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Abstract: 

We study the accuracy of combined multi-parameter measuring systems (CMPMSs) that 
determine several unknown quantities from measurements of a single variable at different 
preprogrammed conditions determined by control parameters. To reduce inaccuracies of 
determined quantities, we propose a mathematical method for selection of control parameters 
that are optimal for all possible values of determined quantities. Using the submultiplicativity of 
the spectral and Frobenius matrix norms, we construct the upper bound of the error function and 
determine the set of control parameters by minimizing this bound. To demonstrate the capability 
of our method for CMPMSs, we apply it to the polarized light microscopy technique called LC-
PolScope, which is used for determining inhomogeneous two-dimensional fields of optical 
retardation and orientation of optical axis in thin organic and inorganic samples. We compare the 
computed set of control parameters with other sets, including the one used in the PolScope, and 
demonstrate that our choice of control parameters works very well even though it does not take 
into account any specific features of the PolScope. We expect that our method will be successful 
in various CMPMSs, as it is applicable to any error distribution of the control parameters and 
measured values. 

 

I. INTRODUCTION 

Today’s state-of-the-art of experimental techniques have been greatly influenced by 
integration of powerful computers in the experimental setups used in microscopy, tomography, 
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material science, biology, etc. A computer in a measuring system can have several functions. 
First, it can provide fast real-time calculations that mitigate disadvantages of indirect 
measurements, when an unknown quantity λ  is determined from a measured value b  through 
the measuring function ( ) bλΦ = . Second, it allows one to perform simultaneous measurements 

when several unknown quantities 1[ ,..., ]nλ λ=Λ  are determined from the measurements of the 

same or larger,  number of different physical quantities 1[ ,..., ]nb b=b  by solving a system of 

equations ( )i ibΦ =Λ  possibly in the least square sense, see e.g. [1]. Third, the computer can 
control and change measuring conditions. In this case one can build a CMPMS, where several 
stationary or slowly changing unknown quantities 1[ ,..., ]nλ λ=Λ  can be determined unit by 
measuring a single physical variable at preprogrammed different conditions, defined by control 
parameter(s) iA , 

( , )i ibΦ =ΛA , 1,...,i n= ,     (1) 

where Ai  may be a scalar i ia=A  or a k −dimensional vector 1[ ,..., ]i i ika a=A , controlled by the 
computer.  

The problem of best estimation of unknown quantities Λ  from a system (1) for the case of a 
linear measuring functions Φ  were considered in [1,2] with the solution determined by the least 
square method.  

A central problem of this paper is how to properly select the control parameters { }ija=A ,

1,...,i n= , 1,...,j k= . The accuracy of measured quantities Λ  is determined not only by the 
accuracy of the measurements themselves, but also by the accuracy of the settings of the control 
parameters. The preprogrammed selection of the set of n k×  values of the control parameters 

1[ ,..., ]n=A A A , where 1[ ,..., ]i i ikα α=A , 1,...,i n= , is complicated when the quantities Λ  are 
spatial and/or temporal functions; thus an a priory selection should be “optimal” for all possible 
values of Λ . 

In this paper we consider the class of CMPMSs that are described by a separable measuring 
function, 

1
( , ) ( ) ( )

n

i j i j
j

m v
=

Φ = ∑Λ ΛA A , 1,...,i n= ,    (2) 

where jm , jv , 1,...,j n= , are smooth nonlinear functions. We develop a mathematical method 

for selection of control parameters in such CMPMSs that are optimal for all possible values of 
determined quantities. Using the submultiplicativity of the spectral and Frobenius matrix norms 
we construct the upper bound of the error function as a product of two functions, one of which 
depends only on control parameters and another one depends only on unknown quantities. We 
determine the set of control parameters by minimizing the former function. 

To demonstrate the full capability of the proposed method we were looking for an example 

of CMPMS, with the following features: (a) the measuring function (2) has a simple dependence 
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on several control parameters and unknown quantities; (b) many sets of unknown quantities are 

determined concurrently at the same values of control parameters; (c) the measurement errors are 

dependent on both the control parameters and unknown quantities, and thus cannot be minimized 

simultaneously at each point of the sample. As an example of such CMPMS we considered the 

PolScope microscope.  

The PolScope (also called LC-PolScope) described in [3-5], and its advanced versions, the 
Exicor MicroImager (Hinds Instruments) [6], and the Phi-Viz Imaging System (Polaviz) [7] are 
state-of-the-art polarized light microscopy techniques. The PolScope determines the two-
dimensional fields of phase retardation ( , )x yΔ  and of the optical axis direction ( , )x yφ  of thin 
anisotropic samples by measuring transmitted light intensity under different conditions. The 
PolScope is equipped with a standard set of light source, monochromatic filter, polarizers, lenses, 
and CCD camera. The additional variable optical retarders are inserted in the optical path, for 
details see section 3 and figure 1. For each point ( , )x y  the sample quantities ( , )x yΔ  and ( , )x yφ  
are determined by measuring transmitted light intensities ( , )i ib I x y=  for different settings of two 
variable retarders 1 2[ , ]i i iα α=A . The intensity ( , )iI x y  is a product of Jones matrices of 
individual optical elements and has the separable form (2). 

We apply our method to compute the control parameters for PolScope.  We compare the 
computed set of control parameters with other sets, including the one used in the PolScope, and 
demonstrate that our choice of control parameters works very well even though it does not take 
into account any specific features of the PolScope. 
 

II. DETERMINATION OF CONTROL PARAMETERS FOR CMPM SYSTEMS 

 

For separable measuring functions of the form (2), the nonlinear system (1) can be presented 

in matrix form 

( ) ( )⋅ =ΛM A V b ,     (3) 

where ( )M A  is a matrix with elements ( )ij j im=M A , , 1,...,i j n=  and ( )V Λ  is a vector of 

functions ( )jv Λ , 1,...,j n= . The elements of the vectors , Λb  and iA  may correspond to 

different physical quantities and have different dimensions. In this case, we scale the matrix 

( )M A  and the vectors b , Λ , iA  and ( )ΛV  to make them dimensionless. 
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The error-vector 1[ ,..., ]nδλ δλ= − =%δΛ Λ Λ*  has two sources: the errors caused by 

inaccuracies of the measuring unit, *= −δb b b  and the errors of control parameters 
* { }ijδα= − =δA A A , 1,...,i n= , 1,...,j k= . Here Λ* , *Ai  and *

ib  are the true error-free values 

that obey the equations *,( )i ibΦ =Λ* *A , 1,...,i n=  and thus can be presented in the form  

* *( ) ( ) ( ) ( )⋅ = + ⋅ + = +%Λ δ Λ δΛ δM A V M A A V b b .   (4) 

We establish the dependence of the unknown errors %δΛ  of the control parameters and the 

measurement errors using methods of perturbation analysis [8], applying first-order Taylor 

expansion, ( ) ( )+ = +%Λ δΛ Λ δV V V , where ( )= %δ Λ δΛV D  and ( )ΛD  is the Jacobian matrix with 

elements 
( )j

ji
i

v
D λ

∂
=

∂
Λ

, , 1,...,j i n= . Similarly, ( ) ( )+ = +δ δM A A M A M , where deviations of 

elements of the control matrix,  

( )ij j i im=∇ ⋅δ δM A A ,      (5) 

are caused by the errors in the control parameters 1[ ,..., ]i i ikδα δα=δA ; here 
1
,...,

i ikα α
⎡ ⎤
⎢ ⎥
⎣ ⎦

∂ ∂∇ =
∂ ∂

 is 

the gradient of the control parameters. Neglecting the second order term M Vδ δ  in equation (4) 

and subtracting equation (3) leads to the equation 

( ) ( )+ =δ δ Λ δM A V MV b ,     (6) 

transforms into an expression for the measurement error vector: 

1 1 1 1( ) ( ) ( ) ( ) ( , ) ( )− − − −= −%δΛ Λ δ Λ δ δ ΛD M A b D M A M A A V .   (7) 

We can scale the error vector = %δΛ ΘδΛ  by selecting the numerical values of iiΘ , 1,...,i n= , 

based on the ‘importance’ of determined values iλ ; however, as one can see below, the 

proposed selection of the control parameters A does not depend on Θ . We measure the error 

vector with the Euclidian norm (length) 2
2 1

n

i
i

δλ
=

= ∑δΛ . From equation (7), the vector δΛ  

consists of two terms, = +δΛ δΛ δΛM B , where the error 

1 1( ) ( ) ( , ) ( )− −=δΛ Θ Λ δ δ ΛM D M A M A AV ,    (8) 
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is caused by errors in the setting of the control parameters, and  

1 1( ) ( )− −= −δΛ Θ Λ δB D M A b      (9) 

stems from measurements inaccuracies. Elements of the vectors MδΛ  and BδΛ  are linear 

functions of respectively, ijδα  and ibδ , which we assume to be accidental errors , i.e. mutually 

independent, random zero-mean quantities: 

2 2( ) , ( ) , 0ij ij j j ij ki j ii jj j jj bE E b b b Eδδα δα δα δσ δα δ δ δ δ σ δ′ ′ ′ ′ ′ ′⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦= = = ,   (10) 

here E  is the expectation operator and σ  is the standard deviation. With this assumption we 

obtain the following equations: 

2 2 2
2 2 2E E E⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
= +δΛ δΛ δΛM B ,    (11) 

where 

2
2 2 2
2

, 1 1
( )

n k

ii lj
i l j lj

iE λΘ σ δαα= =

⎛ ⎞⎡ ⎤ ⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠

∂=
∂∑∑δΛM ,   (12) 

2
2 2 2
2

1
( )

n

ii
i

i
i

i
E b

b
λΘ σ δ

=

⎛ ⎞⎡ ⎤ ⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠

∂=
∂∑δΛB     (13) 

define the contributions caused by the errors in the control parameters and measured values, 

respectively. Both functions depend on the control parameters A  and on the quantities Λ ; the 

former are usually a single set selected before the experiment, the latter are unknown and may 

change during the experiment. A single set A  cannot concurrently minimize the expressions
2
2E ⎡ ⎤

⎢ ⎥⎣ ⎦
δΛM , 2

2E ⎡ ⎤
⎢ ⎥⎣ ⎦

δΛB  or their sum (11) for all measured values of Λ . Thus, we consider them 

separately and will minimize their upper bounds using the sub-multiplicative property of the 

spectral matrix norm and the linearity of the expectation operator: 

22 222 1 1
2 2 22 2

1 1( )( ) ( ) ( ) ( ) ( )E E E− − − −⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

≤= ΛδΛ Θ Λ δ Λ Θ Λ δM D M A MV D V M A M , (14) 

2 2 22 1 1 1 1
2 2 2 2

( ) ( ) ( ) ( )E E E− − − −⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= ≤δΛ Θ Λ δ Λ δΘB D M A b M A bD .  (15) 
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The spectral matrix norm of an arbitrary matrix W  is defined as 2
2

2
sup

≠
=

x 0

Wx
W x , where 

sup
≠x 0

 denotes the smallest upper bound of the expression for all possible vectors ≠x 0 . To 

minimize (14) , we keep the factors 21
2

( )−Θ ΛD  and 2
2

( )ΛV , which are independent of A , and 

bound the spectral norm in 21
2

( )E −⎡ ⎤
⎢ ⎥⎣ ⎦

δM A M  by the Frobenius matrix norm 

2 21 1
2

( ) ( )
F

− −≤δ δM A M M A M , [9], because the square of the Frobenius norm, defined as 

2 2( )T
ijF i j

Tr ∑∑= = WW W W , is easily explicitly calculated as 

2
21

1 1 1 1

( )( )
n n n k

piF p s i j

s i
ij

ij

mψ δαα
−

= = = =

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∂=
∂∑∑ ∑∑δ AM A M ,   (16) 

where 1( )pi pi
ψ −⎡ ⎤⎣ ⎦= M A  are the elements of the inverse matrix 1( )−M A . Using equations (16) 

and (10), we obtain an upper bound for 2
2E ⎡ ⎤

⎢ ⎥⎣ ⎦
δΛM , 

2
2 22 1 2 2

2 22 1 11 1

( )
( )( ) ( )

n n n k

ij pi
p j

s i
ij

s i ij

mE σ δα ψ α
−

= == =

⎛ ⎞
⎡ ⎤ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎜ ⎟

⎝ ⎠

∂≤
∂∑∑∑∑δΛ Θ Λ ΛM
AD V .  (17) 

If we can assume that the absolute errors ijδα  are identically distributed, 2 2( )ij ij ασ δα σ= , then 

2 22 2 1
2 22

( ) ( ) ( )a
ME Pασ −⎡ ⎤

⎣ ⎦ ≤δΛ Θ Λ ΛM D V A ,   (18) 

where  
2

2

1 1 1 1

( )( )
n n n ka s i

piM
p s i j ij

mP ψ α= = = =

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∂= ∑ ∑∑∑ ∂
AA     (19) 

is the function that governs the minimization of 2
2E ⎡ ⎤

⎢ ⎥⎣ ⎦
δΛM .  

If the errors in the control parameters ijδα  are proportional to their magnitudes ijα , then 

ijδα  can be expressed as ijεα , where ε  is a random variable, ( ) εσ ν σ= , ( )ij ijεασ δ σ α= , and  

2 22 1
2 22

2 ( ) ( ) ( )r
ME Pεσ −⎡ ⎤

⎣ ⎦ ≤δΛ Θ Λ ΛM D V A    (20) 

is determined by the function  
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2
2 2

1 1 1 1

( )( )
n n n k

r s i
piM ij

ijp s i j

mP ψα α= = = =

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∂=
∂∑∑∑∑ AA .   (21) 

Now, we consider the function 2
2E ⎡ ⎤

⎢ ⎥⎣ ⎦
δΛB , see equation (15), which depends on A  through 

21
2

( )E −⎡ ⎤
⎢ ⎥⎣ ⎦

δM A b . If the measurement errors ibδ  do not depend on ib  and are identically 

distributed, ( )j bbσ δ σ= , then 
22 1 21

2
( ) ( ) bF

E σ−−⎡ ⎤
⎢ ⎥⎣ ⎦

=δM A b M A  and  

22 2 1
2 2

( ) ( )a
bbE Pσ −⎡ ⎤

⎢ ⎥⎣ ⎦
≤δΛ Θ ΛB D A     (22) 

is determined by the function 

21 2

1 1
( ) ( ) ( )

n n
a

ijb F i j
P ψ−

= =
= =∑∑A M A A .    (23) 

If the measurement errors ibδ  are proportional to ib , then the error vector δ b  can be expressed 

as =δ Ξb b , where Ξ  is a diagonal matrix with identically distributed random elements iiΞ , 

( )iiσ σΞ=Ξ . From the equality ( ) ( )⋅ =ΛM A V b , we get  

2 2 22 2 2 2
2 2 2 2

)( ) ( ( ) ( )
F

E E σ σΞ Ξ
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= = ⋅ ≤δ Ξ Λ Λb b M A V M A V   

and 

222 1
2 2 2

2 ( ) ( ) ( )r
bE Pσ −

Ξ
⎡ ⎤
⎢ ⎥⎣ ⎦

≤δΛ Λ Θ ΛB V D A ,   (24) 

where ( )r
bP A  is the condition number of ( )M A   

( ) ( ) ( )2 21 2 2

, 1 , 1
( )( ) ( ) ( )

n n
r

ij psb FF i j p s
mP cond ψ−

= =
= = = ∑ ∑A M A M A M A A A .  (25) 

Using equations (18), (20), (22) and (24), one can see that the “optimal” choice of the control 

parameters that minimizes the upper bound for the total error (11) can be found by minimization 

of the weighted function 

( ) ( ) (1 ) ( )tot M bP wP w Pξ η= + −A A A ,    (26) 
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where ξ  and η  are either a , see equations (19) and (23), or r , see equations (21) and (25), 

depending on whether the errors in the control parameters and the measured values are absolute 

or relative. The weighting coefficient 0 1w≤ ≤  is determined by the products in equations (18), 

(20), (22) and (24).  

If the errors in the measured values ib  have relative form, see equation (24), then w  is 

determined only by the standard deviations νσ and σΞ , 

2

2 2w ν

ν

σ
σ σ Ξ

=
+

,      (27) 

where the parameter ν  is either a , or ε , depending on whether the errors in the control 

parameters and the measured values are absolute or relative. In this case, equation (26) does not 

depend on the unknown quantities Λ  and, therefore, allows one to determine the control 

parameters A  by minimization of the function (26). If the errors in the measured values are 

absolute, see equation (22), then the weighting coefficient 

2 2
2

2 2 2
2

( )
( ) b

w ν

ν

σ
σ σ

=
+

Λ
Λ
V

V
     (28) 

depends on Λ . Additional assumptions are required to justify the minimization of (26). If either 

term in the denominator of (28) is or 2
2

( )ΛV  remains almost constant in the domain of possible 

values of Λ , then one may assume w  to be constant and minimize (26). In the case when w  in 

(28) strongly depends on Λ , we propose the following procedure, which is similar to single 

parameter optimization. For several selected values of w , we calculate the corresponding 

“optimal” sets A  by minimizing the function (26), and between them choose the best set by 

comparing the total error functions (11). Further refinement of w  can be performed if necessary.  

To summarize, the goal of our method is to construct an effective error function (26), which 

does not depend on unknown quantities and is an upper bound for the true error function (11). 

We then minimize function (26) and determine the optimal set of control parameters A . Below 

we demonstrate how the proposed method is implemented for PolScope. 

 

III.  APPLICATION OF THE PROPOSED METHOD TO THE POLSCOPE 
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In this section we apply the proposed method to PolScope [3,4,10]. PolScopes are widely 

used to study patterns with submicron resolution in various inhomogeneous anisotropic films, in 

particular, biological cells, polymer samples, liquid crystal films, etc. The PolScope is a 

polarized light microscope, where a quarter-wave plate and two liquid crystal (LC) variable 

optical retarders LCA and LCB, see figure 1, are added to a standard set of optical elements: 

light source, monochromatic filter, polarizer, lenses, analyzer and CCD camera. The PolScope 

determines in-plane, two-dimensional fields of phase retardance ( ),x yΔ  and of the azimuth 

( ),x yφ  of slow optic axis from a sequence of measurements of transmitted light intensity 

obtained for the different retardances of LCA and LCB set by the computer controlled applied 

voltages. The phase retardance ( , )x yΔ  and azimuth ( , )x yφ  are determined by the four-frame 

algorithm [3,4,10]. The corresponding function of the output intensity at the CCD camera outI  

can be derived within the Jones calculus, which is an efficient technique to analyze optical 

devices consisting of linear non-reflecting polarization, sensitive optical elements.  

 

 
FIG. 1. (Color online) Scheme of the PolScope microscope. Liquid-crystal plates LCA and 
LCB have variable values of retardances, 1α and 2α ; /4λ  is a quarter-wave plate with phase 
shift between polarization components equal /2π , P and A are the linear polarizer and 
analyzer transmit only horizontal component of the beam.  

The basic elements of the Jones calculus is the 2D Jones vector x

y

E
E
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

j , which is the 

complex amplitude of the electric field ( )exp 2 ( )i z ctπ λ= −E j  of the plane monochromatic 

wave with the wavelength λ , and the 2 2×  Jones matrix of an optical element J  that defines the 

transformation of the Jones vector out in=j J j  [11]. The optical scheme of the PolScope system, 

shown on figure 1, contains two types of optical elements: linear polarizers and phase retarders. 
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The Jones matrix of a linear polarizer, which transmits horizontal polarization along the Ox axis, 

is 
1 0
0 0
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

=HJ . The Jones matrix of a phase retarder is defined by its phase retardance ψ  and 

the angle θ  between its slow optic axis and the Ox axis, 

( , ) ( ) ( ,0) ( )ξ θ θ ξ θ= −r rJ R J R ,     (29) 

where 
/2

/2
0

0
( ,0)

i

i
e

e

ξ

ξξ
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

rJ  is the Jones matrix if the slow axis is parallel to Ox axis, and 

cos sin
( )

sin cos
θ θ

θ
θ θ

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

R  is the rotation matrix. Then, the Jones matrices of the optical elements 

in the PolScope are: 1 = HJ J  for the linear polarizer, 2 1,( 4)πα= rJ J  for the liquid-crystal 

variable retarder LCA rotated by 4π , 3 2 ,( 0)α= rJ J  for the liquid-crystal variable retarder 

LCB, ( )4 ( , ) ( , ), ( , )x y x y x yϕ= ΔrJ J  for the ( , )x y  pixel of the specimen, 5 ,( 4 4)π π= rJ J  for 

the quarter-wave plate rotated by 4π , and 6 = HJ J  for the linear analyzer. Thus, the 

transmission coefficient the PolScope PST  is determined by the Jones matrix 56 4 3 2PS =J J J J J J  

that transforms the normalized Jones vector after the polarizer in
1
0

= ⎡ ⎤
⎢ ⎥⎣ ⎦

j  into the Jones vector 

after the analyzer out inPS=j J j :  

( )*
PS out out 1 2 1 2 1

1 1 sin cos cos sin sin cos2 sin cos sin 2 sin
2

T α α α α φ α φ= ⋅ = + Δ − Δ + Δj j , (30) 

where *
outj  denotes complex conjugate of vector outj . 

Considering the inhomogeneous distributions of the input intensity in ( , )I x y  and of the 

depolarized leakage leak ( , )I x y , one obtains the output intensity distribution at the CCD camera 

out ( , )I x y  as 

( )1out PS 1 2 1 2leak in leak in
1 1 sin cos cos sin sin cos2 sin cos sin2 sin
2

I I I T I I α α α α αφ φ= + = + + Δ− Δ+ Δ . (31) 
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The intensity function (31) has separable form (2) and contains the four-dimensional vector of 

unknown quantities leak in, , , TI I φ⎡ ⎤⎣ ⎦= ΔΛ  that requires four measurements, 1,...,4i = , of the 

intensity out iI I=  with different sets of the control parameters 1 2[ , ]i i iα α=A . Thus, Λ  is 

determined from equation (3) where  

11 12 11 12 11

21 22 21 22 21

31 32 31 32 31

41 42 41 42 41

1 sin cos sin sin cos
1 sin cos sin sin cos

( )
1 sin cos sin sin cos
1 sin cos sin sin cos

α α α α α
α α α α α
α α α α α
α α α α α

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=M A , 

2
cos
2( )

sin cos2
2

sin sin 2
2

leak

in

in

in

inI

I

I

I

I

φ

φ

⎡ ⎤
+⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Δ

=
Δ

Δ

ΛV  ,

1

2

3

4

I
I
I
I

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=b .  (32) 

In equations (8) and (9), we choose the diagonal matrix = 0,0,1,1diag ⎡ ⎤⎣ ⎦Θ  because we are not 

interested in values of leakI  and inI , and the ”importance” of the dimensionless quantities Δ  

and φ  is assumed to be equal. 

The matrix  

1

0 0 0 0
0 0 0 0

1
0 0

0 0

sin 22cos cos2 sin
cos22cos sin 2 sin

inI
φφ

φφ

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

− Δ
Δ

Δ
Δ

=ΘD     (33) 

multiplies both error vectors (8) and (9). Taking into account that the depolarized leakage leakI  

depends linearly on inI , and inleakI I<< , we assume that the measuring errors do not 

significantly depend on inI  and leakI . We set 1inI = , and 0leakI = . For the PolScope, the errors in 

the control parameters ijaδ  are absolute, i.e. do not depend on the parameter values ija , and the 

measurement errors ibδ  are relative, i ii ib bδ =Ξ , where ~1%iiΞ  [3]. Thus, we start the search of 

the set of “optimal” values of A  by separately minimizing the functions (19) and (25). To 

determine these minima, we apply the Nelder-Mead algorithm implemented in Wolfram 

Mathematica. The function (19) achieves its minimum m 4.907in ( )a
MP =A  at 

, ,,][ ][[180 90 18051.36 , 51.36[ 0 ][91.8 90 ]]3° ° ° ° ° ° ° °= =MA A ,  (34) 
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where for better visibility we present here and below the variable phase redardances 1α  and 2α  

in degrees, rather than in radians. The function (25) reaches min ( ) 3.9051r
bP =A  at  

, , ,,[[180 90 ][ 18051.58 51.58][ 0 ] 93[ 906 ].5 ]° ° ° ° ° ° ° °== BA A .   (35) 

Note that the sets MA  and BA  are almost the same, and the value ( ) 4.909a
MP =BA  is close to 

the minimum of the function ( )a
MP MA , while ( ) 3.906r

bP =MA  is close to minimum of the 

function ( )r
bP BA . Thus, the set of ‘optimized’ control parameters is almost independent on the 

weighting coefficient w  in the weighted function (26) and we can choose either set of the 

control parameters MA or BA . We select = BA A  as the “optimal” set of control parameters. 

To compare different sets of control parameters, we represent their values 1 2[ , ]i i iα α=A  by the 

Jones vector 3 3 2 in=j J J j  of the light entering the sample. A linear polarizer (0 )P °  and two liquid 

crystal plates 1( ,45 )LCA α °  and 2( ,0 )LCA α ° , see figure 1, form the universal compensator [10], 

because the variable retardance values 1 1: iα α= , 2 2: iα α=  provide the transformation of the 

unpolarized illumination light beam into any polarization state, with the Jones vector: 

22
2 221 1

3 cos sin2 2

ii ii
i i

T

e e
α πα

α α
⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤−
⎢ ⎥=
⎢ ⎥⎣ ⎦

j    (36) 

Figure 2 shows the control parameters 1 2[ , ]Ai i iα α=  and the corresponding polarization state (36) 

using standard representations with the Stokes parameters, S0=1, S1, S2, S3, and the Poincaré 

sphere, [12]: 

 

1 1

2 1 2

3 1 2

cos cos cos
sin sin cos sin

sin cos sin

i

i i

i i

S
S
S

α χ ψ
α α χ ψ

α α χ

= =
= =
= − =

  (37) 
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FIG. 2. (Color online) Representation of the control parameters of measurement 1 2[ , ]i i iα α=A  
through the Jones vector (36) on the Poincare sphere in the space of the Stokes parameters, S1, 
S2, S3. χ is the ellipticity angle and ψ  defines the orientation of the major axis of the polarization 
ellipse. 

 
On the Poincaré sphere, right and left circular polarizations correspond to the north and south 

poles, respectively, and the linear polarizations lie on the equator. In the four-frame algorithm, 

for the samples with full range of possible retardance values the following set of control 

parameters was used: 

[[90 ,180 ][90 ,180 ][90 ,180 ][90 ,180 ]]° ° ° ° ° ° ° °= − Χ + Χ − Χ90A , 90°Χ = . (38) 

To study biological samples, e.g. living cells, when retardance values of the sample have mostly 

small values, Oldenbourg and Shribak [3] proposed to use the set of control parameters:  

 [[90 ,180 ][90 ,180 ][90 ,180 ][90 ,180 ]]° ° ° ° ° ° ° °= − Χ + Χ − Χ11A , 10.8°Χ = .  (39) 

We also examine a configuration on the Poincare sphere that is interesting from a symmetry 

point of view -the right tetrahedron set: 

[[90 ,180 ][30 ,0 ][115.66 ,56.3 ][115.66 , 56.3 ]]° ° ° ° ° ° ° °= −TA .  (40) 
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The polarization states of the four illumination beam settings (35), (38), (39), (40) are shown on 

the Poincare sphere in figure 3. 

  

FIG. 3. (Color online) Sets of control parameters BA , 90A , 11A , TA  shown on the Poincare 

sphere. 

To compare the effect of the selected control parameter sets on the measurement accuracy, 

we calculate the errors of phase retardance δΔ  and azimuth of the slow optical axis δφ  using 

equation (7). The errors δΔ  and δφ  split into the control parameters errors, MδΔ , Mδφ , (8), 

and the measuring errors, BδΔ , Bδφ , (9). Considering the control parameter errors { }ijδα=δA , 

1,..,4i = , 1,2j = , to be uniformly distributed, ~ [ 3 , 3 ]ij unif α αδα σ σ−  with standard 

deviation ασ , we obtain from (12) the standard deviations of the propagated errors MδΔ  and 

Mδφ , 

 
2 2

4 2 4 2

1 1 1 1
,( ) ( )M M

i j i jij ij
M Mα α

φσ δ σ σ δφ σα α= = = =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∂Δ ∂Δ = =
∂ ∂∑∑ ∑∑ . (41) 
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The normalized standard deviations ( )M ασ δ σΔ , ( )M ασ δφ σ  are shown in figure 4 as functions 

of Δ  for several fixed values of φ  for the set BA= A . 

 

FIG. 4. (Color online) Normalized standard deviations ( ) /M ασ δ σΔ  and ( ) /M ασ δφ σ  vs. Δ  for 
different values of φ and the set BA= A . 

 

We assume that the diagonal elements iiΞ  that determine the relative measurement errors 

i ii ib bδ = Ξ  are identically uniformly distributed random variables ~ 3 , 3ii unif σ σΞ Ξ
⎡ ⎤
⎣ ⎦−Ξ  with 

standard deviation ( )iiσ σ δΞ = Ξ . Then from equation (13), we obtain the standard deviations 

for the propagated errors BδΔ  and Bδφ , 

 
2 2

4 4

1 1
( ) , ( )B B

i iB B
i ii i

b b
b b

φσ δ σ σ δφ σΞ Ξ
= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∂Δ ∂Δ = =∑ ∑∂ ∂    (42) 

The normalized standard deviations ( )Mσ δ σΞΔ  and ( )Mσ δφ σΞ  are shown in figure 5 as 

functions of Δ  for several fixed values of φ for the set BA = A . 



16 
 

FIG. 5. (Color online) Normalized standard deviations ( ) /Bσ δ σΞΔ  and  ( ) /Bσ δφ σΞ  vs. Δ  for 
different values of φ , set BA= A . 

 

For the other sets 90A , 11A , and TA , the functions (41) and (42) exhibit similar weak 

dependence on φ  and strong dependence on Δ . Thus to compare the sets BA , 90A , 11A , and 

TA , we use the averaged functions over the whole interval of possible values of φ , e.g. 

( )
0

1
MM d

α

π

δ σ δ φ
σπ

Δ=Δ ∫     (43) 

and the averaged functions Mδφ , BδΔ , Bδφ  are defined similarly. Figure 6 demonstrates that the 

parameter set BA determined by our method provides the smallest values of MδΔ , Mδφ , BδΔ , 

and Bδφ  in almost the entire range of Δ. Only in the case of small values of retardation Δ, the 

functions BδΔ and Bδφ  take the smallest values for the set 11A , which has been specially 

designed by Oldenbourg and Schribak to study living cells and other objects with small 

retardance [4]. Note that the proposed method works well despite the presence of singularities at 

points Δ =0  and πΔ = . 
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FIG. 6. (Color online) φ − averaged standard deviations MδΔ , Mδφ , BδΔ , Bδφ  vs. Δ  for sets 

BA , 90A , 11A , TA . Inset shows the same plots for small values of [0, /180]πΔ∈ . 

 

Noise contamination of the measurement process 

To illustrate how the selected control parameters affect the measuring accuracy, we 

numerically simulate the effect of the artificially added noise to the typical PolScope file of a 

liquid crystal sample, similar to ones presented in [13]. The file contains 2D fields of retardation 

( , )x y∗Δ , figure 7a, and optical axis orientation ( , )x yφ∗ , figure 8a, which we consider as the 

error-free 2D field of quantities *( , )x yΛ , assuming that 1inI =  and 0leakI = . Then for the 

selected A  we perform the following steps for each pixel ( , )x y :  

(1) We calculate the error-free vector of measured values * *( ) ( )Λb = M A V . 

(2) To simulate effect from errors in control parameters, we contaminate data with artificial noise 

by adding random, uniformly distributed values 1, ,4, 1,  2,{ },kj k jδα = … ==δ A

[ 3 /180, 3 /180]~kj unifδα π π−  to the set A . 
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(3) We determine the vector 1 2 3 4, , ,( ) v v v v⎡ ⎤⎣ ⎦=ΛV  from the equation *( ) ( )+ =δ ΛM A A V b  

via LU  decomposition [8] of the matrix M  and calculate the retardation 

1 2
2 2 2
2 3 4

cosM
v

v v v
−
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

Δ =
+ +

 and the orientation of the slow optical axis 3

4

11 cot
2M

v
v

φ − ⎛ ⎞
−⎜ ⎟
⎝ ⎠

=  

contaminated with noise in the control parameters. 

(4) We introduce the relative noise of measuring values as *=δ Ξb b , where Ξ  is a diagonal 

matrix with identically distributed random elements ~ 3/100,3/100[ ]ii unif −Ξ . 

(5) We calculate the retardation 1 2
2 2 2
2 3 4

cosB
v

v v v
−
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

Δ =
+ +

 and orientation of the slow optical axis 

1 3

4

1 cot
2B

v
v

φ − ⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

= −  from the equation *( ) ( ) = +Λ δM A V b b  similar to step (3). 

 

FIG. 7. Effect of noise contamination on retardation: a) original (noise-free) image ( , )x y∗Δ ; b) 
image with noise in control parameters ( , )M x yΔ  when = BA A ; c) ( , )M x yΔ  when = 90A A ; d) 
image with relative noise in measured values ( , )B x yΔ  when = BA A ; e) ( , )B x yΔ  when = 90A A . 
The grayscale bar represents values of the optical retardation. 

 
Figure 7 exhibits the effect of control parameters errors on the retardation for the sets BA  

and 90A  after applying steps (1)-(3) for each pixel. One can see that in comparison with the 

original error-free image ( , )x y∗Δ , figure 7a, the measurement process at BA= A  has a 

substantially smaller image degradation ( , )M x yΔ , figure 7b, than when = 90A A , figure 7c. On the 

other hand, after steps (4)-(5) images with relative measuring errors ( , )B x yΔ  show similar weak 

degradation for both sets BA  and 90A , figure 7d and figure 7e, respectively.  

To explain the observed image degradation, we computed sample standard deviations of the 

errors , ,( , ) ( , ) ( , )M B M Bx y x y x yδ ∗Δ = Δ −Δ , , 2
,

,

1 ( , )1
M B

M B
x y

s x yN δΔ = Δ∑− , that equal, 
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respectively, 0.09MsΔ = , 0.024BsΔ =  for = 90A A  and 0.042MsΔ = , 0.023BsΔ =  for = BA A . As 

we can see, MsΔ is significantly smaller for BA than for 90A , while BsΔ  is almost the same for both 

sets.  

 

FIG. 8. Effect of noise contamination on the slow axis orientation: a) original (noise-free) image 
( , )x yφ∗ ; b) image with noise in control parameters ( , )M x yφ  when = BA A ; c) ( , )M x yφ  when 
= 90A A ; d) image with relative noise in measured values ( , )B x yφ  when = BA A ; e) ( , )B x yφ  

when = 90A A . The grayscale bar represents values of the slow axis azimuthal angle. 

The effect of noise contamination on the optical slow axis orientation data is shown in figure 

8. The choice of the set BA  leads to smaller image degradation ( , )M x yφ , see figure 8b, of the 

error-free image *( , )x yφ , figure 8a, than the set 90A , figure 8c. At the same time images with 

relative noise in the measured values ( , )B x yφ  exhibit a similar slight degree of degradation for 

the sets BA  and 90A , figures 8d and 8e, respectively. The values of sample standard deviations 

of the slow axis orientation errors, , 2
,

,

1 ( , )
1

M B
M B

x y
s x y

Nφ δφ=
− ∑ , where

, ,( , ) ( , ) ( , )M B M Bx y x y x yδφ φ φ∗= − , characterize the visual degree of image degradation shown on 

figure 8, 0.11Msφ = , 0.029Bsφ =  for = 90A A and  0.051MsΔ = , 0.027BsΔ =  for = BA A . One can 

see that the relations between the sample standard deviations MsΔ , Msφ  , BsΔ , Bsφ  for both sets BA , 

90A  match well the relations between the averaged standard deviations MδΔ , Mδφ , BδΔ , Bδφ  , 

shown in figures 6a-d.  

 

IV. CONCLUSIONS 

In this paper we study the accuracy of CMPMSs to determine several unknown quantities by 

successively measuring a single physical variable under different experimental conditions, 
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defined by the control parameters. The errors of the determined quantities are caused by the 

measurement errors and the errors in the setting of the control parameters. One of the main 

problems in CMPMSs is the determination of a suitable set of control parameters that provides 

the best possible accuracy for the entire range of the unknown quantities.  

We propose a mathematical method for determination of control parameters for CMPMSs 

where the measuring function has separable form (2). As an error function, we consider the 

mathematical expectation of the length of the dimensionless, scaled vector of errors of the 

unknown quantities (7). The error function splits into two independent functions, describing 

respectively the effects of the measurement errors and the control parameters errors, (11). Using 

submultiplicativity of the spectral and Frobenius matrix norms, we represent these two functions 

as products of factors that dependent only on control parameters and factors that dependent on 

unknown quantities. Substituting the factors that depend only on the unknown quantities with a 

weighting coefficient, we construct the effective error function (26), which is the upper bound of 

the true error function (11). We determine an optimal set of control parameters by minimizing 

(26). 

To demonstrate the capability of our method, we apply it to the PolScope polarized light 

microscope. In the PolScope, 2D distributions of optical retardation and optical slow axis 

orientation are determined from four measurements of the light intensity coming through the 

optical scheme and controlled by variable retarders. We have found that for the PolScope, our 

method provides almost the same set of control parameters both when minimizing the control 

parameter error and when minimizing the measuring error, so the optimization of (26) is 

essentially independent on the weighting coefficient. We compare the computed optimal set of 

control parameters with other sets including those used in the PolScope and demonstrate that our 

computed set works very well for the entire range of determined quantities.  

The proposed method is applicable to any error distributions of the control parameters and of 

the measured values, and can be used for optimization of various CMPMSs, in particular, for 

latest "polarized light microscopy" techniques, Exicor and Polaviz. 
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