in seconds between successive bets by the

same user, or the number of rounds r played by individual gamblers. The waiting time

probability distribution shown in Fig. 6 has some interesting features. The plateau for

P (tw) close to tw = 105 indicates that a sizeable portion of gamblers play bets day after

day (24 hours correspond to 86,400 seconds). The heavy tail of the distribution reveals

that some persons restart gambling after a month-long hiatus, which illustrates some of the

challenges gambling prevention faces. Fig. 7 shows that the number of rounds played by

individual players during the 232 days covered by the gambling logs is well described by a

log-normal distribution. Remarkably, a sizeable number of gamblers placed thousand and

more bets during the time frame covered by the logs.

Besides discussing data at the population level, we can also identify different sub-groups

of gamblers and discuss differences between these groups. Fig. 8 provides one example

where we confront the distribution of bets of one-time players with that of heavy gamblers

(defined as having played at least 600 rounds). Obviously one-time players are much more

risk-averse and are therefore unlikely to bet large amounts.
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FIG. 6: The probability distribution of the waiting time between successive gambles. The waiting

time is measured in seconds.

C. Correlations

Correlation coefficients help to understand the relationships between the different quan-

tities. As our quantities, be it outcomes, bets, and profits, all follow heavy-tailed distribu-

tions, the standard Pearson’s product-moment correlation coefficient may provide erroneous

results. More appropriate are rank-based correlation coefficients, such as Kendall’s tau [33]

or Spearman’s rho [34]. We verified that the same conclusions are obtained from these two

coefficients. For that reason we will only discuss Kendall’s tau in the following. Assuming a

set of observations {(xi, yi)} of two joint variables x and y, Kendall’s tau can be calculated

as

τK(x, y) =

∑
i<j

sgn [(xi − xj)(yi − yj)]√
1

2
n(n− 1)− U

√
1

2
n(n− 1)− V

(9)

where sgn is the signum function, whereas U and V are the numbers of x-tied pairs and

y-tied pairs.

For each player the gambling history can be summarized as a sequence {(bi, oi)} where bi

is the value of the i-th bet and oi is the outcome of that round. When losing the round, then

the outcome is the negative of the bet value, whereas for a winning round oi is the total bet
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FIG. 7: The complementary cumulative distribution function of the number of rounds r played by

individual players. The data are best fitted by a log-normal distribution (5) with the maximum

likelihood estimators µ = −1.777 and σ = 2.238.

value minus the winner’s wager and the site cut. Focusing on the 2,318 players that attended

more than 60 rounds, we can obtain from these data different correlation coefficients.

The correlation between successive bets τK(bi, bi+1) is positive for most players, with an

average value τK = 0.260. The relative frequency of a given value of τK(bi, bi+1) is displayed

in the left panel of Fig. 9. In order to understand this graph we remark that a negative

value is obtained when a gambler places larger and smaller bets in turn, whereas placing bets

randomly yields a value close to zero. From the graph follows that only few gamblers have

these types of gambling behavior. Instead, for most gamblers bets are not independent but

indicate some level of memory. Indeed, positive correlation indicates a consistent betting

behavior without dramatic changes from bet to bet.

Also shown in Fig. 9 are the relative frequencies for the correlation between the sign of a

bet outcome and the next bet, τK(sgn oi, bi+1), and the correlation between the profit pi (i.e.

the value of the outcome in case it is positive) and the subsequent bet, τK(pi, bi+1). The first

correlation coefficient helps to understand how gaining/losing money affects the next bet,

whereas the second one shows whether a bet value is affected by the value of the previous

profit. Profit corresponds to positive outcome, so that for the computation of τK(pi, bi+1)

we remove all bets with a negative outcome oi. For both correlations we restrict ourselves to
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FIG. 9: The relative frequencies for the three correlation coefficients discussed in the text. Left

panel: correlation between successive bets, with the mean value 0.260. Center panel: correlation

between the sign of a bet outcome and the next bet, with the mean value 0.181. Right panel:

correlation between the profit and the subsequent bet, with the mean value 0.107.

players who made profit in at least 15 rounds and had negative outcomes in also at least 15

rounds. This yields 1,608 eligible players. The relative frequencies shown in the center and

right panels of Fig. 9 reveal for most players a weak positive correlation between the betting

value and the outcome/profit. There is a tendency for gamblers to place larger respectively

smaller bets in case the outcome in the preceding round was positive respectively negative.
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FIG. 10: The complementary cumulative distribution function of the winning amounts. The fitting

curve is a power-law with exponential cut-off (4) with the maximum likelihood estimators α = 1.063

and λ = 3.192× 10−5.

IV. NET INCOME VIEWED AS A RANDOM WALK

As we have already seen in Fig. 1, the net income of a player changes at each round

where they place a bet, due to winning or losing that round. This then generates a time

series where “time” is increased by one at each round played by the gambler and suggests

a description as a random walk in the one-dimensional space of net income. Of course the

random walkers are not independent as the loss of one gambler will be part of the gain of

another one. Also, the fact that every gambler has a finite wealth will put constraints on

the random walk.

The jumps done by our random walkers have the peculiarity that they follow different

distributions depending on whether they jump “left” (net income decreases after losing a

round) or “right” (net income increases after winning a round). “Left” and “right” indicate

the relative decrease or increase with respect to the value of the net income before the

round is played. The distribution of losses is very similar to the distribution of bet values

(as in a given round all bets result in losses with the exception of the winning bet). As

shown in Fig. 2, this distribution is described at the aggregate level by a shifted power law

with an exponential cutoff. Power laws are also observed in Fig. 3 for individual gamblers.
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FIG. 11: Mean squared displacement when viewing the net income of the gamblers as a random

walk, with time measured in numbers of rounds played. Independent on whether the site cut is

considered or not, two different regimes are observed, with the early one being super-diffusive with

an exponent close to 1.45, whereas the later one is close to normal diffusion.

The distribution of winning amounts shown in Fig. 10 is well described by a power-law

distribution with an exponential cutoff, albeit with a different power-law exponent α. The

fact that the distributions for jumps in both directions, albeit not identical, are power-law

distributions indicates that the random walk of the net income should follow a truncated

Lévy flight pattern.

Fig. 11 shows that the mean squared displacement of the net income random walk

displays a first regime that is super-diffusive with an exponent close to 1.45. We show two

curves in that figure, one where we consider as winning amount the total pool size in a

round and one where we subtract the site cut and take the remaining amount as the length

of the jump. At very late times this first regime goes over into a normal diffusion regime,

with the measured slope close to 1 in the log-log plot. This crossover from super-diffusion

to normal diffusion is in fact expected for truncated power-law distributions [35, 36] and has

been observed in a variety of systems (see, e.g., [37–39]).

A quantity of much interest is the first-passage time [40], i.e. the time needed for a

stochastic variable (in our case the net income viewed as a random walker) to take on
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FIG. 12: First-passage time distribution obtained from the data of 387 players that gambled in more

than 200 rounds. The super-diffusive regime is revealed by a power-law decay with an exponent

larger than 3/2. Error bars result from log-binning averaging and indicate 95% confidence intervals.

for the first time a given value. Indeed, the first-passage time distribution can help to

determine the diffusive behavior of a stochastic process [35, 36]. For our stochastic process

Nr, r = 1, · · · , R, representing the net income with R being the maximum number of

rounds played, the first-passage time is defined by t = min {r > r0;Xk = ±Nfp}, where Nfp

is the target value. As shown in [36], the first passage time distribution P (t), defined as

the survival probability that, starting from r = r0, the series Nr stays within the range

[Nr0 −Nfp, Nr0 +Nfp] up to the round r = r0 + t, is given by the expression

P (t) = lim
R−→∞

1

R

R∑
r=1

Θ (|Nr+t −Nr| −Nfp)− lim
R−→∞

1

R

R∑
r=1

Θ (|Nr+t−1 −Nr| −Nfp) , (10)

where Θ(x) is the Heaviside step function.

As Eq. (10) requires sufficiently long time series, we focus on the 387 players that played

at least 200 rounds and choose Nfp = 500. The resulting first-passage time distribution

is still very noisy. In order to reduce the noise we use the log-binning technique which

yields the distribution shown in Fig. 12. Inspection of that figure reveals that after some

initial time regime a super-diffusive regime prevails, as indicated by a slope larger than 3/2,

the characteristic value for a Gaussian process. As already mentioned, for any truncated
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heavy-tail distribution the long-time behavior should be normal diffusion, and we do observe

the crossover from a super-diffusive to a normal diffusive behavior in Fig. 11 for the mean

squared displacement. For the first-passage time distribution obtained from the gambling

logs the long-time normal diffusion decay with an exponent 3/2 is not readily observed, due

to the shortness of the available time series.

V. MODELING ONLINE GAMBLING THROUGH RANDOM WALK MODELS

In order to better understand this switch from a super-diffusive to a normal diffusive

behavior in the net income random walk we discuss in the following three different random

walk models. The aim of this investigation is not so much to find the best parameter sets

to reproduce the empirical data, but instead to gain insights into the necessary ingredients

to obtain from these models data with qualitative similar properties as those derived from

the gambling logs.

In all three models we consider that at each round four players interact (this is mostly

useful for the numerical simulations; the analytical results for the simpler models are valid

for any number of gamblers interacting in a round). For each round the gamblers place a

bet with a value taken from the continuous power law distribution with exponential cut-off

P (b) =
λ1−α

Γ (1− α, λbmin)
b−αe−λb (11)

with λ > 0 and b ≥ bmin (we choose bmin = 1), whereas Γ (·, ·) is the incomplete Gamma

function. This distribution (11), motivated by the data from the gambling logs that show

a power-law behavior with an exponential cut-off, is the continuous version of the discrete

distribution (4). For the results discussed in the following we fix the mean 〈b〉 = 100. The

two parameters α and λ are then not independent but related through that mean bet value

as 〈b〉 = Γ(2−α,λ)
λΓ(1−α,λ)

. We vary α between 1.2 and 1.6. We verified that qualitatively our results

are unchanged if instead of using the distribution (11) we use a power-law distribution with

a sharp truncation:

P (b) = C b−α (12)

with b ∈ [bmin, bmax] and C = α−1
b1−αmin−b

1−α
max

where bmax and α are related when fixing the mean

bet value.
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Our first two models are focusing on a single gambler with infinite wealth. In model 1

[41] we fix the winning chance of this gambler to be 1/4 (in a generalization to n interacting

gamblers, the winning chance would be 1/n). This model does not take into account that in

the online game the winning chance is proportional to the bet value. We therefore consider

a more realistic model 2 which implements this relationship between the bet value and the

winning chance. Model 3, finally, is a more sophisticated version of model 2 where, similarly

to the online game, a large pool of gamblers is available (the data shown below have been

obtained for N = 1, 000, 000) and at each round n = 4 gamblers are selected randomly to

play the round. We calculate quantities for all players, which are no longer independent, in

contrast to models 1 and 2, and after each round we update the net income of all 4 players

involved in that round. We also take into account in model 3 that the wealth of each player

is finite: before the first round is played every gambler is assigned a wealth taken from the

power-law probability distribution

P (w) =
1

wmin

(
w

wmin

)−2

(13)

with wmin = 1. As in model 3 the gamblers have been provided with a finite wealth, the

individual net income random walks all have an absorbing state of zero wealth. As soon as

the wealth of a gambler is zero, this gambler is removed from the pool. While it is tempting

to discuss our random walkers in the context of previous studies of random walk type motion

with absorbing boundaries [42–45], it is crucial to realize that our random walkers are not

independent, but instead at each round the winner’s step length is correlated to those of the

losers.

Similar to our analysis of the empirical data, we compute in the following for the different

models the mean squared displacement (MSD) of the net income as well as the distribution

of the first-passage time at which the income of a gambler takes on a given target value.

We start by noting that for models 1 and 2 the mean-squared displacement as a function

of time (i.e. the number of rounds played) can be computed exactly, see Appendix. For

rounds involving each time n gamblers and a fixed mean bet value 〈b〉, the MSD is given for

model 1 by

MSD(t) =

(
2(n− 1)

n
µ2 +

(n− 1)(n− 2)

n
〈b〉2

)
t , (14)

with µ2 being the second moment of the bet distribution, whereas for model 2 one obtains

MSD(t) = (n− 1) 〈b〉2 t . (15)

18



10
0

10
1

10
2

round

10
4

10
6

10
8

M
SD

(n
et

 in
co

m
e)

α=1.2
α=1.4
α=1.6

(a)

10
0

10
1

10
2

round

10
4

10
5

10
6

10
7

M
SD

(n
et

 in
co

m
e)

α=1.2
α=1.4
α=1.6

(b)

10
0

10
2

10
4

10
6

round

10
2

10
4

10
6

10
8

10
10

M
SD

(n
et

 in
co

m
e)

α=1.2
α=1.4
α=1.6

(c)

1

1.75

FIG. 13: The mean squared displacement for (a) model 1, (b) model 2, and (c) model 3. For models

(1) and (2), the net income of each gambler performs an independent random walk where the step

length is related to the bet distribution (11). In these two cases the mean squared displacement

increases linearly with time (i.e. the number of rounds played), in agreement with prior results.

Model 3, on the other hand, reveals a crossover from super-diffusion to diffusion. The different

curves are for different values of the parameter α in the continuous power law distribution with an

exponential cutoff (11).

Fig. 13a and 13b display these curves for three different values of the parameter α found in

the bet distribution (11), with 〈b〉 = 100 and n = 4.

Several comments are in order. First we note that although we consider a truncated

power-law distribution, we obtain that the MSD increases linearly with time. This is in

agreement with an early observation of a linearly increasing MSD encountered in simulations

of truncated Lévy flights in two dimensions [46]. This linear time dependence is very general

as the bet (i.e. step length) distribution only enters through the mean and the second

moment. Especially for model 2 any distribution with the same mean yields the same MSD
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as expression (15) does not depend on the variance. While we are focusing on the two

truncated power-law distributions (11) and (12), even a distribution with finite mean and

infinite second moment yields for model 2 a finite MSD growing linearly with time. This is

different for model 1 as the second moment explicitly enters in expression (14). As a result

of this dependence, the MSDs for different values of α, see Fig. 13a, are shifted vertically,

due to the fact that changing α while keeping 〈b〉 constant changes the value of the second

moment, see Appendix. We further note that these two models do not allow to obtain a

behavior similar to that observed in Fig. 11 for the empirical data, namely a transition from

a super-diffusive behavior with an exponent larger than 1 to a normal diffusive behavior

characterized by a linear increase of the MSD. This, however, is different for model 3 where

we indeed observe a crossover from super-diffusion to normal diffusion, see Fig. 13c for

data obtained for one million gamblers playing 50 million rounds, with each round involving

four randomly selected gamblers. As we can not compute the MSD analytically for this

model, we can only provide a heuristic argument for this observation. We note that in

model 3 all gamblers have a finite wealth taken from the distribution (13). One of the

consequences of this is that we add an absorbing boundary (a gambler is removed once their

wealth becomes zero), another one is that initially many players have a small wealth and

therefore can only bet small amounts. Consequently, at early rounds the mean bet value of

active players is smaller than the mean of the bet distribution (11), which makes the MSD

to be smaller than what one obtains for models 1 and 2. As time increases, some gamblers

are eliminated as their wealth hits the absorbing boundary. As a result, the wealth of the

active gamblers increases until their mean bet values are getting close to the mean value

of the bet distribution (11). At this point the MSD for model 3 shows a crossover from a

super-diffusive behavior to a normal diffusive one.

Fig. 14 shows our results for the first-passage time distributions obtained from simulations

of the three different models with the bet distribution (11). For models 1 and 2 we simulate a

gambler who plays 50 million rounds, which yields a time series of their net income of length

50 million. The data shown in Fig. 14a and 14b result from averaging over 300 independent

runs for α = 1.2, 250 independent runs for α = 1.4, and 75 independent runs for α = 1.6.

These difference in the number of independent runs reflects an increase of computational

costs when α increases, due to a decrease of the acceptance rates for generating random

numbers. For model 3 we only made one run with 1 million players and 50 million rounds.
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FIG. 14: The first-passage time distribution for (a) model 1, (b) model 2, and (c) model 3. For

all three models we observe a crossover from a super-diffusive behavior, revealed by a decay faster

than t−3/2, to a normal diffusive behavior proportional to t−3/2. Error bars indicate 95% confidence

intervals. The different curves are for different values of the parameter α in the bet distribution

(11).

For all three models we use n = 4, 〈b〉 = 100, and Nfp = 20.

Interestingly, all three models show in the first-passage time distribution the expected

crossover from a super-diffusive behavior at early times, characterized by a decay with an

effective exponent larger than 3/2, to a normal diffusive long-time behavior, where the distri-

bution decays as t−3/2. This crossover is rather sharp for model 1, whereas it is more gradual

for the other two models. As already mentioned in [36], the first-passage time distribution

does not suffer from the same restrictions than the MSD and is therefore the superior quan-

tity for identifying the crossover between a super-diffusive and a normal diffusive regime.
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VI. SUMMARY

The quickly increasing video gaming industry has led to the development of other types of

online entertainment, the prime example being online gambling. We considered in this work

an online jackpot game as an example of virtual item gambling. Publicly available gambling

logs permit a behavioral analysis at both the aggregate and individual levels. We analyzed

the probability distribution functions and correlation coefficients in order to elucidate the

relationships between some quantities derived from the gambling logs. Viewing the changes

of the net income of a gambler as a random walk, the mean squared displacement of the

net income displays a transition from a super-diffusive to a diffusive behavior. We discussed

three different models, two of which are simple random walk models for a gambler with

infinite wealth, whereas the third one considers many gamblers with finite wealth. All three

models show a crossover from super-diffusive to normal diffusive behavior in the first-passage

time distribution, but only the model with finite wealth displays a similar crossover in the

mean squared displacement.
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Appendix A: Mean squared displacements

In the following we briefly discuss the exact calculation of the mean squared displacements

for models 1 and 2. In both models we consider n players with infinite wealth who gamble

with identically and independently distributed bet values b taken from a distribution P (b).

In the main text we consider a power-law distribution (11) as well as a power-law distribution

with a sharp truncation (12).

Let A,B,C, · · · be the n players attending one round. We are going to focus on player

A and compute the mean squared displacement of their net income. For simplicity, we will

also use A,B,C, · · · to represent the bet values of the corresponding players. We denote by

A1, A2, · · · , At the bet values of player A in t rounds and call Ω1,Ω2, · · · ,Ωt the sum of the

bet values of the other players in the corresponding rounds. We use at to represent the net
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income of player A after t rounds and note that before the first round played the net income

is zero, i.e. a0 = 0. The mean squared displacement is then given by

MSD(t) =
〈
(at − a0)2〉 =

〈
a2
t

〉
. (A1)

When player A wins round t, then their net income increases by Ωt = Bt + Ct + · · · ,

but the net income decreases by −At in case of a loss. Models 1 and 2 now differ by the

probability to win the round, with this probability being given by 1/n for model 1 and by

At/(Bt + Ct + · · · ) for model 2.

Let us first look at model 2. In that case the mean squared displacement at round t is

given by

MSD(t) =

∫
A1,Ω1,··· ,At,Ωt

P (A1,Ω1, · · · , At,Ωt)

(
A1

A1 + Ω1

· · · At
At + Ωt

(Ω1 + · · ·+ Ωt)
2

+
Ω1

A1 + Ω1

· · · At
At + Ωt

(−A1 + · · ·+ Ωt)
2 + · · ·+ A1

A1 + Ω1

· · · Ωt

At + Ωt

(Ω1 + · · · − At)2

+
Ω1

A1 + Ω1

· · · Ωt

At + Ωt

(−A1 − · · · − At)2

)
dA1dΩ1 · · · dAtdΩt.

After expanding the squared terms most terms cancel out, yielding after some simple alge-

braic manipulations

MSD(t) =

∫
A1,Ω1,··· ,At,Ωt

P (A1,Ω1, · · · , At,Ωt) (A1Ω1 + · · ·+ AtΩt) dA1dΩ1 · · · dAtdΩt

=

∫
A1,Ω1

P (A1,Ω1)A1Ω1dA1dΩ1 + · · ·+
∫

At,Ωt

P(At,Ωt)AtΩtdAtdΩt

All these t terms are identical and are given by∫
A,Ω

P (A,Ω)AΩdAdΩ =

∫
A,B,C,···

P (A)P (B)P (C) · · · (A(B + C + · · · )) dAdBdC · · ·

=

∫
A

P (A)AdA

∫
B

P(B)BdB +

∫
C

P(C)CdC + · · ·


= µ ((n− 1)µ) = (n− 1)µ2

where µ = 〈A〉 =
∫
A

P (A)AdA. This then yields the final result

MSD(t) = (n− 1) 〈A〉2 + · · ·+ (n− 1) 〈A〉2 = (n− 1) 〈A〉2 t.
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We note that for model 2 the MSD grows linearly in time. As the MSD is independent of

the second moment of the bet distribution, it is the same for any bet distribution with the

same mean, including distributions with finite mean and infinite second moment.

The calculation for model 1 closely follows that of model 2, but with the major change

that for gambler A the probability of winning a round is 1/n, whereas the probability of

losing that round is (n − 1)/n, with n being the number of gamblers involved in a round.

This then yields the expression

MSD(t) = 〈a2
t 〉 =

∫
A1,Ω1,··· ,At,Ωt

P (A1,Ω1, · · · , At,Ωt)

(
1

n
· · · 1

n
(Ω1 + · · ·+ Ωt)

2

+
n− 1

n
· · · 1

n
(−A1 + · · ·+ Ωt)

2 + · · ·+ 1

n
· · · n− 1

n
(Ω1 + · · · − At)2

+
n− 1

n
· · · n− 1

n
(−A1 + · · · − At)2

)
dA1dΩ1 · · · dAtdΩt ,

and, after some algebraic manipulations,

MSD(t) =

∫
A1,Ω1,··· ,At,Ωt

P (A1,Ω1, · · · , At,Ωt)

(
n− 1

n
A2

1 +
1

n
Ω2

1 + · · ·+ n− 1

n
A2
t +

1

n
Ω2
t

)
dA1dΩ1 · · · dAtdΩt

=

∫
A1,Ω1

P (A1,Ω1)

(
n− 1

n
A2

1 +
1

n
Ω2

1

)
dA1dΩ1 + · · ·

∫
At,Ωt

P(At,Ωt)

(
n− 1

n
A2

t +
1

n
Ω2

t

)
dAtdΩt

Again, these t terms are identical, with∫
A,Ω

P (A,Ω)

(
n− 1

n
A2 +

1

n
Ω2

)
dAdΩ

=

∫
A,B,C,···

P (A,B,C, · · · )
(

1

n
(B + C + · · · )2 +

n− 1

n
A2

)
dAdBdC · · ·

=
n− 1

n

∫
A

P (A)A2dA +
1

n

∫
B+C+···

P(B)P(C) · · ·
(
B2 + C2 + 2BC + · · ·

)
dBdC · · ·

=
n− 1

n
µ2 +

1

n

∫
B

P (B)B2dB +

∫
C

P(C)C2dC + · · ·

+
1

n

∫
B,C

P (B)P (C) 2BC dBdC + · · ·


=

n− 1

n
µ2 +

1

n
(n− 1)µ2 +

1

n

(n− 1)(n− 2)

2
2µ2

=
2(n− 1)

n
µ2 +

(n− 1)(n− 2)

n
µ2

with the mean µ = 〈A〉 =
∫
A

P (A)AdA and the second moment µ2 = 〈A2〉 =
∫
A

P (A)A2dA.
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It follows that the MSD for model 1 is given by

MSD(t) =

(
2(N − 1)

N
µ2 +

(N − 1)(N − 2)

N
µ2

)
t

and is therefore still proportional to t, but now the pre-factor depends on both the mean

and the second moment.

The Table below provides the interested reader with the mean values and second moments

for the two bet distributions considered in this work. Γ (·, ·) is the incomplete Gamma

function.

distribution model mean µ second moment µ2

power law with exponential cutoff (11)
1

λ

Γ(2− α, λbmin)

Γ(1− α, λbmin)

1

λ2

Γ(3− α, λbmin)

Γ(1− α, λbmin)

power law with sharp truncation (12)
1− α
2− α

b2−αmin − b2−αmax

b1−αmin − b
1−α
max

1− α
3− α

b3−αmin − b3−αmax

b1−αmin − b
1−α
max

TABLE II: Mean and second moment for the different bet value distributions.
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