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We show how a weak force, f , enables intruder motion through dense granular materials subject
to external mechanical excitations, in the present case stepwise shearing. A force acts on a Teflon R©

disc in a two dimensional system of photoelastic discs. This force is much smaller than the smallest
force needed to move the disc without any external excitation. In a cycle, material + intruder
are sheared quasi-statically from γ = 0 to γmax, and then backwards to γ = 0. During various
cycle phases, fragile and jammed states form. Net intruder motion, δ, occurs during fragile periods
generated by shear reversals. δ per cycle, e.g. the quasistatic rate c, is constant, linearly dependent
on γmax and f . It vanishes as, c ∝ (φc − φ)a, with a ≃ 3 and φc ≃ φJ , reflecting the stiffening
of granular systems under shear [1] as φ → φJ . The intruder motion induces large scale grain
circulation. In the intruder frame, this motion is a granular analogue to fluid flow past a cylinder,
where f is the drag force exerted by the flow.

How can an intruder, subject to a weak force, burrow
through a dense granular material undergoing mechanical
excitation? Such motion has drawn considerable recent
interest [2–6], and is relevant to fields from biology [7],
and earth science [8–10] to engineering. Intruder motion
implies temporary weakening of the material due to me-
chanical excitation, which may be vibration or tapping.
Here, however, we consider a different excitation: quasi-
static cyclic shear. Particularly relevant is the granular
jamming/unjamming transition between fluid-like and
solid-like states [1, 11–15], where the packing fraction, φ,
is key. Increasing φ above φJ jams the system [11, 16],
limiting intruder mobility. Shear also controls jamming.
For φS < φ < φJ , sheared low stress states strengthen
and can jam [1, 12, 17]. Reversing shear weakens force
networks, unjams fragile [18] or shear jammed states,
and enhances intruder mobility. Transitioning between
unjammed, fragile and jammed states, without chang-
ing density, creates long range force changes and plastic
rearrangements, facilitating or limiting intruder motion.
Overall, mechanical fluctuations are a source of thermal-
like noise [2, 5, 13, 19–22].

We characterize the motion of a large (relative to
grains) embedded object, subject to time-varying cyclic
shear, and a force, f , parallel to the shear direction.
These experiments provide two key new features: (i)
control of overall density; (ii) observation of particle
scale forces and motion. These provide for the first
time to our knowledge, direct connections between gran-
ular mechanics and intruder motion. If f = 0, the in-
truder executes random motion. Otherwise, even if f
is much smaller than the smallest force needed to drive
the intruder through the unperturbed material, it ad-
vances slowly in the ~f direction. The intruder experi-
ences granular stresses that are low when the material
is unjammed, fragile, or very weakly jammed [12, 23–

26]. Crucially softening during cyclic shear provides
deformable granular states enabling much of the in-
truder motion. Force chains/networks [12, 27] play a key
role, changing dramatically over a cycle. Shear/shear-
reversal jams/weakens granular systems [1, 12, 27], which
switches the intruder mobility from low to high. As the

FIG. 1. (color online). (a) Sketch of experimental setup: A
76.2mm diameter intruder immersed in a bidisperse layer of
photoelastic disks was pulled with a constant force f . The
intruder started at low x values (i.e. to the left), centered
along the y-axis; under shear, it moved along the x-axis. The
system was imaged from above by a high-definition camera
following each shear step: in white light (c), cross-polarized
(d) light and UV (e). Each particle was marked with a small
UV-sensitive bar. (b) Shear protocol: One cycle of shear
strain was applied to the whole system stepwise to γmax by
deforming the initially square box to a parallelogram, at con-
stant area. The shear was then reversed, also stepwise, back
to the original boundary configuration. This protocol was
repeated Nc times.
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intruder moves through the material, grains flow around
it. In the intruder frame, this system is a granular ana-
logue of fluid flow around a cylinder. By Newton’s third
law, f is the drag force exerted by the granular material
on the intruder, and the locally coarse-grained flow shows
chaotic vortexes.

Previous experiments explored related phenomena:
studies of intruder speed vs. drag force [28], granular
flow around an intruder [2–5, 29], and slow creep of an
intruder outside of a shear band [13]. However, a deep
understanding of cooperative microscopic granular dy-
namics leading to the object’s motion, addressed here,
does not exist to our knowledge [30].

Our intruder is a 7.62cm diameter Teflon R© disc embed-
ded in a quasi-statically sheared 2D granular medium of
bidisperse photoelastic discs, subject to a uniform and
constant drag force, f , along the shear direction. In-
truder and grains are confined in a horizontal cell [27],
Fig.1-(a), and cyclically sheared Nc times, with ampli-
tude γmax. Shear is carried out stepwise by deforming ini-
tially square boundaries (40×40cm2) to a parallelogram,
then returning to their original shape. Each step has
magnitude 0.25% (Fig.1-(b)), with 1.25% ≤ γmax ≤ 20%.
Nc = 50, unless the intruder reaches the boundary. Pho-
toelastic particles provide grain-scale forces. The bi-
disperse discs have diameters 1.59cm and 1.27cm and
thickness 0.64cm, were cast from photoelastic material,
as in [31, 32], and have small UV-sensitive lines on
top. The inter-grain friction coefficient was 0.62. The
packing fraction φ was constant for a given run, and
was tuned by changing the particle number from 852 to
896, with the ratio of large to small particles constant
(Nlarge/Nsmall = 0.29). A constant f was applied by a
string running just above the particles and over a pulley,
then to a vertically hanging mass, m (64g ≤ m ≤ 109g).
f was too small to move the intruder without shear (see
supplementary material). The system was illuminated
from below by circularly polarized white light, and from
above by UV light. After each shear step, we recorded
high resolution images (Canon EOS 70D, 5472×3648 px)
with and without a crossed circular polarizer and with
only UV light on (see Fig.1-(c), (d) & (e) respectively).
Normal light/UV light images gave particle and intruder
positions/orientation. The pressure, P inside each disc
(Fig.4-(c) to (f)) was computed from the squared gradi-
ent of the photo-elastic image intensity as in [1, 33–35];
P ∝ G2 = 〈|∇I|2〉 [17, 23] where the bar implies a system
average.

Characterizing the response: The intruder ex-
hibits affine and non-affine motion. In the y-direction,
the intruder, which sits approximately in the middle, ex-
periences only small-amplitude, roughly periodic, zero-
mean non-affine motion (although we observe some ran-
dom drift–see Fig.S1). In the x-direction, it experiences
affine motion due to forward shear of ∼ γmax/2, and
a nominal return to its starting point during reversal

(Fig.1-(b)), hence zero affine motion per cycle. But, the
non-affine intruder motion, δx, parallel to the applied
force, provides net forward motion each cycle. Hence-
forth, we only consider δ ≡ δx. Several parameters affect
δ: f, φ, γmax, the inter-granular friction coefficient, the
intruder shape and relative size, the shear box dimension,
etc. Here, we focus on the first three.

We first consider transients and boundary effects. For
5 to 10 cycles, the grains rearrange, forgetting their ini-
tial conditions. Also, δ varies more slowly for higher N
as the intruder approaches the boundary, an effect that
is stronger for larger f , as the intruder comes closer to
the boundary then. Except for a few initial and final cy-
cles, δ varies linearly with N : δ = c · N . This behavior,
Fig.2(a), occurs for all φ, f , and γmax (see Supplemen-
tary Material).

The key global scale physics is contained in
c(f, φ, γmax). To characterize the role of packing frac-
tion we vary φ from 78.8% to 82.86% for fixed f = 1.09N
and γmax = 10%. The lowest packing fraction is slightly
above the lower limit of shear jamming, and the highest
packing fraction is a bit lower than the isotropic friction-
less jamming point [1, 12, 27]. For these φ’s, δ is linear
in N , Fig.2-(a), but as in Fig.2-(b), c follows a power-
law in the distance to φJ ≃ 83.5%: c ∼ (φJ − φ)n,
with n = 2.95 ± 0.05. Thus, for higher φ’s, the in-
truder experiences diverging resistance from the gran-
ular material. This is consistent with data of Ren et
al. [1], who showed a diverging Reynolds pressure, i.e.
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FIG. 2. (color online). (a) Cumulative net intruder mo-
tion δ vs. N , for different constant for different packing
fractions φ. Here, f = 1.09N and γmax = 10%. The
data are consistent with a linear dependence of δ on N :
δ = c · N . (b) Variation of the quasistatic rate c as a func-
tion of the distance to the jamming packing fraction. This
varies as a power-law: c = 0.054(φJ − φ)2.95 (φ in percent).
(c) Constant drag force f vs. c. Here, φ = 80.83%, and
γmax = 10%. The intruder quasistatic rate increases linearly
with f : c = 4.28 · f − 1.46 mm. (d) Shear amplitude γmax vs.

c with f = 1.09N and φ = 80.83%. c increases linearly with
γmax: c = 2.56 · γmax + 1.11 mm.
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FIG. 3. (color online) Net intruder displacement (blue) and
average contact number for non-rattler particles (red) of the
first four cycles and 20th to 24th cycles (f = 1.09N, φ =
80.83% and γmax = 20%).

pressure generated by shear strain, characterized by the
Reynolds coefficient: R ∼ (φJ−φ)−β , where β = 3.3±0.1
(R ≡ (1/2)∂2P/∂γ2). Interestingly, the rms velocity
fluctuations for grains near the intruder are linear in c
[36], but do not entirely vanish as φ → φJ (Fig.S6 and
S7). We probe the role of f by varying f from 0.64N
to 1.09N at fixed φ = 80.83%, and γmax = 10%. As
in Fig.2-(c), c ∝ f [37], with dc/df = 4.28 ± 0.34mm/N
[38], unlike the ‘Eyring-like’ [39] behavior observed by
[13]. Also, c ∝ γmax, e.g. Fig.2-(d), where the slope is
dc/dγmax = 2.56± 0.15mm.

A related controlling factor is whether the system is
jammed, fragile or unjammed over different parts of each
cycle. The contact number, Z is a useful measure of jam-
ming, and Fig. 3 shows data for the system-averaged Z
for non-rattler particles, i.e. particles with at least two
contacts. Zhang et al. [12] showed that shear jamming
for a similar system was reached for ZNR ≃ 3.4, with
fragile states down to ZNR ≃ 3.0. Fig. 3 makes several
points. First, ZNR varies between values fragile state
values up to robustly jammed values where ZNR ≃ 3.7.
Under shear reversal, ZNR vs. strain (in step number)
changes slope abruptly. Typically, the intruder experi-
ences much of its forward motion between the strain di-
rection reversal and when ZNR reaches a local minimum.
Strain reversals cause changes in the orientation of the
force network, and the minima in ZNR correspond to
times when the system is softest.

The softening and reorientation of the network facili-
tate the intruder motion. As noted, G2 is roughly linearly
proportional to the pressure [17, 23]. During a cycle,
the difference in forces acting on the left and right sides
of the intruder changes substantially, becoming small or
zero following strain reversals, and in general when δ > 0.
Also, the material stiffens and softens over a cycle, lim-
iting or enhancing mobility. Additionally, there is asym-
metry in the granular stresses between the left and right
side of the intruder. Finally, shear reversals reorient the
force networks, and hence the principal stress directions,
causing wiggling of the intruder and changes in the force

FIG. 4. (color online). (a) Net intruder displacement (blue)
and mean particle displacement (red) during a typical cycle
(f = 1.09N, φ = 80.83% and γmax = 10%). (b) Evolution of

P to the right of the intruder, 〈G2

R
〉 (black), to the left of the

intruder, 〈G2

L
〉 (blue), and the difference: 〈G2

R
〉 − 〈G2

L
〉 (red).

The last measures the net granular drag force on the intruder.
Inset: sketch of the regions to the Left (light blue) and Right
(dark blue) of the intruder center, used to average G2. (c),
(d), (e) and (f): G2 for each particle for different steps of
the shear cycle presented in (a) and (b). In (c), the intruder
compresses grains to the right. In (d), the shear jammed state
is nucleating. The intruder moves in the negative x-direction
because of high differential granular pressure. In (e), following
shear reversal, the particles rearrange and the strong granular
force network almost vanishes. In (f) the force network has
reformed but it is weaker than and has a different orientation
than the network in (d).

on the intruder in the x-direction. Below, we elaborate
on these features.

In the first cycle, the system starts from P = 0. During
the first forward shear, the network and G2 initially grow
rapidly, then more moderately and typically saturate as
γ → γmax. When the strain is reversed, a similar process
occurs, but the state at reversal, set by the forward shear,
is strongly jammed, with a network that more robustly
resists forward than reverse shear. After a few cycles, the
system behavior is typified by the cycle shown in Fig. 4
(see videos in SM). The initial state of this cycle inherits
a force network created by the previous reverse strain.

To understand the effect of the force networks on
the intruder motion, we separate the granular system
into Right (in ‘front’ of the intruder) and Left (behind
the intruder–see inset of Fig.4-(b)) along a vertical line

through the intruder center. The difference 〈G2
R〉−〈G2

L〉,
(e.g. Fig.4-(a)) is a good measure of the net granular
force on the intruder, which we relate to the net intruder
motion in Fig.4-(b). Fig.4 pertains to a typical cycle
after transients with γmax = 10%, φ = 80.83%, and
f = 1.09N. We also relate the measures of Fig.4-(a,b)
to representative force networks during several phases of
the cycle, Fig.4-(c-f). For forward and reverse shear, the
response immediately after shear reversals shows strong
variations in 〈G2

R〉−〈G2
L〉, in the force networks, and the

displacements of the intruder and the grains. In particu-
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FIG. 5. (color online). Large scale quasistatic convective flow.
Images (a) and (b) show the non-affine flow of particles in the
frame of the intruder averaged over 50 cycles corresponding
to positions (c) and (e) of the shear cycle in Fig.4-(a)-(b)
respectively. There is large scale collective motion extending
to the boundaries of the box including major vortices that
partially change direction between (a) and (b). The average
non-affine displacement of the particles is given in Fig. S2
of the SM. These data pertain to a typical experiment: f =
1.09N, φ = 80.83% and γmax = 15%. See SM for a video of
the quasistatic flow.

lar, 〈G2
R〉− 〈G2

L〉 decreases strongly after reversals as the
networks, which have oriented to resist the applied shear,
weaken and reorient to resist shear in the reverse direc-
tion. The states following reversals are relatively frag-
ile/soft, allowing δ to grow. This unloading mechanism,
in the present case, associated with shear unjamming,
is the crucial mechanism that allows the intruder to ad-
vance over multiple cycles. After some amount of strain
following a reversal, the system re-jams, limiting the in-
truder non-affine motion, and setting the stage for the
next shear reversal. Stress reversals are associated with
oscillatory motion of the intruder in the y-direction, but
with almost no net vertical motion over a cycle.

Collective particle motion: The intruder motion
drives system spanning, phase-dependent, collective par-
ticle motion. In the intruder frame, this motion is rem-
iniscent of fluid flow past a cylinder. Parts (a) and (b)
of Fig.5 show the cycle-averaged particle displacement
streamlines in the intruder frame at times c and e in
Fig.4-(a). Each corresponds to ∼ 1/8 of a cycle after
the reverse-forward, and forward-reverse strain direction
changes. The material must flow around the intruder,
and the overall particle displacements/cycle, averaged
over all cycles of a run are given in Fig. S2 of Supple-
mentary Material. From the lab frame perspective, these
collective motions occur as the intruder pushes material
to the right/left respectively in Fig.5 (a)/(b), and are not
time-reversal symmetric for the two cases. Particles un-
dergo slow flow everywhere in the cell and their motion is
largest when the intruder quasistatic rate is largest. Al-
though it is not apparent in the averages of Fig.4, the flow
is not periodic in γ, but rather shows chaotic dynamics,
as shown in the SM (see movies).

We contrast the present large scale grain motion with

the results of Kolb et al. [2, 3] and of Harich et al. [5].
The Kolb et al. [2] flows consist roughly of two counter-
rotating vortices, that are qualitatively but not neces-
sarily quantitatively similar to the collective motion ob-
served in Fig.S2. More recently, Kolb et al. [3] observed
flow throughout their system, with a return flow behind
the intruder, hence, no large empty wake behind the in-
truder. The Harich et al. [5] experiments also show grain
flow in the vicinity of the intruder, but seemingly much
weaker than in the present experiments.
To conclude, the present experiments have demon-

strated the key physical mechanisms that enable intruder
motion through a dense granular material activated by
cyclic shear. An essential feature that has not been avail-
able in previous studies of intruder motion is the ability
to measure particle scale forces. This approach shows
that the intruder moves when the force network weak-
ens (following strain reversals), the net granular force
on the intruder is small, and the contact number, ZNR

drops. The intruder moves through the material at a
quasistatic rate, c, that varies linearly with the external
driving force, f , and with the amplitude of shear strain,
γmax. Rms velocity fluctuations, in turn, depend linearly
on c. c depends strongly on φ, effectively vanishing at a
critical φ close to the isotropic jamming φJ . The depen-
dence of c on φ, c ∝ (φJ −φ)2.95, matches (inversely) the
Reynolds pressure dependence on φ reported by Ren et
al. [1]. In the intruder frame, f corresponds to the drag
force exerted by grains that flow past the intruder. The
grain flow exhibits complex space-filling vortex motion
that is qualitatively similar to fluid flow past a cylinder.
This similarity is striking, since the fluid case is associ-
ated with instability in continuum equations of motion,
whereas the grain case corresponds to the collective mo-
tion of manifestly discrete particles. The mechanisms
that allow intruder motion are not limited to two dimen-
sions, and it seems reasonable to expect that they would
also apply in three dimensions.
By comparison, in the work of Reddy et al. [13] the in-

truder advances in a direction that is at least partially re-
sisted by the shear stresses induced by the applied shear.
The Eyring-like excitations of the intruder in the Reddy
et al. experiments suggest that the intruder motion was
caused by intermittent fluctuations associated with the
steady shear, that provide the mechanism to temporarily
reduce the granular force resisting the forward motion
of the intruder. Also in Reddy et al. [13], grains can
rearrange because the surface of the (3D) material is un-
constrained.
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