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ABSTRACT 

Classical Density Functional Theory (DFT) is a useful tool to compute the structure of the 

electrical double layer because it includes ion-ion correlations due to excluded-volume effects (i.e., 

steric correlations) and ion screening effects (i.e., electrostatic correlations beyond the electrostatic 

mean-field potential). This paper systematically analyzes the accuracies of three different 

electrostatic excess free energy functionals, as compared to Monte Carlo (MC) simulations of the 

planar electrical double layer, over a large parameter space. Specifically, we tested the reference 

fluid density (RFD) (J. Phys.: Condens. Matter 14, 12129), functionalized mean spherical 

approximation (fMSA) (J. Phys.: Condens. Matter 28, 244006), and bulk fluid (BF) (Phys. Rev. A 

44, 5025; J. Chem. Phys. 98, 8126) functionals. Previous work compared these DFT methods to 

MC simulations only for a small set of parameters. Here, a total of twelve different cations were 

studied, with valences of +1, +2, and +3 and ion diameters of 0.15, 0.30, 0.60, and 0.90 nm at bulk 

concentrations between 1 μM and 1 M. The anion always had valence –1 and diameter 0.30 nm. 

The structure of the double layer of these charged, hard-sphere ions was computed for surface 

charges ranging from 0 to –0.50 C/m2. All the DFTs were compared against each other for all the 

parameters, as well as to 378 MC simulations. Overall, RFD was the best of the three functionals, 

while BF was the least accurate. fMSA performed significantly better than BF, making it a 

reasonable choice that is less computationally expensive than RFD. For monovalent cations, all 

three functionals worked reasonably well, except BF was qualitatively different from MC at very 

low surface charges. For multivalent cations, BF underestimated charge inversion while fMSA 

overestimated it. All DFTs performed poorly for small multivalent ions. 

INTRODUCTION 

Even though the electrical double layer has been studied for well over a century, it has 

regained importance in far-ranging modern technologies, including energy (e.g., electrochemical 

supercapacitors [1] and energy conversion [2, 3]) and analytical chemistry (e.g., nanopore DNA 

sequencing [4, 5] and analyte detection [6-9]).  Some of these applications utilize the capacitance 

of the electrical double layer to store charge, while others exploit atomic scale ion-ion correlations 

to produce macroscopic effects.  For instance, the finite size of ions near a highly charged electrode 

can produce long-range density oscillations that can, in principle, be used to increase the efficiency 

of pressure-to-voltage energy conversion [10].  In addition to these steric correlations, electrostatic 
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correlations that produce charge inversion can be exploited to produce a stable front between two 

electrolytes [11] or change the direction of a column of fluid [12]. 

In order to understand the physics of these systems and to optimize existing (and design 

new) capabilities, accurate modeling of the electrical double layer is more important than ever.  

All-atom molecular dynamics simulations would be ideal, but they are computationally intensive.  

Moreover, they cannot simulate the low concentrations and applied voltages of real-world 

applications and of experiments.  On the other hand, reduced models, which approximate some of 

the physics and simplify the representation of the atoms and molecules involved, can.  They have 

reproduced experiments in a variety of fields, including biology [13] and nanofluidics [14, 15], 

because their approximations still capture the overall physics driving the device [16]. 

One of the oldest and most widely used reduced models of electrolytes is the primitive 

model of ions in which the ions are charged, hard spheres and water is a background dielectric 

[17].  Near a charged surface, this simple model produces both steric correlations (i.e., oscillatory 

density profiles) and electrostatic correlations (i.e., the surplus of co-ions behind the initial layer 

of counterions that is characteristic of charge inversion and that may change the sign of the 

electrostatic potential).  Even with the simplifications made in this model (e.g., water as a 

dielectric, neglect of ionic polarizability and complex molecular forces), it is still extremely useful, 

both for general understanding of steric and electrostatic correlations and for modeling real double 

layers. For instance, the primitive model reproduces experimental results in nanofluidics, where 

charged walls affect the movement of voltage- and pressure-driven ions. Examples of this include 

reversal of currents due to charge inversion in both a planar slit double layer geometry [14, 15], as 

well as inside a cylindrical nanopore [18]. 

For this system, Monte Carlo (MC) simulations have the most accurate results for the 

density and electrostatic potential profiles of the double layer [19, 20]. Another technique to 

calculate the structure of the electrical double layer with charged, hard-sphere ions is classical 

density functional theory (DFT).  In DFT, a mathematical relationship between the free energy of 

the system and the ion density profiles is constructed and then minimized to find the equilibrium 

profiles.  This necessarily involves approximations, as the exact relationship between the free 

energy and the density profiles is not known.  Various approximations have yielded a number of 

different DFTs of charged hard-sphere fluids.  Here, we focus on three of these: the bulk-fluid 

(BF) DFT [21, 22], the reference fluid density (RFD) DFT [23, 24], and the functionalized mean 
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spherical approximation (fMSA) DFT [25].  BF is one of the earliest and most commonly used 

DFTs of charged systems, while fMSA is one of the newest.  RFD is more computationally 

involved, but has the advantage of being applicable to two-phase systems, while the other two are 

not.  For all three of these DFTs, accurate density and potential profiles (as compared to MC 

simulations) have been reported [21-26].  Because of this accuracy and because DFT calculations 

are substantially faster than MC simulations (at least in simple geometries), DFT has established 

itself as an important theory for computing the structure of the electrical double layer. 

What has been missing, however, is a systematic analysis of where DFT is accurate and 

where it is not.  This is what we attempt to do here by comparing the BF, RFD, and fMSA DFTs 

to a new set of MC simulation results that spans a wide range of conditions (specifically, low to 

high ion concentrations, mono- and multivalent ions, small to large ion size, and low to high 

electrode surface charges) [27].  So far, DFTs have been compared to only a scattershot of MC 

simulations, and a more systematic evaluation is necessary for several reasons.  First, defining the 

limits of applicability of any theory (and these three DFTs in particular) will allow us to apply it 

with confidence in future applications.  Here, we find that each of the three DFTs we test have 

very different limits of applicability.  Second, knowing that a DFT works over a large range of 

parameters will open up new uses for it.  For example, trends in double layer properties can be 

computed to better understand the physics of ion-ion correlations (e.g., varying the surface charge 

to better understand the onset of charge inversion).  Lastly, a systematic analysis will point to areas 

where DFT in general will need to be improved.  We find, for example, that trivalent ions 

(especially very small ones) are not well-modeled by any of the three DFTs tested here. 

THEORY AND METHODS 

Three Functionals 

DFT is defined by the principal that there exists a free-energy functional [{ ( )}]i x  of 

arbitrary density profiles ( )i x  in three-dimensional space such that those density profiles that 

minimize the functional are the equilibrium density profiles [28].  Once an approximate free-

energy functional is constructed, the functional can be minimized directly or by solving the Euler-

Lagrange equations that result from the variational principle / ( ) 0i  =x  for all ion species i.  

In practice, the   is divided into an ideal gas and excess components: 
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id ex[{ ( )}] [{ ( )}] [{ ( )}]i i iF F   = +x x x .  Since the ideal gas component is known exactly, 

deriving approximate free-energy functionals focuses on the excess component ex[{ ( )}]iF  x . 

For Coulombic systems of charged, hard spheres, this term is generally divided into hard-

sphere (superscripted HS) and electrostatic components (superscripted ES), and the electrostatic 

component is further divided into the mean-field term (superscripted MF), which produces the 

mean electrostatic potential ( ) x  calculated from the density profiles via the Poisson equation, 

and the remainder term that we call the screening term (superscripted SC): 
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i i i

i i i

F F F

F F F
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= + +

x x x

x x x
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The hard-sphere component is relatively well-established and accurate through Rosenfeld’s 

fundamental measure theory approach (reviewed by Roth [29]).  For all the calculations shown 

here, we use the White Bear Mark I functional [30]. 

Next, we briefly describe the three screening functionals we analyze, but the reader is 

referred to the original papers for complete details. 

The BF functional expands FSC around a reference density profile with known properties 

using a second-order functional Taylor expansion.  In practice, this is usually the bulk fluid with 

which the system is in equilibrium [21, 22] and the necessary first- and second-order direct 

correlation functions taken from the mean spherical approximation (MSA) [31-33]. 

The RFD functional [23, 24] starts with the same Taylor expansion idea, but constructs a 

reference density profile “on the fly” using the current guesses for the density profiles ( )i x .  First, 

new density profiles 
*( )i x  are made from the current density profiles by making those profiles be 

charge neutral and have the same ionic strength as the ( )i x  at every grid point x.  These 
*( )i x  

are then averaged over a sphere whose radius is the screening length at x to produce density profiles 

( )i x .  This local screening length is determined by having the MSA screening length, applied 

pointwise, of ( )i x  be the same screening length used to average the 
*( )i x .  In this way, the local 

screening length is self-consistently determined.  Because the screening length is relatively long, 

the reference profiles ( )i x  are smooth and slowly varying in space and, by construction, charge 

neutral so that all MSA formulas for the first- and second-order correlation functions can be 

applied pointwise.  This approach has the advantage that the reference fluid densities change with 
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the density profiles ( )i x  and therefore can adjust to interface phenomena like gas-liquid 

equilibrium and semi-permeable membranes.  This is not so in the BF approach, where the bulk 

fluid density on one side of the interface must be used, and different choices give different answers 

[24].  The cost of this wider range of applicability is the additional cost of computing the local 

screening length at every grid point at every iteration of the solution algorithm.  In addition, this 

produces different size spheres to average over to make the ( )i x , something that cannot be 

calculated directly with the standard fast Fourier methods used throughout DFT. 

The fMSA functional was designed to mitigate this computational cost while still retaining 

a high level of accuracy.  The basic foundation of the fMSA approach is based on an observation 

by Blum and Rosenfeld [34] that both the first- and second-order direct correlation functions of 

the MSA can be written in terms of spherical shells of charge at the capacitance radius of the ions 

(i.e., the ion radius plus the MSA screening length).  By averaging the density profiles over this 

capacitance radius and using them in the MSA formula for the free energy density, the fMSA 

functional was derived.  Because the capacitance radius was chosen to be that of the bulk fluid, all 

averaging was done with a single sphere size that allows the use of fast Fourier transform methods. 

Assessing Double Layer Structure 

Density profiles of cations ( ( )x+ ) and anions ( ( )x− ) were calculated near a hard, smooth 

wall with surface charge σ located at x = 0, assuming homogeneity in the y-z plane parallel to the 

wall.  We minimized the RFD, fMSA, and BF functionals by directly solving the Euler-Lagrange 

equations using the fixed-point methods described previously [29, 35] over a finely-spaced grid 

that ensured at least 60 points per ion diameter.  We compared these results to MC simulations by 

Valiskó et al. [27].  The parameter spaces explored with the DFT calculations and MC simulation 

are shown in Table 1. 

To compare RFD and fMSA, we wanted to quantify profile similarity. We first calculated 

the root mean square of the difference (RMSD) to emphasize any large gaps between the profile 

sets. Specifically, we determined the RMSD between RFD and fMSA profiles for ( )x+ , ( )x− , 

and ( )x  for all grid points up to 3d+  and starting at the contact values / 2, / 2,x d d+ −=  and 0, 

respectively. This was done because we wanted to focus on where the profiles changed the most 

with x and therefore might be the most different. 
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We also calculated the Pearson correlation coefficient for the RFD and fMSA ( )x+ , 

( )x− , and ( )x . This was done to compare profile shapes.  Specifically, the correlation 

coefficient assesses whether two profiles are increasing or decreasing over the grid points we 

studied (the same x intervals as the RMSD calculations).  Therefore, a correlation coefficient that 

is far from 1 indicates less qualitative agreement, even if the RMSD between the curves is small. 

Combining these two methods highlights both differences in scale (RMSD) and qualitative 

shape (correlation coefficient) so that we could assess where RFD and fMSA profiles were 

different.  Areas of difference then indicate that the two diverge and it is especially important to 

compare these regions to MC simulations to assess which DFT is more accurate.  Where they were 

the same, we also compared them to MC results and found equally good accuracy.  While we will 

focus mainly on discussing the differences, the figures will also show the similarities. 

Capacitance 

The final comparison is done only for the electrostatic potential profiles, specifically the 

difference in surface potentials (electrostatic potentials) for RFD and fMSA at the charged surface: 

RFD fMSA(0) (0)   = − . This comparison is useful for understanding the accuracy of the 

capacitance. Areas with large   values indicate an inconsistency between the two DFT profiles, 

and are then looked at more in depth by plotting   versus σ for every bulk+  to determine whether 

RFD or fMSA is more accurate. 

BF Functional 

We also did this large-scale comparison for BF versus RFD (since we generally found it to 

be more accurate).  While of interest, these and some other results pertaining to the BF function 

are shown in the Appendix.  In the main text, we show the BF profiles along with the other RFD, 

fMSA, and MC results, and our assessment of the BF functional follows from these comparisons. 

Simulations 

All the MC simulation results and profiles shown here are taken from Valiskó et al. [27] 

who provide a publicly available, open-access database of their simulation results. Details of the 

simulation methods are given there. In short, grand canonical MC simulations were performed in 
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all cases, except when acceptance ratios were very small in extreme cases like large trivalent 

cations, in which case canonical MC simulations were performed. Large simulation cells and extra 

long simulation times were used to ensure smooth profiles. No other special techniques such as 

explicit moves of ion pairs to account for ion pairing between small multivalent ions were 

employed. 

We compared DFT to MC results because MC simulations are generally accepted to be 

exact for a given microscopic model apart from system size errors, sampling problems, and 

statistical noise. The MC simulations by Valiskó et al. [27] ameliorate these problems by using 

large simulation cells to address system size errors and running very long simulations to increase 

sampling and decrease statistical noise. The weaknesses of MC, therefore, can be overcome with 

brute-force computation, while inaccuracy of DFT, on the other hand, is due to its innate 

approximations. Because of that, MC is the best choice to validate DFT, as both MC and DFT aim 

to compute the same system of charged, hard spheres. 

Given the systematic nature of the simulation (and DFT) parameters studied, we naturally 

reproduce some of the results previously published by others, including seminal works using MC 

by Torrie and Valleau [19, 20, 36], as well as other MC simulations, for example on charge 

inversion [37-41]. Cases have also been studied using theories other than DFT, including seminal 

studies by Blum, Henderson, and others [42] using integral theories like the hypernetted chain [43, 

44]. 

RESULTS AND DISCUSSION 

Double Layer Structure 

The plots for the RMSD and Pearson coefficient comparisons for RFD versus fMSA are 

shown in Figure 1a and 1b, respectively. (The corresponding comparisons for RFD versus BF are 

show in the Appendix in Fig. 11.) For the cation and anion density profiles, overall, there is a 

similarity between RFD and fMSA with a few scattered pockets of differences. For ( )x  there are 

more significant differences that will be further explored in the capacitance subsection. In general, 

all three profiles are quantitatively and qualitatively very similar when the ions have a 0.30 nm 

diameter (all ions have the same size) and for monovalent ions. 
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Six discrete groups are visible in Figure 1 that display differences between the two 

functionals. After a brief description, each will be discussed in turn. Groups 1 and 2 both focus on 

the high inverse correlation coefficients: Group 1 is at low bulk+
 and σ = 0 C/m2 and Group 2 at d+ 

= 0.15 nm with z+ = 2 and 3. Group 3 is the RMSD variation at d+ = 0.15 nm with z+ = 2 and 3 at 

high σ where all three profiles show deviation. Group 4 is the RMSD variation at d+ = 0.60 and 

0.90 nm with z+ = 2 and 3 for ( )x−  and ( )x , although from the RMSD plots it is not as apparent 

that there is ( )x−  variation at low bulk+
. Group 5, which has the least variation out of all the 

groups, focuses on ions with d+ = 0.30 nm at high σ, specifically at z+ = 1 and 3 for ( )x+  and 

( )x−  respectively.  Lastly, Group 6 focuses on the weak correlation in the anion profiles for 

trivalent ions. 

For the first group at z+ = 1 and 2 across all diameters, an inconsistency in Figure 1 is 

present at low bulk+
 and σ = 0 C/m2 for both ( )x+  and ( )x−  correlation coefficient plots. These 

sections of the plots have correlation coefficients near –1. However, these are artifacts due to the 

functionals having a small difference in contact value (data not shown). RFD has a contact density 

just above bulk+
 and fMSA just below. This causes the profiles for RFD to monotonically decrease 

to bulk+
 and fMSA to increase to bulk+

 making them quantitatively the same, but with an 

anticorrelated slope.  This occurs for σ = 0 only. 

For the second group, we analyze some representative cases of negative correlation 

coefficients seen in Figure 1 at d+ = 0.15 nm and z+ = 2 and 3. Figure 2 shows the cation profiles 

plotted at σ = –0.04, –0.06, and –0.08 C/m2 and bulk+  = 1 M. At z+ = 2 with σ = –0.04 C/m2, fMSA 

has qualitative differences by peaking twice at a smaller height in the same domain that RFD and 

MC peak once. At z+ = 3, fMSA and MC have quantitatively similar peak height magnitudes, but 

have differences in curve shape and contact density (at x = d+/2). RFD deviates significantly from 

both by having an absolute minimum in the domain where fMSA and MC have an absolute 

maximum for σ = –0.06 and –0.08 C/m2. Overall, RFD and MC are similar at z+ = 2, and fMSA 

and MC are similar at z+ = 3. Lastly, the BF functional produces a substantially larger contact 

density and a curve that does not resemble the fMSA, RFD, or MC curves. 

For the third group, we analyze the RMSD variation that is consistent across all three 

profiles at d+ = 0.15 nm with z+ = 2 and 3. Figure 3 shows the profiles plotted for all valences at σ 
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= –0.50 C/m2 with bulk+
 = 0.1 and 1 M. The monovalent ions across the three profiles show no 

significant variation. At z+ = 2 for both bulk+
, there is ( )x+  variation on the log scale with fMSA 

and BF deviating from the overlapping RFD and MC curves. At z+ = 2 with bulk+
 = 0.1 M for 

( )x− , RFD peaks highest of all four curves and decreases at a faster rate than fMSA, resulting in 

a small curve shape discrepancy. In contrast, the BF ( )x−  does not peak at all. 

All three profiles show significant variation for z+ = 3. For ( )x+ , the RFD curves have a 

peak above bulk+
 immediately after the exponential decrease for both bulk+

 where MC and fMSA 

do not; the log scale shows the qualitative differences between both DFTs and MC. For ( )x−  at 

bulk+
 = 0.1 M, RFD and fMSA are similar, but MC deviates significantly from both. At bulk+

 = 1 

M, fMSA and MC have a deeper minimum and decreases faster than RFD. For ( )x  at bulk+
 = 0.1 

M, a small separation occurs between the curves as they decrease. At bulk+
 = 1 M, the DFT curves 

peak at different heights and RFD decreases at a dissimilar rate from MC and fMSA. The BF curve 

tends to fall below the other three when the ions are not monovalent, and BF exhibits little to no 

charge inversion for multivalent ions. 

The fourth group includes the variations that are most significant for ( )x−  and ( )x  at 

large diameters. Figure 4 shows all three profiles plotted for d+ = 0.60 and 0.90 nm with z+ = 2 and 

3, σ = –0.50 C/m2, and bulk+  = 0.01 M. Under these conditions, fMSA shows the greatest deviation 

from both RFD and MC while the BF curve tends to fall between RFD and fMSA. The ( )x−  

variation is largest at d+ = 0.60 nm, with some fMSA anion profiles having a peak about tenfold 

higher than RFD and MC. This can also be seen for d+ = 0.90 nm and z+ = 3. This creates a change 

of sign in ( )x  (i.e., charge inversion) that does not exist for RFD and MC.  For ( )x+  on the log 

scale one may notice that fMSA tends to deviate from the other curves at d+ = 0.60 nm, and MC 

is offset from the DFTs at d+ = 0.90 nm and z+ = 2. 

The fifth group is concerned with the small discrepancies for d+ = 0.30 nm. Figure 5 shows 

all three profiles plotted for d+ = 0.30 nm at all valences with σ = –0.50 C/m2 and bulk+  = 0.01 and 

1 M. For ( )x+  at z+ = 3 with bulk+  = 0.01 M, there is a small gap between fMSA and both RFD 

and MC that appears on the log scale graph. For ( )x−  at z+ = 2 with bulk+  = 0.01 M, there is a 
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peak height difference between RFD and fMSA and an even bigger difference between fMSA and 

MC. The curves show qualitative differences, with fMSA decreasing roughly at a linear rate and 

RFD and MC at an exponential rate. The ( )x  curves show minimal disparities aside from a small 

quantitative difference. BF overlaps with most of the curves, but occasionally falls below the rest, 

again failing to predict charge inversion. 

The focus of the sixth and final group is the low ( )x−  correlation values at d+ = 0.30 nm 

with z+ = 3.  As shown in Fig. 6, the problem is similar to that in Group 5.  Here, the fMSA peak 

is shifted relative to the RFD and MC peaks to a larger x.  Also, both the RFD and fMSA curves 

increase at a similar rate, but the fMSA profile decreases at a smaller rate after the peak.  In general, 

RFD and MC always agree.  As in the previous cases shown, the BF functional fails to produce 

this anion peak at all. 

Lastly, we describe a specific shortcoming of the BF functional.  In a previous study [26] 

it was noted that the BF functional was qualitatively different from MC simulations (and the RFD 

functional) at very low surface charges (including 0) and high bulk concentrations for all cation 

valences from +1 to +3.  Here, we study this issue a little further.  In the Appendix, Figs. 12–14 

show profiles for the MC simulations and all three functionals under such conditions.  In general, 

the BF cation and anion profiles deviate qualitatively from MC for all four cation sizes and all 

three valences, while the other two functionals have the correct form; the BF potential profiles are 

generally more accurate.  However, for | | ~ 0.03   C/m2 the profiles match MC simulations, 

especially for the monovalents. 

Capacitance 

The surface potential results demonstrate a similar pattern as the double layer structure, 

with the least variation occuring for ions with d+ = 0.30 nm and for the monovalents. Figure 7 

shows the plots for Δϕ at the charged surface for RFD versus fMSA. (The corresponding 

comparisons for RFD versus BF are shown in the Appendix in Fig. 15.) Positive   values 

indicate that RFD fMSA(0) (0)  . Generally speaking, ions with d+ = 0.15 and 0.30 nm have   > 

0 and ions with d+ = 0.60 and 0.90 nm have   < 0. The greatest variation occurs for z+ = 3 across 

all diameters, with the largest devation at d+ = 0.90 nm.  
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For each valence across all four diameters, we plotted   vs. σ for all available MC bulk+

. Figure 8 shows the plots for z+ = 1 for all four diameters and all three functionals. Overall, both 

curves are very close to MC. RFD more closely resembles MC, although the differences between 

fMSA and RFD are minimal. For all diameters with |σ| ≤ 0.10 C/m2, both RFD and fMSA overlap 

MC. Overall, RFD is preferable to fMSA for |σ| ≥ 0.25 C/m2. Overall, BF is just as accurate as the 

other functionals for all monovalent ions. 

Figure 9 shows the (0)  vs. σ plots for z+ = 2 for all four diameters. Each bulk+
 was 

individually plotted for d+ = 0.15 nm. In this case, fMSA is more accurate than both RFD and BF 

when compared to MC. For larger divalent ions, BF closely resembles fMSA, but RFD is the most 

accurate DFT at high σ, while all three DFTs are reliable at low σ. 

Figure 10 shows the (0)  vs. σ plots for z+ = 3 for all four diameters with individual plots 

for each bulk+
. For d+ = 0.15, all DFT methods are completely offset from MC, although fMSA is 

qualitatively more accurate especially at low σ. It should be noted, however, that quantitatively 

they are only off by fractions of kT/e because the surface potential is so small. For d+ ≥ 0.30 nm, 

the preference for RFD becomes greater at high σ. For d+ = 0.30 nm, RFD is only preferable at 

high σ and fMSA closely resembles MC at low σ. At d+ = 0.60 and 0.90 nm, RFD is better at high 

σ, and all three functionals overlap MC at low σ. 

CONCLUSION 

All three DFT methods we tested (RFD, fMSA, and BF) have areas where they give similar 

results, but some functionals deviate significantly more from MC than others. Out of all three, 

when compared to MC simulations, RFD is the most accurate across nearly all profiles and 

parameters. Although not as accurate as RFD, fMSA is generally a good choice, but it tends to 

overestimate charge inversion and its “bump” of anions after the initial layer of cations. BF is the 

worst of the three as it has the largest profile deviation from MC out of all three methods.  Also, 

BF tends to significantly underestimate charge inversion, many times exhibiting only a tiny anion 

bump (or none at all) when MC simulations show a significant excess over bulk.  BF also is 

qualitatively incorrect at high bulk concentrations (above ~0.3 M) with very low surface charges, 

including at σ = 0, for all the ions we studied. 
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When looking at the structure of the double layer, all three methods work well for 

monovalent ions, except for BF’s problems at low surface charges. For divalent and trivalent ions 

with a 0.60 and 0.90 nm diameter, RFD is by far the most accurate DFT; fMSA and BF do not do 

nearly as well predicting charge inversion. None of the DFTs prove reliable for trivalent ions with 

a 0.15 nm diameter when comparing the double layer structure.  The fMSA functional does 

reasonably well in this one particular case, but as ion size increases, its accuracy drops off 

significantly and therefore is not the best choice for trivalents overall. 

When looking at the surface potential versus surface charge relationship (and therefore 

capacitance), all three methods are equally good for monovalent ions. For multivalent ions, fMSA 

is generally better for the smallest ions and works equally as well as RFD at low surface charges.  

Otherwise, RFD is generally more accurate. BF results are generally comparable to fMSA results. 

Overall, this work shows that multivalent ions, especially small ones, are an area that can 

be improved in future electrostatics functionals.  Especially for trivalent ions, none of the 

functionals we tested gave consistently good results across all ion diameters.  For example, fMSA 

did significantly better than RFD for small trivalent ions, but lost accuracy as ion size increased; 

for RFD this was reversed.  BF, on the other hand, always fared poorly for multivalent ions. While 

these kinds of ions can be very difficult for MC simulations to get exactly right (e.g., because of 

ion pairing since the cation-anion electrostatic energy at contact is ~9 kT), the fact that three DFTs 

give very different answers indicates that improvements in DFT are necessary. 

Lastly, this work shows the importance of the screening term in determining the structure 

of the electrical double layer, especially for charge inversion; each of the three functionals we 

tested showed varying degrees of accuracy for charge inversion.  Since the RFD functional 

generally did best, this may indicate that using local screening lengths instead of a single one, as 

is done for the BF and fMSA functionals, is an avenue for improving electrostatic functionals. 
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APPENDIX 

This appendix contains Figs. A1–A5 that focus on BF results secondary to the main text figures. 
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TABLE 

Variable Data type Symbol Range Range increment 

Distance from the wall BF DFT x –2 to 34.5 nm 0.0025 nm 

 RFD DFT  –2 to 34.5 nm 0.0025 nm 

 fMSA DFT  –11 to 45.5 nm 0.0025 nm 

 MC  Varies 0.025 nm 

Cation Valence  z+ +1, +2, +3  

Anion Valence  z– –1  

Cation Bulk Concentration DFT bulk+
  10–6 to 1 M 0.1 on the log scale 

 MC (z+=1)  10–4 to 1 M 1 on the log scale 

 MC (z+=2)  10–3 to 1 M 1 on the log scale 

 MC (z+=3)  10–2 to 1 M 1 on the log scale 

Cation Diameter  d+ 0.15, 0.30, 0.60, 0.90 nm  

Anion Diameter  d– 0.30 nm  

Surface Charge DFT σ 0.00 to –0.50 C/m2 0.01 

 MC  Varies  

 

Table 1.  Parameters varied in the DFT calculations and the MC simulations.  In the DFT 

calculations, the same surface charges and concentrations (3111 combinations) were computed for 

all 12 cations. 
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FIGURE LEGENDS 

Fig. 1. Plots comparing the RMSD (a) and the Pearson correlation coefficients (b) for RFD and 

fMSA ( )x+  (top), ( )x−  (middle), and ( )x  (bottom). The logarithm of bulk+
 is shown on the x-

axis and σ is shown on the y-axis of each individual plot. Each row of plots corresponds to z+ and 

the columns to d+ as indicated. The group numbers of areas of difference are shown near the 

corresponding areas with significant deviation. The maximum values for the RMSD scales are 

2.46 M (cations and anions) and 5.67 kT/e (electrostatic potential); this results in oversaturation 

for some of the plots. 

Fig. 2. DFT and MC ( )x+  plotted for d+ = 0.15 nm, z+ = 2 (a) and 3 (b) at bulk+
 = 1 M. The σ 

values are –0.04, –0.06, and –0.08 C/m2 across each row. The BF maximum value at 0 nm for σ = 

–0.04 C/m2 and z+ = 3 is 2.009 M. In this and all profile figures, MC results are the blue symbols, 

RFD the solid black line, fMSA the solid red line, and BF the dashed gray line. 

Fig. 3. DFT and MC ( )x+ , ( )x− , and ( )x  (labeled at right) plotted for d+ = 0.15 nm and z+ = 

1, 2, and 3 at bulk+
 = 0.1 and 1 M and σ = –0.50 C/m2. The second row of plots use the log scale 

for the cation concentration profile. 

Fig. 4. DFT and MC ( )x+ , ( )x− , and ( )x  (labeled at right) plotted for d+ = 0.60 (a) and 0.90 

nm (b) with z+ = 2 and 3 at bulk+
 = 0.01 and σ = –0.50 C/m2. The second row of plots use the log 

scale. The ( )x−  plot for z+ = 2 and d+ = 0.90 nm converges at x > 2.5 nm. 

Fig. 5. DFT and MC ( )x+ , ( )x− , and ( )x  (labeled at right) plotted for d+ = 0.30 nm with z+ = 

1, 2, and 3 at bulk+
 = 0.01 and 1 M and σ = –0.50 C/m2. The second row of plots use the log scale. 

The ( )x−  plot for z+ = 1 and ρ = 0.01 M converges at x > 2.5 nm. 

Fig. 6. DFT and MC cation profiles ( )x+  plotted for d+ = 0.30 nm with z+ = 3 at bulk+  = 0.1 M 

and σ = –0.04, –0.10, –0.25, and –0.50 C/m2. 

Fig. 7. Plots comparing   for RFD and fMSA at the charged surface. The plot axes and 

arrangements are as in Figure 1. 

Fig. 8. Surface potential (0)  versus surface charge σ for z+ = 1 with each set of curves 

representing one of the bulklog( )+  (0 to –4 from top to bottom). 

Fig. 9. Surface potential (0)  versus surface charge σ for z+ = 2. The curves for each bulklog( )+  

are plotted individually for d+ = 0.15 nm (a). The curves for each bulklog( )+  (0 to –3 top to bottom) 

are plotted simultaneously for d+ ≥ 0.30 nm (b). 

Fig. 10. Surface potential (0)  versus surface charge σ for z+ = 3. The curves for each bulklog( )+  

(0 to –2 top to bottom) are plotted individually for all d+ across each column. 

Fig. 11. Plots comparing the RMSD (a) and the Pearson correlation coefficients (b) for the RFD 

and BF functionals: ( )x+  (top), ( )x−  (middle), and ( )x  (bottom). The logarithm of bulk+  is 

shown on the x-axis and σ is shown on the y-axis of each individual plot. Each row of plots 

corresponds to z+ and the columns to d+ as indicated. The group numbers of areas of difference are 
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shown near the corresponding areas with significant deviation. The maximum values for the 

RMSD scales are 4.17 M (cations and anions) and 5.17 kT/e (electrostatic potential); this results 

in oversaturation for some of the plots. The same scales as in Fig. 1 of the main text are used. 

Fig. 12. DFT and MC ( )x+ , ( )x− , and ( )x  (labeled at right) plotted for bulk+
 = 1 M and  

σ = 0 C/m2 (a–d) and –0.02 C/m2 (e–h) for all monovalent ions across all diameters (labeled at 

top). 

Fig. 13. DFT and MC ( )x+ , ( )x− , and ( )x  (labeled at right) plotted for bulk+
 = 1 M and  

σ = 0 C/m2 (a–d) and –0.02 C/m2 (e–h) for all divalent ions across all diameters (labeled at top). 

Fig. 14. DFT and MC ( )x+ , ( )x− , and ( )x  (labeled at right) plotted for bulk+
 = 1 M and  

σ = 0 C/m2 (a–d) and –0.02 C/m2 (e–h) for all trivalent ions across all diameters (labeled at top). 

Fig. 15. Plots comparing Δϕ for the RFD and BF functionals at the charged surface. The plot axes 

and arrangements are as in Figure 1 Supplementary. 
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