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In spark-ignition internal combustion engines, fluctuations of the in-cylinder pressure trace and
the tendency of combustion knock are usually different from one cycle to another. These cycle-to-
cycle variations (CCVs) are affected by the initial state at ignition time and the subsequent burning.
The occurrence of the phenomena is unpredictable, and their stochastic nature offers challenges in
the optimization of engine control strategies. In this paper, a simulator providing a series of cycle-to-
cycle varied in-cylinder pressures is introduced. The Wiebe function and Livengood-Wu integration
are used to describe the determinacy of combustion. Various means including the Markov chain are
introduced to express the stochastic quantities during combustion. In addition, the combustion of
a given knock probability is simulated.

PACS numbers: 05.65.+b

I. INTRODUCTION

It is well known that combustion in a chamber is a phe-
nomenon with stochasticity[1-3]. In a spark-ignited inter-
nal engine, the combustion event in the cylinder performs
cycle-by-cycle under external actuation such as fuel in-
jection, valve timing, ignition, etc. However, the stochas-
ticity in combustion can be observed even under condi-
tions without external actuation and changing thermal
environments. As a result, this randomness leads to the
cycle-to-cycle variation of engine output such as indicated
mean efficient pressure (IMEP), thermal efficiency and
emissions. In the last three decades, much literature on
cycle-to-cycle combustion has been published[4-10]. For
example, a statistical analysis of the cyclic combustion
event is explained from view of physics[11], and experi-
mental analyses on cyclic variation have also been pro-
vided[12]. In addition, attempts at modeling the cyclic
transient in the cylinder state have been proposed in [13],
which focus on the cyclic variation influence of the resid-
ual gas fraction.
Meanwhile, motivated by the strict regulation on emis-

sion and energy consumption for production engines, the
attention of developing technology has been recently fo-
cused on high-efficiency combustion engines in the au-
tomotive industry[14]. Furthermore, as an efficient ap-
proach, model-based development has been a new re-
search trend in the automotive industry[15]. From the
view of control algorithm development for the electrical
control unit (ECU) of engines, 1D models that represent
the in-cylinder behavior of combustion engines are most
widely used in control design and simulation. However,
mathematical representation of the cycle-to-cycle varia-
tions of in-cylinder combustion, especially the stochas-
tic characteristics of in-cylinder combustion phenomena,
still remain to be studied.
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In this paper, a simple 1D dynamic model is intro-
duced to simulate combustion with cycle-to-cycle varia-
tions. The in-cylinder pressure and knock are chosen to
be simulated. The in-cylinder pressure can illustrate the
combustion progress, and the random knock is directly
caused by the cycle-to-cycle variation. The Markov chain
and multivariate normal distribution are introduced to
represent the randomness and chaos of combustion, re-
spectively, according to the physical reality. The pro-
posed 1D model can simulate the statistical information
of numerous cycles successfully, conditional on ignoring
the chaotic and stochastic characteristics of real fluids
and combustion. Table I describes the variables used in
this paper.

TABLE I. Nomenclature

Variable Description
θ crank angle(deg)
p in-cylinder pressure(pa)
V in-cylinder volume(m3)
T in-cylinder temperature(K)
Q heat release from start of combustion(J)
R ideal gas constant(8.314J ·mol−1

·K−1)
κ specific heat ratio of the mixed gas
θ10 crank angle interval from start of combustion until

10% of the mass burnt(deg)
θ90 crank angle interval from start of combustion until

90% of the mass burnt(deg)
Qtotal total heat release of the indicated cycle(J)
Θ parameter of the Markov chain
N normal distribution
xb mass fraction burnt
I Livengood-Wu knock integration
ON octane number of fuel
K expected knock probability(%)
K∗ knock probability(%)
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II. PHYSICAL BACKGROUND AND PROBLEM

DESCRIPTION

According to the fact that commonly used engines of
gasoline-fueled automobiles have four-strokes and oper-
ate under an Otto cycle, these engines are also applied
in this study.
The working process of the experimental engine is

shown in Fig. 1. In a spark-ignition engine, the down-
ward moving piston enlarges the volume of the cylinder,
and fresh air and fuel are inducted through the intake
valve during the first intake stroke. Then, the mixture of
air and fuel are compressed by the upward moving pis-
ton in the compression stroke. Just before reaching the
minimal cylinder volume, the combustion is initiated by
a high-voltage spark, and the power stroke follows. The
explosion of hot gases pushes the piston downward[16].
The most important phenomenon focused on in the sim-
ulator of the spark ignition engine is the in-cylinder com-
bustion. The energy is provided by combustion, and the
randomness and chaos of the engine are caused by the
combustion; thus, they are the focus in this work. As the
piston moves upward again in the exhaust stroke, the
discharged gases are vented through the exhaust valve.
The intake, compression, combustion, and exhaust stroke
compose one engine cycle. The engine is operated cycle
by cycle.

FIG. 1. Schematic view of spark-ignition engine

To illustrate the piston position and working progress
of the engine, crank angle θ is used in this simulator. The
crank shaft is an important link of the chain transferring
power from the piston to the load in the engine. The
crank angle ranges from 0 degrees to 720 degrees in each
cycle. The crank angle equals 0 when the intake stroke
starts, and the in-cylinder volume is minimal.
When the in-cylinder pressures are expressed against

the crank angle, the disparity of the pressure trace can
easily be observed from one cycle to another. As shown
in Fig. 2, the region where the pressure traces diverge co-
incides with the combustion period. Those cycle-to-cycle
variations are affected by the early flame development
and subsequent flame front propagation[16]. In order
to describe the cycle-to-cycle variations, the in-cylinder
combustion needs to be studied in detail.

FIG. 2. In-cylinder pressure of 10 successive cycles

Violent cycle-to-cycle variations can lead to an abnor-
mal phenomenon called knock. Knock is a form of abnor-
mal combustion in spark-ignition engines, which is char-
acterized by high pressure oscillations[17]. After spark
ignition, the flame front, which is the surface separating
the burned and unburned gases, moves from the ignition
plug to the entire cylinder. Part of the unburned gas is
compressed by the piston and the burned gas. The high
pressure and temperature in this area cause spontaneous
combustion to occur. The knock vibration is caused by
this double ignition, which reduces the engine efficiency.
Heavy knock may lead to engine failure, so when study-
ing cycle-to-cycle variations, a method to monitor the
knock is needed.

III. EXPERIMENT AND DATA PROCESSING

To obtain the physics of cycle-to-cycle combustion,
an experiment is conducted on a test bench, in which
a Toyota 2ZR-FXE gasoline engine is coupled to a
Horiba Dynas3-LI250 low inertial alternative current dy-
namometer as shown in Fig. 3. The engine parameters
are presented in Table II. The control and measurement
system of the test bench includes a electronic engine con-
trol unit, a SPARC controller of the dynamometer, and
a dSPACE1006 multi-processor system connected to a
personal computer. In addition, a high-speed data ac-
quisition card, dSPACE2004, is equipped to collect the
sub-millisecond pressure data.

In the experiment, the engine is operated under fixed
operating conditions, which include intake valve closing
(IVC) at 250 degrees and ignition angle at 344 degrees. In
addition, engine speed is restricted at 1200 rpm (revolu-
tion per min) by the dynamometer. Under this condition,
the combustion knock probability is 3%, which is impor-
tant information to adjust the parameters in the knock
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TABLE II. Specification of the experimental gasoline engine

Engine type 2ZR-FXE, L-type
Displacement 1797 ml
Cylinder number 4
Compression ratio 13.0
Maximal speed 6000 rpm
Maximal power 72 kW @ 5200 rpm
Maximal torque 142 Nm @ 3600 rpm
Cylinder diameter 80.5 mm
Stroke 88.3 mm

FIG. 3. Configuration of the engine-dynamometer test bench

model. During the experiment, the in-cylinder pressure
is measured against the crank angle. As shown in Fig.4,
the experimental data are the pressure-crank angle curve
of 1979 cycles.
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FIG. 4. Measured in-cylinder pressure

The experimental data are processed cycle by cycle to
derive the randomness of combustion. A set of parame-
ters are selected to characterize the combustion process.
According to the structure of the combustion model,
which is introduced in the next section, the set of pa-

rameters are selected as Qtotal, θ90 and θ10. Qtotal is the
total heat release of the current cycle. θ90 is the crank an-
gle interval from the start of combustion until 90% of the
mass burnt, which indicates the end of combustion. θ10
is the crank angle interval from the start of combustion
until 10% of the mass burnt. Parameter θ10 is the sym-
bol of ignition delay, which means the delay of the crank
angle from ignition to the beginning of combustion.
When the measured data of each cycle are studied,

there are two widely accepted assumptions. First is that
the mixed gas in the cylinder is treated as an ideal gas,
from which the following can be inferred:

pV = nRT (1)

U = 1
1−κ

nRT (2)

where n is the mole number of the mixed gas in the cylin-
der, and U is the internal energy of the gas.
The second assumption is that the in-cylinder combus-

tion is an isolated process. The heat loss is ignored.

dQ = −dU + pdV (3)

Under the constraints of equation (1) and equation (2),
equation (3) can be rewritten as:

dQ =
1

κ− 1
nRdT + pdV

=
1

κ− 1
d(pV ) + pdV

=
κ

κ− 1
pdV +

1

κ− 1
V dp

(4)

The in-cylinder combustion is started by the spark
when the crank angle reaches the spark angle (SA =
334degrees in this paper). Thus, the heat release at each
crank angle can be calculated as:

Q =







0 0 < θ ≤ 334
∫ θ

334

(

dQ

dθ

)

dθ 334 < θ ≤ 720
(5)

For every cycle, the heat release (Q) curve can be plot-
ted against the crank angle (θ). The measured param-
eters Qtotal, θ90 and θ10 can be calculated according to
the heat release curve of each cycle, as shown in Fig.5.

IV. PROPOSED MODEL FOR SIMULATION

The purpose of proposing this model is to simulate the
detail states (such as pressure) of the engine working at
a certain knock probability. The model needs to calcu-
late quickly enough to be used for model-based control.
Thus, the 1D model is introduced to make sure the calcu-
lations are simple, and various improvements are added
to simulate the cycle-to-cycle variations.
The 1D model ignores the special distribution and hy-

dromechanic performance, which lead to the cycle-to-
cycle variations. To simulate the stochastic cycle-to-cycle
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FIG. 5. The schematic diagram of the calculation of Qtotal,
θ90 and θ10

variations, random parameters need to be introduced to
represent those phenomena. In addition, based on the
observation of the experiments, the knocking probability
under the same engine working conditions is not constant
because of the uncontrolled environment condition. In
the presented simulation, the parameters of the combus-
tion model need to match the variable knock probability.
Therefore, the model is represented by 3 parts. The

first part is to generate the random parameter and de-
scribe the nominal condition of the engine. The second
part is to simulate the in-cylinder combustion and revo-
lute the in-cylinder pressure. The last part is to diagnose
if knock occurs and calculate the knock probability. The
simulator structure is shown in Fig. 6.

A. Generation of combustion randomness

In order to simulate the cycle-to-cycle varied combus-
tion, the parameters Qtotal, θ90 and θ10 are dealt with as
a random number. If the distribution of parameters are
designed appropriately, they influence the accuracy of the
proposed model. According to the measured data and the
physical background, the distribution of Qtotal and θ90 is
selected as the multivariate normal distribution, and a
Markov chain is chosen to describe the evolution of θ10.

1. Multivariate Normal Distribution

The parameters Qtotal, θ90 and θ10 of each cycle are
ascertained by the data processing presented in Section
III. The experimental distribution of the 3 parameters of
all 1979 cycles can be acquired. As shown in Fig.7, the
experimental mean µθ and variance σ2

θ of θ90 are

µθ = 43.0424, σ2
θ = 4.6115 (6)

In the proposed model, the θ90 is chosen to be the

parameter to characterize the cycle-to-cycle variations.
When the nominal operating condition is fixed, the cycle-
to-cycle variations influences knock probability signifi-
cantly. In order to get a given knock probability, the
distribution of θ90 must be adjusted. When the knock
probability is 3%, which is same as the experiment, a
normal distribution characterized by the average value
of 43.0424 and the variance of 4.6115 can be selected to
describe the distribution of parameters θ90. The θ90 of
the current cycle can be obtained randomly based on the
normal distribution:

p (θ90) = N (θ90|µθ, σ
2
θ)

=
1

(2πσ2
θ)

1�2
e
− 1

2σ2
θ

(θ90−µθ)
2 (7)

The parameterQtotal can also be described as a normal
distribution. However, Qtotal are not independent from
the parameter θ90 according to the experimental data, as
shown in Fig. 8. The correlation of θ90 and Qtotal can be
quantified by Pearson product-moment correlation coef-
ficient rθQ, which equals 0.5608. There is a larger θ90 in
the cycle when the heat release Qtotal is higher. Due to
this independence, the distribution of Qtotal needs to be
calculated by the covariance matrix Σ and the θ90 of the
current cycle. Then, the covariance matrix of θ90 and
Qtotal is expressed as:

Σ =

[

σ2
θ σθσQrθQ

σθσQrθQ σ2
Q

]

(8)

where

rθQ = 0.5608, σ2
Q = 60.0462

σ2
Q is the variance of Qtotal. The σ2

Q is given as 60.0462
according to the experimental data. When θ90 is de-
cided, the distribution of Qtotal can be calculated by the
covariance matrix based on the calculation of conditional
probability[18]. The parameter Qtotal of the current cy-
cle can be obtained randomly based on the multivariate
normal distribution:

p (Qtotal|θ90) = N (µQ|θ,Λ
−1
QQ) (9)

where

Λ =

[

Λθθ ΛθQ

ΛQθ ΛQQ

]

= Σ
−1

µQ|θ =µQ − Λ−1
QQΛQθ(θ90 − µθ)

2. Markov Chain

As shown in Fig. 9, there is a slight asymmetry of the
experimental θ10 distribution. The mean value µ(θ10)
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FIG. 6. Structure of the simulation model
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FIG. 7. Experimental θ90 frequency distribution

and variance σ2(θ10) can be calculated, but the normal
distribution is not suitable to describe it.

µ(θ10) = 21.4494, σ2(θ10) = 1.5260 (10)

For in-cylinder combustion, θ10 can represent the ig-
nition delay that is an important index of combustion
and influence the in-cylinder pressure in the current cy-
cle. The ignition strongly depends on how difficult it is
for the in-cylinder gas to be set on fire. Additionally, the
fraction and temperature of residual gas of prior cycle
influence the difficulty of ignition. Because of this physi-
cal background, the distribution of θ10 is not suitable to
be treated as a normal distribution. As mentioned, the
combustion states of prior cycle have some influence on
the θ10 of next one cycle. The distribution of θ10 can rep-
resent the combustion states to some extent. In this case,
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FIG. 8. Relationship of the total heat release Qtotal (y-axis)
and θ90 (x-axis) according to the experimental data

if the distribution of θ10 is regarded as a state, the pro-
cess of continuous in-cylinder combustion has a Markov
property, which means the probability of whether the dis-
tribution of θ10 will change only depends on the current
distribution of θ10. To describe the process in which the
probability of one state changes to another only depends
on the current state, a Markov chain is used extensively.
Thus, θ10 can be generated by a discrete-time Markov
chain.
As mentioned above, in order to get the stochastic θ10,

a two hidden states Markov chain is modeled. There are
two states, each of which represents one certain normal
distribution of stochastic θ10. It is called a hidden state
because it cannot be confirmed by the measured data.
The value of θ10 is obtained at discrete time t for one
state and at time t+1 the state that may change into



6

18 19 20 21 22 23 24 25 26 27

θ
10

[deg]

2

4

6

8

10

12
F

re
q
u
en

cy
[%

]

FIG. 9. Experimental θ10 frequency distribution

another at a certain probability.
The Markov chain can be described by Θ.

Θ =(A,B,π)

A =

[

a11 a12
a21 a22

]

,B =

[

N1

N2

]

,π = [π1, π2]
(11)

The figure aij that is the element of stochastic tran-
sition matrix A describes the probability that if θ10 is
given by state i at time t, then at time t+1, θ10 is calcu-
lated by state j. The distribution Ni(θ10|µi, σ

2
i ), which

is the element of vector B that defines the probability
distribution of θ10 at the certain state i. The element of
the initial state distribution vector π is the number πi

that defines the probability of the initial state of i.
To find the unknown parameters of a Markov chain, the

Baum-Welch Algorithm is widely used[18]. We express
the sequence of the observed data as O and the sequence
of hidden state as I, where L is the length of the measured
data.

O =(o1, o2, · · · , oL)

I =(i1, i2, · · · , iL)
(12)

The evaluation criteria of the Markov chain parameter
Θ can be presented as the log-likelihood function F (Θ)
of the experimental data generated by a certain Markov
chain. The log function is monotonically increasing, and
when the log-likelihood function reaches its upper bound,
the likelihood function is maximum that means that the
parameter Θ is selected as most likely right.

F (Θ) = P (O|Θ) logP (O|Θ) (13)

In order to find the best coordinated parameter Θ =
(A,B,π), the Baum-Welch Algorithm is used to find a
group of parameters to make the function F (Θ) reach
its upper bound. The Baum-Welch Algorithm is also

used to find a new function Q that is smaller than F ,
and then, the parameter Θ is changed step-by-step to
enlarge function Q and find this upper bound. Function
Q is defined as:

Q
(

Θ, Θ̂
)

=
∑

I

P

(

O, I|Θ̂
)

logP (O, I|Θ) (14)

Function Q is used in iterative optimization. Θ is the
unknown parameter needed to be found to enlarge Q,
and Θ̂ is the known parameter that is found in last step.
Thus, it can be proven that:

F (Θ) =P (O|Θ) logP (O|Θ)

=P (O|Θ) log
∑

I

P (I)
P (O|I,Θ)

P (I)

≥P (O|Θ)
∑

I

P (I) log
P (O|I,Θ)

P (I)

=P (O|Θ)
∑

I

P (I) logP (O, I|Θ)

=
∑

I

P (O, I|Θ) logP (O, I|Θ)

≥Q
(

Θ, Θ̂
)

(15)

The first inequality sign is due to the convex property
of the log function, and the second inequality sign is due
to the definition of function Q.
According to the definition of a Markov chain,

P

(

O, I|Θ̂
)

=πi1Ni1 (o1) ai1i2 · · ·

NiL−1
(oL−1) aiL−1iLNiL (oL)

(16)

Thus, the function Q can be expressed as:

Q
(

Θ, Θ̂
)

=
∑

I

logπi1P

(

O, I|Θ̂
)

+
∑

I

(

L−1
∑

l=1

logailil+1

)

P

(

O, I|Θ̂
)

+
∑

I

(

L
∑

l=1

logNil

)

P

(

O, I|Θ̂
)

(17)

Then, the optimal Θ can be calculated by optimizing
A, B and π separately. The iteration method is used to
find parameter Θ to let Q reach its upper bound.

Θ
(i) = argmax

Θ

Q
(

Θ,Θ(i−1)
)

(18)

It was proven in [19] that by using the iteration of
equation (14), the value of Q could reach one of the local

optimums of function F . The initial value of Θ̂ needs
to be changed several times to the global optimum. The
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final Θ = (A,B,π) is expressed as:

A =

[

0.3049 0.6951
0.1041 0.8959

]

B =

[

N (θ10|22.8744, 1.6569)
N (θ10|21.2363, 1.1565)

]

π =[0, 1]

(19)

The log-likelihood function is introduced to describe
the probabilities of the experimental results under the
normal distribution and the distribution of the Markov
chain. The function is monotonically increasing with the
likelihood of experimental data under a certain model.
Thus, the log-likelihood function can represent the degree
of confidence to some extent.

F (θ10|N (µ(θ10), σ
2(θ10))) = −3.2258× 10−3

F (θ10|Θ = (A,B,π)) = −3.2022× 10−3
(20)

A normal distribution defined by the experimental
mean µ(θ10) and variance σ2(θ10) is introduced in con-
trast. The log-likelihood is that a Markov chain defined
by Θ is slightly larger than that of the contrastive nor-
mal distribution. Thus, the Markov chain is more likely
to generate the experimental results, and it is reasonable
to determine parameter θ10 by the fitted Markov chain
according to the experiment results.
Still, a simple explanation of the Markov chain is

needed. The θ10 generated by the Markov chain is a
description of the ignition delay of in-cylinder combus-
tion. According to the Markov chain Θ, the ignition is
divided into the following two categories: abnormal igni-
tion and normal ignition. Abnormal ignition corresponds
to the first state of B, and normal ignition corresponds
to the second. The ignition delay of abnormal ignition
is unstable and longer on average than that of normal
ignition as defined by B. Moreover, as an explanation of
matrix A, normal ignition is more likely to occur regard-
less of whether the last ignition is normal or abnormal.
However, an abnormal ignition is more likely to lead to
another abnormal one than normal ignition. The above
explanation is practical because abnormal ignition may
lead to unstable combustion. The temperature and frac-
tion of residual gas may vary greatly due to the unstable
combustion of the last cycle. Then, abnormal ignition is
more likely to occur.

B. Combustion model

When modeling the cyclic varied in-cylinder combus-
tion, a functional description ranging from determinism
to randomness is needed[13]. The Wiebe function, a
frequently used equation, is chosen to simulate combus-
tion[17].

xb = 1− e−a( θ

θ90
)m+1

(21)

m =
ln0.9

ln(θ10/θ90)
, a = ln0.1 (22)

where θ is the crank angle, a and m are the non-
dimensional parameters calculated according to the def-
inition of θ90 and θ10, respectively, and xb is the fraction
of fuel burned at the crank angle θ.
The fraction of fuel burned can be regarded as a symbol

of the combustion process. θ90andθ10 are given in the
first parts of the current model. Then, the heat release
at each crank angle θ is calculated as follows:

dQ

dθ
= Qtotal ·

dxb

dθ
(23)

where Qtotal is the total heat release of the current cycle
that is received from the first part of the current model.
Ignoring the thermal losses, the change in in-cylinder

pressure p is given as:

dp

dθ
=

κ− 1

V

(

dQ

dθ
−

κ

κ− 1
p
dV

dθ

)

(24)

where V is the cylinder volume at the present crank an-
gle, and κ is the heat capacity ratio of the gas-oil mixture.
In this paper, κ = 1.32 and the fluctuation of κ are ig-
nored. Meanwhile, the initial value pIV C of in-cylinder
pressure p is the pressure when the intake value closes.
pIV C equals the intake manifold pressure of the engine
nominal condition.

C. Knock model

In this part of the model, an existing method is used to
detect knock based on the in-cylinder pressure. Accord-
ing to this method, the relationship between the knock
probability and the parameter distribution is derived.
Bayesian estimation is also applied to calculate the knock
probability.

1. Integral predictable model

The Livengood-Wu integral predictable knock model,
which is based on the Arrhenius function, is used to de-
tect knock. This model divides the cylinder into burned
and unburned zones. Each zone is considered homoge-
neous in terms of temperature, pressure and gas mixture
composition. Knock occurs when spontaneous ignition
happens in the unburned zones[20]. Under certain en-
vironmental conditions, the self-ignition delay τ can be
expressed as

τ =C1 ·

(

ON

100

)C2

· p−C3 · e
C4
Tub (25)

where C1,C2,C3 and C4 are the fitting coefficients. Thus,
under a varying environment, the self-ignition index is de-
fined as an integral of 1/τ , and self-ignition occurs when
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the index I = 1. At this point, knock happens.

I =

∫ t

tIV C

(

1

τ

)

dt (26)

where Tub is the unburned gas temperature that can be
calculated based on an adiabatic assumption.

Tub = TIV C

(

p

pIV C

)1− 1
κ

(27)

TIV C and pIV C are the temperature and pressure when
the intake value closes, pIV C = 0.6bar according to the
experiment, and TIV C equals the environment tempera-
ture.
The values of parameters C2,C3 and C4 are given in

the scientific literature[21].

C2 = 3.402 C3 = 1.700 C4 = 3800 (28)

Parameter C1 is modified to make the knock rate con-
sistent with the experimental results.

C1 = 12.91 (29)

2. Parameter adjusting based on the knock model

In the same nominal operating conditions, the knock-
ing probability changes by the immeasurable distur-
bance of environment. In order to characterize this phe-
nomenon, a simulator generating a series of combustion
of given knocking probability is needed. It is reasonable
to assume that the mean value of the model parameters
are decided by the nominal operating conditions. The
knock probability fluctuation due to the immeasurable
disturbance is reflected by the alteration of the variance
of model parameters. The σ2

θ , variance of θ90 is selected
to describe the environment fluctuation. Moreover the
σ2
Q, variance of Qtotal calculated by σ2

θ varies along with
environment.
It is clear that if the knock probability equals 3%,

which is same as the experiment result, the variance of θ90
is 4.6115 and equals the experimental value. The variance
of θ90 under other knock probabilities needs to be calcu-
lated. One thousand cycles under the 3% knock proba-
bility are simuliated, and the Livengood-Wu integration
I is calculated. The lower θ90, which indicates quicker
combustion, is likely to generate higher Livengood-Wu
integration, leading to high knock probability, as illus-
trated in Fig. 10.
θ90 and I are fitted by a cubic polynomial as follows:

I = f(θ90) =−8.551e− 5× θ390 + 0.01366× θ290
−0.7537× θ90 + 14.63 (30)

The estimated limitation of knock θ⋆90 = 38.18 can be
obtained by the solution of f(θ⋆90) = 1. According to the
fitted curve of θ90 and I, if θ90 is less than θ⋆90 in this nom-
inal operating condition, the Livengood-Wu integration I
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FIG. 10. Fitted relationship between the Livengood-Wu
knock integration I and θ90

is likely more than 1, and then knock happens. Thus, the
distribution of θ90 can determine the knock probability
to a certain degree; although, the randomness of Qtotal

and θ10 can also affect the knock probability. Therefore,
when the knock probability K is given,

P (θ90|θ90 < 38.1) ≃ P (I|I > 1) = K (31)

The variance of θ90 is chosen to be σ2
θ

∗
to adjust the

knock probability into the given value.

σ2
θ

∗
=

µθ − θ⋆90
N−1(1−K)

(32)

where N−1 means the inverse function of the cumula-
tive density function of the standard normal distribution.
By replacing the original variance σ2

θ = 4.6115 with the

newly calculated σ2
θ

∗
, the combustion and knock can be

simulated.

3. Bayesian estimation of knock probability

In order to explain the accuracy of the proposed simu-
lator, a precise estimation of knock probability is needed.
A Bayesian estimation is selected to calculate the knock
probability K∗. Furthermore, whether knock occurs is
a binomial distribution. For the sake of convenience, a
Beta distribution with coefficients α and β is selected
to describe the knock probability as a prior distribution
because the Beta distribution is a conjugate prior distri-
bution of binomial distribution, and the calculation can
be simplified using conjugate prior distribution.

p(K∗) = B(α, β) (33)

Under this assumption, the expectation of the knock
probability is used as the estimation of knock probability
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and can be calculated as:

E(K∗) =
α

α+ β
(34)

The Beta distribution of knock probability is updated
on the basis of the simulated results of whether knock
occurs. According to the Bayesian estimation, α and β
are updated in the ith cycle.

αi =αi−1 + ki

βi =βi−1 + 1− ki (35)

where ki is a dummy symbol of knock. ki = 1 means
knock happens. The initial value of α and β is given on
the basis of the given knock probability K.

α0 =NK

β0 =N(K − 1) (36)

D. Simulated Results

According to the combustion model and the generated
random parameters, the in-cylinder pressure during con-
tinuous 1000 cycles indicates that the operating condi-
tions of the simulation are same as the experimental con-
ditions.
As mentioned above, knock is an abnormal phe-

nomenon of in-cylinder combustion. Thus, it is reason-
able to set a low given knock probability. The given prob-
ability are set to 1%, 3%, and 5%. The proposed simu-
lator successfully provides the in-cylinder pressure with
cycle-to-cycle variation. The simulated in-cylinder pres-
sure of 1000 consecutive cycles is presented in Fig. 11.
The oscillation range of maximum pressure (△Pm) can
illustrate the cycle-to-cycle variation. Fig. 11(a) shows
the in-cylinder pressure curves when a given knock prob-
ability equals 1%, and the oscillation range of maximum
pressure △Pm1 = 15.85bar; Fig. 11(b) shows when the
probability equals 3%, △Pm2 = 19.96bar; and Fig. 11(c)
shows 5%, △Pm2 = 20.13bar.
Combustion begins when the crank angle reaches 344

degrees since the in-cylinder curves diverge from one cy-
cle to another, which is the same as the experimental
results. Fig. 11 shows in this simulation; when the given
knock probability becomes higher, combustion is more
unstable, and the curves of the simulated in-cylinder
pressure become more dispersive. This matches the re-
sults of the real experiment.
According to the simulated pressure, the Livengood-

Wu integration I is calculated as shown in Fig. 12. In
Fig. 12, knock happens when the solid lines that repre-
sent the Livengood-Wu knock integration I exceed the
knock limitation marked by the dashed lines. When the
given knock probability becomes higher, more curves of
calculated Livengood-Wu knock integration I exceed the
dashed line.

FIG. 11. Simulated in-cylinder pressure for 1000 cycles
(a) Given knock probability K=0.01 (b) Given knock proba-
bility K=0.03 (c) Given knock probability K=0.05

As shown in Fig. 13, the solid line shows the simulated
knock probabilities calculated by the Bayesian estima-
tion, and the dashed lines represent the given knock prob-
abilities. The simulated knock probability is increased
when knock happens in this cycle, otherwise it is de-
creased. The changing range of knock probability during
one cycle reduces, because the simulated data applied
in Bayesian estimation is accumulated. The simulated
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FIG. 12. Simulated Livengood-Wu knock integration I for
1000 cycles
(a) Given knock probability K=0.01 (b) Given knock proba-
bility K=0.03 (c) Given knock probability K=0.05

knock probabilities are 0.8% 2.8% and 5.2% after the
calculation of 1000 cycles, which are close to the given
points.
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FIG. 13. Simulated Livengood-Wu knock integration I for
500 cycles

By analyzing the simulation result, it can be inferred
that this simulator can describe the engine combustion
based on the physical background and simulate the cycle-
to-cycle variation according to real experiment proper-
ties. Moreover, the proposed model can simulate the in-
cylinder combustion under different knock probabilities.

V. CONCLUSION

In this paper, an approach is developed to simulate the
stochastic and deterministic characteristics of in-cylinder
combustion, which are further applied to simulate given
knock probabilities by a 1D dynamic model. A multi-
variate normal distribution and a Markov chain were in-
troduced to describe the randomness of combustion. A
dynamic equation and the Wiebe function are selected to
explain the determinants of combustion. The Livengood-
Wu integration is used to estimate whether knock hap-
pens.
In the proposed model, the combustion and in-cylinder

pressure are determined by the combustion parameters.
The mean values of the combustion parameters are deter-
mined by the nominal operating conditions according to
the experimental data, and the variance of several com-
bustion parameters are affected by the given knock prob-
ability.
This 1D dynamic model is simple enough, so the calcu-

lation can well match actual engine operation. Therefore,
this model can be used in the real-time control of spark-
ignition engines. It should be noted that in this paper,
a static operation engine model is targeted to simulate
the knock probability. Hence, the parameter depends on
the operating conditions. If the conditions changes, the
parameters should be re-calibrated.
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