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Operator split forcing schemes exploiting a symmetrization principle, i.e. Strang splitting, for
cascaded lattice Boltzmann (LB) methods in two- and three-dimensions for fluid flows with impressed
local forces are presented. Analogous scheme for the passive scalar transport represented by a
convection-diffusion equation with a source term in a novel cascaded LB formulation is also derived.
They are based on symmetric applications of the split solutions of the changes on the scalar field/fluid
momentum due to the sources/forces over half time steps before and after the collision step. The
latter step is effectively represented in terms of the post-collision change of moments at zeroth
and first orders, respectively, to represent the effect of the sources on the scalar transport and
forces on the fluid flow. Such symmetrized operator split cascaded LB schemes are consistent with
the second-order Strang splitting and naturally avoid any discrete effects due to forces/sources by
appropriately projecting their effects for higher order moments. All the force/source implementation
steps are performed only in the moment space and they do not require formulations as extra terms
and their additional transformations to the velocity space. These result in particularly simpler and
efficient schemes to incorporate forces/sources in the cascaded LB methods unlike those considered
previously. Numerical study for various benchmark problems in 2D and 3D for fluid flow problems
with body forces and scalar transport with sources demonstrate the validity and accuracy, as well
as the second-order convergence rate of the symmetrized operator split forcing/source schemes for
the cascaded LB methods.

PACS numbers: 47.11.Qr,05.20.Dd,47.27.-i

I. INTRODUCTION

The lattice Boltzmann (LB) method is now a well established alternative numerical technique to computational
fluid dynamics (CFD) problems. It derives its basis from kinetic formulations involving the streaming of particle
populations along their characteristic directions comprising the lattice, and collisions at lattice nodes represented as a
relaxation process, as well as a procedure to represent the effect of impressed forces. The emergent fluid flow behavior is
the averaged effect of such stream, collide and forcing steps and thus the LB method may be classified as a mesoscopic
approach. Some important advantages of the LB method include its natural framework to incorporate kinetic models
for complex flows, ease of implementation of boundary conditions and intrinsic adaptability to parallel computing due
to its localized computational steps. As a result, the LB scheme has been successfully applied to a broad range of
complex fluid mechanics problems, including multiphase and multicomponent flows, turbulence, thermal convective
flows, amongst various other problems ([1], [2], [3], [4]). More recent efforts have focused on further improving the
accuracy, stability and efficiency of the LB method to further expand its scope for applications.

The collision step, which represents various physics associated with the fluid motion including the momentum
diffusion as a relaxation process, plays a main role in the numerical stability of the method. Among the earliest
collision models is the single relaxation time (SRT) model [5], which, while being popular due to its simplicity, is
susceptible to numerical instability at relatively high Reynolds numbers. A significant improvement is achieved by
the multiple relaxation time model (MRT) [6] in which different raw moments relax at different rates. More recently,
further enhancement in stability was made possible by the introduction of a cascaded LB method, which is a multi-
parametric scheme that is based on considering relaxation in terms of central moments, which are formulated by
shifting the particle velocity by the local fluid velocity [7]. The significant advantages of such more advanced collision
models were numerically demonstrated more recently [8]. A strategy to accelerate the convergence of the cascaded
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LB method has also been devised and studied [9], which has been further extended with improved Galilean invariance
properties [10].

Another aspect of the LB schemes, which is particularly important in applications, is the implementation strategy
to represent the various impressed body forces, which can either arise within the fluids or imposed externally. Some
examples include the local surface tension and phase segregation forces in multiphase fluid systems, Lorentz forces
in magnetohydrodynamics, gravity and Coriolis forces. In general, such body forces can be spatially varying and/or
time dependent. Due to the kinetic nature of the LB method, special considerations are necessary and various forcing
schemes have been introduced over the years ([11], [12], [13], [14], [15], [16]). In particular, the investigation by [14]
highlighted the discrete effects arising in prior LB forcing schemes via the second order moments in the momentum
flux tensor, and provided a consistent source term that avoids such spurious effects when used with the SRT collision
model. This was further generalized to the MRT model by including source terms in the moment space in both
two-dimensions (2D) and three-dimensions (3D) ([17], [18], [4]).

In the case of the cascaded LB method, the first consistent forcing scheme based on the central moments was
presented by [19]. By taking the source term proposed by [20] as the starting point, they devised a forcing formulation
without discrete effects, which was also shown to be a further generalization of that presented by [14] to the cascaded
LB scheme under appropriate limits. Later, [21] constructed another type of forcing scheme for the cascaded LB
method based on the exact difference method [16]. More recently, [22], [23] and [24] presented other variants of
forcing schemes for LB methods based on central moments. While all these forcing schemes differ from one another
due to the variations in the kinetic models for the source term, a common element among them is the presence of
extra source terms or changes to the equilibria, which are usually taken together with the collision relaxation terms
as part of the collision step. This generally involves computing source moments at different orders and transforming
them back to the velocity space, which entails additional computational effort.

Based on the consideration that the LB schemes are generally fluid flow, i.e. Navier-Stokes (NS), solvers, and by
avoiding the kinetic aspects for the implementation of the impressed forces, simpler and more efficient strategies can
be constructed. The numerical framework for this is the operator splitting approach widely used to efficiently solve
ordinary and partial differential equations arising in various applications including CFD ([25], [26]). The basis idea
is to split the problem into a set of simpler subproblems and then devise a strategy that alternates between solving
such simpler problems in certain sequence, which then approximate the solution to the full problem to a certain order
of accuracy. Such operator splitting techniques are sometimes also referred to as the fractional step or time-splitting
methods. Of particular importance is the Strang spliting [27], which achieves second-order accuracy by a symmetrized
application of the solution method for one (or more) of the subproblems. The structure of the higher order splitting
errors can be analyzed via the Taylor-Lie series [25] or using the Baker-Compbell-Hausdorff formulas [28]. From such a
perspective, Dellar [29] presented a derivation of the lattice Boltzmann method based on Strang splitting with second
order accuracy and interpreted both unsplit and time-split forcing schemes based on this approach. In particular, a
uncoupled spin-step to implement body force in a SRT LB model introduced earlier by Salmon [30] was shown to be
consistent with the Strang splitting. Furthermore, it was also extended to the MRT-LB models ([29], [31]).

In the present investigation, our goal is to construct efficient body force implementation schemes based on the
symmetrized operator (Strang) splitting for the cascaded LB methods. The lattice symmetry and the use of central
moments naturally impose Galilean invariance for the chosen set of independent moments basis. The symmetric
application of the separate body force steps in two half time steps in the cascaded LB formulation provides a second
order accuracy. Unlike the unsplit forcing schemes presented earlier for the cascaded LB method [19], our approach
does not require either the computation of various source moments at different orders or an extra transformation step
to convert them back to velocity space. In essence, the operator-split forcing scheme involves one half application
of the force before collision and the other half force step after collision. The latter step will be seen to lead to
unique expressions for the post-collision change of first order moments in the cascaded collision operator. The precise
structure of these expressions will be shown to depend on choice of the first order moment basis vectors associated
with the type of lattice considered. In fact, we will present operator split forcing scheme for the cascaded LB method
both in 2D and 3D for the computation of the fluid motion. In addition, in order to demonstrate the generality of our
approach, we will extend it to represent the convective-diffusion equation (CDE) with a source term, such as those
arising in the convective thermal flows with internal heat generation. In this regard, a novel cascaded LB formulation
for the solution of the CDE with source term using the Strang splitting will be constructed. Finally, we will present
a numerical validation study of the symmetrized operator split forcing/source schemes for the cascaded LB method
for fluid flow (i.e., the NS equations) and passive scalar transport (i.e., the CDE) and in different dimensions.

This paper is organized as follows. In the next section (Sec. 2), we briefly review the various operator splitting
approaches including the Strang splitting. Section 3 presents the general ideas behind the symmetrized operator
splitting based forcing implementation in the LB method. Section 4 discusses the derivation and the algorithmic
procedure of the symmetrized operator split forcing scheme for the 2D cascaded LB method for representing fluid flow
subjected to local impressed forces. A corresponding 3D formulation is outlined in the Appendix A. Section 5 presents
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a symmetrized operator split approach source incorporation scheme for a 2D cascaded LB scheme for representing
the convection-diffusion based transport of a passive scalar field with local sources. Numerical validation results of
various symmetrized operator split forcing/source scheme are presented in Sec. 6. Finally, Sec. 7 summarizes our
approach and presents the main conclusion arising from this work.

II. OPERATOR SPLITTING METHODS

We will now briefly review the various typical operator splitting methods, including the Strang splitting which will
then be exploited to construct efficient second order accurate forcing schemes in the cascaded LB method. For the
purpose of illustration, we will consider the numerical solutions of the following evolution problem:

dy

dt
= Py + Qy, y(t) = y0 on [t, t+ ∆t] , (1)

where, for ease of presentation, P and Q are considered as linear operators. Nonlinear operators can be dealt with
using Lie operator formalism [28]. Here, ∆t is the time step. For reference, the unsplit solution yU of the full problem
can be represented as

yU = e∆t(P+Q)y0. (2)

Now, a first order splitting scheme, which is sometimes known as the Lie-Trotter (LT) splitting or as the Godunov
splitting scheme in the CFD literature, can be represented by means of the following steps, which compute solution
to each subproblem involving P and Q separately:

Step P : Solve
dy∗

dt′
= Py∗, y∗(t′ = t) = y0 on [t, t+ ∆t] , (3a)

Step Q : Solve
dy∗∗

dt′
= Qy∗∗, y∗∗(t′ = t) = y∗(t+ ∆t) on [t, t+ ∆t] , (3b)

Solution : yLT (t+ ∆t) = y∗∗(t+ ∆t). (3c)

This solution of the Lie-Trotter splitting or the P-Q splitting scheme may be more compactly represented by means
of the exponential operators as

yLT (t+ ∆t) = e∆tQe∆tP y0. (4)

The local error (El) incurred over a small time step ∆t due to splitting when compared to the unsplit solution (Eq. (2))
can be estimated by means of a Lie-Taylor series (factored product expansions) as [25]

El,LT = yLT − yU =
1

2
[P,Q]y0∆t2 +O(∆t3), (5)

where the symbol [·, ·] represents the commutator, i.e., [X,Y] = XY − YX for any two operators X and Y. Then,
the global error (Eg) over a time duration T or T/∆t number of steps is Eg,LT = (T/∆t) · El,LT ∼ O(∆t), which
means that the Lie-Trotter scheme is first order accurate. This means that even if a higher order method is used to
solve each subproblem (Step P and Step Q), the above splitting scheme is still overall first order accurate due to the
decomposition error arising from the non-commuting operators, which is often the case in practice.

One possibility to improve the order of accuracy is to symmetrize the computation via taking the average of the
two sequences of calculations, i.e. Step P - Step Q and Step Q - Step P results. Such an averaged scheme may be
represented as [32]

yA =
1

2
(e∆tPe∆tQ + e∆tQe∆tP)y0. (6)

This approach introduces a local error relative to the unsplit solution (Eq. (2)), which can be written as [33]

El,A = yA − yU = R′∆t3 +O(∆t4),

where

R′ = − 1

12
([P, [P,Q]] + [Q, [Q,P]])y0.
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Hence, the global error becomes Eg,A = (T/∆t) · El,A ∼ O(∆t2). While this is theoretically interesting to gain an
order of accuracy, it is computationally expensive as, for each time step, double the effort is required when compared
to the previous scheme (P−Q splitting).

A more efficient strategy to achieve a global second order accuracy is to devise the Strang (S) splitting [27]. In this
scheme, one of the operators (say P) is applied twice for a time step of length ∆t/2, before and after the solution of
the other subproblem (say, involving Step Q), which is solved for full step length of ∆t. This may be represented as

Step P1/2 : Solve
dy∗

dt′
= Py∗, y∗(t′ = t) = y0 on [t, t+ ∆t/2] , (7a)

Step Q : Solve
dy∗∗

dt′
= Qy∗∗, y∗∗(t′ = t) = y∗(t+ ∆/2) on [t, t+ ∆t] , (7b)

Step P1/2 : Solve
dy∗∗∗

dt′
= Py∗∗∗, y∗∗∗(t′ = t) = y∗∗(t+ ∆t) on [t, t+ ∆t/2] , (7c)

Solution : yS(t+ ∆t) = y∗∗∗(t+ ∆t/2). (7d)

This symmetric application of the operators in the P1/2 − Q − P1/2 scheme achieves second order accuracy, which
may be deduced by first noting that the Strang splitting solution may be more compactly written in the exponential
form as

yS(t+ ∆t) = e∆t/2 P e∆tQ e∆t/2 Py0. (8)

Its local error when compared to the unsplit solution (Eq. (2)) then follows via a Lie-Taylor series as [26]

El,S = yS − yU = R∆t3 +O(∆t4), (9)

where

R =
1

24
([[P,Q] ,P] + 2 [[P,Q] ,Q])y0. (10)

Then, the global error (Eg) over a time period T follows as Eg,S = (T/∆t) · El,S ∼ O(∆t2) and hence this scheme
is second order accurate. An equally valid possibility to achieve a similar second order accuracy is to consider the
Q1/2 −P−Q1/2 splitting, which is useful when Step P is more expensive to compute than Step Q. It may be noted
that a similar scheme was independently devised by [34], who further analyzed and elaborated on its variants (see
also [35]), and hence it is sometimes referred to as the Strang-Marchuk splitting scheme.

III. STRANG SPLITTING OF LATTICE BOLTZMANN METHOD INCLUDING BODY FORCES

Lattice Boltzmann (LB) schemes are generally constructed to represent the evolution of the dynamics of the fluid
motion represented by

∂tρ+ ∇ · (ρu) = 0, (11a)
∂t(ρu) + ∇ · (ρuu) = −∇P + ∇ ·ΠV + F , (11b)

where ρ and u are the fluid density and velocity, respectively, P is the pressure and ΠV is the viscous stress tensor.
Here, F represents the effect of the local impressed body forces, which can vary spatially and may be time dependent,
i.e. for e.g. in 2D, F = (Fx, Fy) where Fx = Fx(x, t) and Fy = Fy(x, t) . An efficient approach to solve the above fluid
flow equation in the LB framework is to solve the Eqs. (11a) and (11b), but without the body force F using the usual
stream and collide procedure (subproblem A) and then separately solve ∂t(ρu) = F as a forcing step (subproblem B)
and subsequently combined appropriately in a certain sequence to yield a second order accurate scheme. This can be
achieved via symmetrization of the operator splitting of the one of the subproblems over two half time steps. Dellar
[29] performed a derivation and analysis of the LB method via Strang splitting, which will be used as formal starting
point to construct efficient operator split forcing schemes for the cascaded LB method in the subsequent sections.

In the following, S, C and F are used to denote the operators used to perform the streaming step, collision step and
the forcing step, respectively. For a lattice containing α = 0, 1, 2, . . . b directions, the collision and streaming steps
can be represented as

Step C : f(x, t+ ∆t) = Cf(x, t) = f(x, t) + K · ĝ, (12a)
Step S : fα(x, t+ ∆t) = Sfα(x, t) ≡ fα(x− eα∆t, t). (12b)
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Here, f = (f0, f1, f2 . . . fb)
† is a vector of size (b+ 1) representing the distribution functions, where † is the transpose

operator, ĝ = (ĝ0, ĝ1, ĝ2 . . . ĝb)
† is the vector representing the change of different moments under collision, and K is the

transformation matrix of the cascaded LB method that maps changes in moments back to changes in the distribution
functions, which are specified later.

It may be noted that C and S operators represent the split solution operators of the discrete analog of ∂tfα = Ωα
and ∂tfα + eα · ∇fα = 0, respectively, of the discrete velocity Boltzmann equation ∂tfα + eα · ∇fα = Ωα, whose
emergent behavior represents the NS equations given in Eq. (11a) and Eq. (11b), but without F . Then, the forcing
step separately solves the following:

Step F :
∂

∂t
(ρu) = F . (13)

One possibility to combine the above split steps to effectively achieve second order accuracy is to perform a symmetric
application of the forcing steps over two half time steps, before and after the collision step, which is akin to the spin
steps for the force presented by Salmon ([30]):

fα(x, t+ ∆t) = S F1/2 C F1/2fα(x, t), (14)

where F1/2 represents performing the solution of Eq. (13) over time step of length ∆t/2. Ref. [29] showed that
this achieves second order accuracy similar to the Strang splitting extended to three operators: f

′

α(x, t + ∆t) =

C1/2F1/2 S F1/2C1/2f
′

α(x, t), where the two are related by f
′

α = C1/2F1/2fα . Since the momentum is conserved
during collisions, a second order scheme with Eq. (14) can be obtained by ρu =

∑
α f

′

αeα = F1/2(
∑
α fαeα). We

will adopt the above strategy in our derivation of the symmetrized operator split forcing scheme for the cascaded
LB method in the subsequent sections. Similar approach was recently adopted for the MRT LB models (e.g., [31]).
In addition, Schiller [36] proposed a variant of the Strang splitting of forcing steps around streaming and collisions,
where the half collision step is valid for the regime involving the relaxation time being much greater than the time
step. Also, Dellar [37] showed that the Crank-Nicolson solution of the moment equations for combined collisions and
time-independent forcing obtained by Strang splitting is equivalent to Kupershtokh’s exact difference method [16].

IV. BODY FORCE SCHEME FOR 2D CASCADED LB METHOD FOR FLUID FLOW VIA STRANG
SPLITTING

We will consider a 2D cascaded LB formulation for a two-dimensional, nine velocity (D2Q9) lattice. The components
of the particle velocities are then represented by the following vectors using the standard Dirac’s bra-ket notation:

|ex〉 = (0, 1, 0,−1, 0, 1,−1,−1, 1)
†
, (15a)

|ey〉 = (0, 0, 1, 0,−1, 1, 1,−1,−1)
†
. (15b)

Their components for any particle velocity direction α (where α = 0, . . . , 8) are referred to as eαx and eαy, respectively.
Furthermore, we need the following 9-dimensional vector:

|1〉 = (1, 1, 1, 1, 1, 1, 1, 1, 1)
†
. (16)

The zeroth moment is the Euclidean inner product of this vector with the distribution function. We then consider
the following specific set of orthogonal basis vectors used in the collision term of the cascaded LB method (e.g., [19]):

|K0〉 = |1〉 , |K1〉 = |ex〉 , |K2〉 = |ey〉 , |K3〉 = 3 |e2
x + e2

y〉 − 4 |1〉 ,
|K4〉 = |e2

x − e2
y〉 , |K5〉 = |exey〉 , |K6〉 = −3 |e2

xey〉+ 2 |ey〉 ,
|K7〉 = −3 |exe2

y〉+ 2 |ex〉 , |K8〉 = 9 |e2
xe

2
y〉 − 6 |e2

x + e2
y〉+ 4 |1〉 . (17)

In the above, symbol such as |e2
xey〉 = |exexey〉 represents a vector resulting from the elementwise vector multiplication

(Hadamard product) of the sequence of vectors |ex〉, |ex〉 and |ey〉. By combining the above 9 vectors, we then obtain
the following orthogonal matrix

K = [|K0〉 , |K1〉 , |K2〉 , |K3〉 , |K4〉 , |K5〉 , |K6〉 , |K7〉 , |K8〉] . (18)
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Here, K maps changes of moments under collisions back to changes in the distribution functions. In order to determine
the structure of the cascaded collision operator, we first define the following set of central moments of the distribution
functions and its equilibria of order (m+ n), respectively, as(

κ̂xmyn
κ̂eqxmyn

)
=
∑
α

(
fα
feqα

)
(eαx − ux)

m
(eαy − uy)

n
. (19)

By equating the discrete central moments of the equilibrium distribution function with the corresponding continuous
central moments based on the local Maxwellian ([7], [38]), we get

κ̂eq0 = ρ, κ̂eqx = 0, κ̂eqy = 0, κ̂eqxx = c2sρ, κ̂
eq
yy = c2sρ,

κ̂eqxy = 0, κ̂eqxxy = 0, κ̂eqxyy = 0, κ̂eqxxyy = c4sρ. (20)

where c2s = 1/3 with cs being the sound speed. This is set by applying the usual lattice units, i.e. ∆x = ∆t = 1 or the
particle speed c = ∆x/∆t = 1, and because c2s = c2/3 for the athermal LB scheme used in this work (see e.g. [39]).
On the other hand, the actual computations in the cascaded formulations are carried out in terms of raw moments,
which are defined as (designated here with the (′) symbol)(

κ̂
′

xmyn

κ̂eq
′

xmyn

)
=
∑
α

(
fα
feqα

)
emαxe

n
αy. (21)

The collide and stream steps (C and S) of the 2D cascaded LB method can then be, respectively, written as [7]

Step C : fpα = fα + (K · ĝ)α (22a)
Step S : fα(x, t) = fpα(x− eα∆t, t), (22b)

where fpα represents the post-collision distribution function and ĝ = (ĝ0, ĝ1, ĝ2 . . . ĝ8)† is the change of different mo-
ments under collisions, which is determined based on the relaxation of various central moments to their corresponding
equilibria in a cascaded fashion [7]. Since the mass and momentum are collision invariants, ĝ0 = ĝ1 = ĝ2 = 0. As a re-
sult, the cascaded structure starts from the non-conserved second order moments, and the corresponding components
of the change of different moments under collisions are given by

ĝ3 =
ω3

12

{
2

3
ρ+ ρ(u2

x + u2
y)− (κ̂

′

xx + κ̂
′

yy)

}
,

ĝ4 =
ω4

4

{
ρ(u2

x − u2
y)− (κ̂

′

xx − κ̂
′

yy)
}
,

ĝ5 =
ω5

4

{
ρuxuy − κ̂

′

xy

}
,

ĝ6 =
ω6

4

{
2ρu2

xuy + κ̂
′

xxy − 2uxκ̂
′

xy − uyκ̂
′

xx

}
− 1

2
uy(3ĝ3 + ĝ4)− 2uxĝ5,

ĝ7 =
ω7

4

{
2ρuxu

2
y + κ̂

′

xyy − 2uyκ̂
′

xy − uxκ̂
′

yy

}
− 1

2
ux(3ĝ3 − ĝ4)− 2uy ĝ5,

ĝ8 =
ω8

4

{
1

9
ρ+ 3ρu2

xu
2
y −

[
κ̂

′

xxyy − 2uxκ̂
′

xyy − 2uyκ̂
′

xxy + u2
xκ̂

′

yy + u2
yκ̂

′

xx

+4uxuyκ̂
′

xy

]}
− 2ĝ3 −

1

2
u2
y(3ĝ3 + ĝ4)− 1

2
u2
x(3ĝ3 − ĝ4)

− 4uxuy ĝ5 − 2uy ĝ6 − 2uxĝ7. (23)

where ω3, ω4, . . . , ω8 are the relaxation parameters. These relaxation steps lead to the following expressions for the
bulk and shear viscosities, respectively, as ζ = 1

3 ( 1
ω3
− 1

2 )∆t and ν = 1
3 ( 1
ωj
− 1

2 )∆t where j = 4, 5, and the pressure
field P is obtained via an equation of state as P = 1

3ρ.
After the streaming step, i.e., Eq. (22b), we obtain the output velocity field components (designated with a super-

script ”o”) as the first moment of fα:

ρuox =
∑8
α=0 fαeαx, ρuoy =

∑8
α=0 fαeαy. (24)

We then introduce the effect of the body force F = (Fx, Fy) as a solution of the subproblem in Eq. (13). This is
accomplished by performing two symmetric steps of half time steps of length ∆t/2, one before and the other after the
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collision step. Both these steps incorporate the effect of forces directly into the moment space. Solving Eq. (13) for
the first part of the symmetric sequence of step yields ρux − ρuox = Fx

∆t
2 and ρuy − ρuoy = Fy

∆t
2 . Thus,

Pre-collision Forcing StepF1/2 : ux =
1

ρ

(
ρuox +

Fx
2

∆t

)
, uy =

1

ρ

(
ρuoy +

Fy
2

∆t

)
. (25)

Then, we use this updated velocity field (ux, uy) in Eq. (23) to perform the cascaded relaxation collision step to
determine the change of different moments under collisions, i.e. ĝβ , β = 3, 4, . . . , 8. As a result of correctly projecting
the effect of the forces in the various higher order moments, it naturally eliminates the discrete effects identified
earlier [14] (see the discussion at the end of this section). Then, to implement the other part of the symmetrized force
step with half step to solve Eq. (13) post collision, we set ρupx − ux = Fx

∆t
2 and ρupy − uy = Fy

∆t
2 , where (upx, u

p
y) is

the result of the target velocity field due to the forcing step after collision. Thus,

Post-collision Forcing StepF1/2 : ρupx = ρux +
Fx
2

∆t, ρupy = ρuy +
Fy
2

∆t. (26)

Note that this can also be rewritten in terms of the output velocity field uo = (uox, u
o
y) given in Eq. (24) by using

Eq. (25) as

ρupx = ρuox + Fx∆t, ρupy = ρuoy + Fy∆t. (27)

A main issue here is how to effectively design the post-collision distribution function fpα in the cascaded LB method
so that Eq. (27) is precisely satisfied. Now, using fpα = fα + (K · ĝ)α and taking its first moments, we get

ρupx = Σαf
p
αeαx = Σαfαeαx + Σβ〈Kβ |ex〉ĝβ , (28a)

ρupy = Σαf
p
αeαy = Σαfαeαy + Σβ〈Kβ |ey〉ĝβ . (28b)

Based on the orthogonal basis vectors |Kβ〉 given in Eq. (17), it follows that

Σβ〈Kβ |ex〉gβ = 6ĝ1, Σβ〈Kβ |ey〉gβ = 6ĝ2. (29)

Using Eqs. (24) and (29) in Eqs. (28a) and (28b) we, get the desired velocity field as

ρupx = ρuox + 6ĝ1, ρupy = ρuoy + 6ĝ2. (30)

Comparing the result of the target velocity field following the second half of the symmetrized forcing steps given in
Eq. (27) with the change of moments based expressions in Eq. (30), we obtain

ĝ1 =
Fx
6

∆t, ĝ2 =
Fy
6

∆t. (31)

Equation (31) represents an algorithmic result that effectively implements the effect of the post-collision forcing step
over a duration of half time step following collision. This is a consequence of the momentum needing to change by
F∆t over a time step, and the normalization is implied by our choice of basis for the moments. Then, the above
relation (Eq. (31)) for the post-collision change of first moments due to the force field (ĝ1 and ĝ2) along with the
change of different higher moments under collisions ĝβ , where β = 3, 4, . . . , 8, given in Eq. (23) effectively provide
the desired post-collision states of the distribution function fpα. Expanding Eq. (22a), we get the expressions for the
post-collision distribution functions as

fp0 = f0 + [ĝ0 − 4(ĝ3 − ĝ8)] ,

fp1 = f1 + [ĝ0 + ĝ1 − ĝ3 + ĝ4 + 2(ĝ7 − ĝ8)] ,

fp2 = f2 + [ĝ0 + ĝ2 − ĝ3 − ĝ4 + 2(ĝ6 − ĝ8)] ,

fp3 = f3 + [ĝ0 − ĝ1 − ĝ3 + ĝ4 − 2(ĝ7 + ĝ8)] ,

fp4 = f4 + [ĝ0 − ĝ2 − ĝ3 − ĝ4 − 2(ĝ6 + ĝ8)] ,

fp5 = f5 + [ĝ0 + ĝ1 + ĝ2 + 2ĝ3 + ĝ5 − ĝ6 − ĝ7 + ĝ8] ,

fp6 = f6 + [ĝ0 − ĝ1 + ĝ2 + 2ĝ3 − ĝ5 − ĝ6 + ĝ7 + ĝ8] ,

fp7 = f7 + [ĝ0 − ĝ1 − ĝ2 + 2ĝ3 + ĝ5 + ĝ6 + ĝ7 + ĝ8] ,

fp8 = f8 + [ĝ0 + ĝ1 − ĝ2 + 2ĝ3 − ĝ5 + ĝ6 − ĝ7 + ĝ8] . (32)

Then, the algorithmic procedure of our symmetrized operator split forcing scheme for the 2D cascaded method can
be summarized in terms of the following sequence of steps to evolve for a time duration [t, t+ ∆t]:



8

(i). Obtain the updated the velocity u = (ux, uy) based on the pre-collision forcing with half step using Eq. (25).

(ii). Compute the change of moments under collisions, ĝβ , β = 3, 4, . . . , 8 using Eq. (23) based on the updated
velocity (ux, uy) obtained in Step (i).

(iii). Perform post-collision forcing with a half step effectively via the calculation of change of first order moments,
i.e. ĝ1 and ĝ2 using Eq. (31).

(iv). Compute the post-collision distribution functions fpα , α = 0, 1, . . . , 8 using Eq. (32).

(v). Perform the streaming step using Eq. (22b) to obtain the updated distribution functions fα , α = 0, 1, . . . , 8.

(vi). Finally, obtain the output velocity field uo = (uox, u
o
y) via Eq. (24) and the density ρ using ρ =

∑8
α=0 fα.

Some of the main advantages of this symmetrized operator split forcing scheme of the cascaded LB method are:

(a). Using symmetrization principle with half-time step application of the body force before and after collision is
consistent with Strang splitting and the scheme is formally second order accurate in time.

(b). The approach correctly projects the effects of the body force on the higher order moments via step (ii) above
and hence naturally eliminates the discrete effects identified in prior works [14] (see below for details).

(c). The procedure is simple and efficient by involving the body force implementation directly only in the moment
space and does not require additional terms due to forcing in the velocity space, which is usually obtained via
cumbersome transformation from the moment space as in prior forcing schemes for the cascaded LB method.
This aspect is especially advantageous in 3D. Appendix A outlines the implementation of this approach for a
3D central moment based LB scheme.

We will now present an analysis on how the spurious term Fiuj + Fjui that can appear in the viscous stress is
eliminated in our present central moments-based cascaded LB formulation using a split force implementation. This
can be achieved by a continuous time equation for the second central moment whose evolution is independent of the
body force. As a result, it can introduce a canceling second moment of the body force term at the leading order in
the emergent PDE of the second raw moment of the distribution functions recovering correct flow physics. We will
start with this latter aspect first and identify this compensating second raw moment of the body force by considering
the discrete velocity Boltzmann equation ∂tfα + eα · ∇fα = Ωα +Sα, where Ωα and Sα are the collision operator and
the source term due to the body force, respectively. Taking its zeroth and first moments lead to

∂tρ+ ∇ · (ρu) = 0, ∂t(ρu) + ∇ · Γ = F , (33)

and then taking its second moment, we obtain the following evolution equation

∂tΓ + ∇ · Λ = −1

τ
Γ(neq) + Υ, (34)

where Γ and Λ are the second and third moments of the distribution functions, i.e.,
∑
α fαeαieαj and

∑
α fαeαieαjeαk,

respectively, and Υ is the required canceling second moment of the body force term, i.e.,
∑
α Sαeαieαj , which should

arise via a condition on the second central moment given in the following. In Eq. (34), Γ(neq) is the non-equilibrium
part of the second raw moment and τ = 1/ωj , where j = 4, 5, is the corresponding relaxation time, which are related
to the viscous stress.

In order to determine the evolution equation for hydrodynamics at the leading order, we now apply the Chapman-
Enskog (C-E) expansions of the distribution functions about its equilibria (local Maxwellian) and the time derivative,
i.e., fα = f

(0)
α + εf

(1)
α + ε2f

(2)
α + · · · and ∂t = ∂t0 + ε∂t1 + ε2∂t2 + · · · , respectively, where ε is a small perturbation

parameter. This is equivalent to the following expansions on the higher, non-conserved, raw moments

Γ = Γ(0) + εΓ(1) + ε2Γ(2) + · · · , Λ = Λ(0) + εΛ(1) + ε2Λ(2) + · · · , (35)

in the above moment system. To the leading order, the mass and momentum equations in Eq. (33) become

∂t0ρ+ ∇ · (ρu) = 0, ∂t0(ρu) + ∇ · Γ(0) = F , (36)

where Γ(0) = c2sρI + ρuu is the equilibrium part of the second raw moment. On the other hand, the leading order
second raw moment equation, via Eq. (34), reads as

∂t0Γ(0) + ∇ · Λ(0) = −1

τ
Γ(1) + Υ. (37)
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In order to recover the physically correct viscous stress, the non-equilibrium part of the second moment Γ(1) in the
above equation, Eq. (37), should only be related to ∇ · Λ(0), which depends on the velocity gradients. However, the
presence of the time derivative term in Eq. (37), i.e., ∂t0Γ(0) = c2s∂t0ρI+∂t0(ρuu), in which the time derivatives of the
velocity ∂t0(ρuu) via the leading momentum equation (Eq. (36)) give rise to an additional term of the form Fu+uF .
This can be eliminated only if the corresponding moment of the body force Υ becomes equal to

Υ = Fu + uF . (38)

This necessary condition for the second raw moment of the body force
∑
α Sαeαieαj = Fiuj +Fjui, which is a classic

result of the acceleration term in the Boltzmann equation, was given in [40]. This implies a vanishing second central
moment of the body force, i.e.,

∑
α Sα(eαx− ux)m(eαy − uy)n = 0 for m+n = 2, which appears explicitly in [41] and

was considered in the previous unsplit forcing approach for the cascaded LB scheme [19].
In view of the above, in our present operator-split forcing based cascaded LB formulation, the PDE needed for the

solving the split force step given in Eq. (13) is a central moment representation of the split kinetic equation ∂tfα = Sα.
That is, taking the central moments of this equation of order (m+ n), we get an evolution equation as follows:

Step F :
∂

∂t
κ̂xmyn = σ̂xmyn , (39)

where κ̂xmyn =
∑
α fα(eαx−ux)m(eαy−uy)n and σ̂xmyn =

∑
α Sα(eαx−ux)m(eαy−uy)n are the central moments of

the distribution functions and the source term due to the body force, respectively. It thus follows that, in particular,
the continuous time equations for the change in the second central moment components for the split body force step
are given as

Step F :
∂

∂t
κ̂xx = 0,

∂

∂t
κ̂yy = 0,

∂

∂t
κ̂xy = 0, (40)

which implies the necessary condition for introducing the canceling second raw moment components of the body force,
i.e., 2Fxux, 2Fyuy and Fxuy+Fyux to eliminate the spurious effects in the viscous stress and thereby correctly recover
the Navier-Stokes equations as mentioned above.

V. EXTENSION OF THE SYMMETRIZED OPERATOR SPLIT IMPLEMENTATION FOR CASCADED
LB METHOD FOR PASSIVE SCALAR TRANSPORT INCLUDING SOURCES

In many applications, the transport of a passive scalar (e.g., temperature or species concentration) occurs, which
is generally represented by means of the following convection-diffusion equation (CDE) with a source term

∂tφ+ ∇ · (uφ) = ∇ · (Dφ∇φ) + Sφ. (41)

Here, φ is the passive scalar variable, Dφ is the diffusion coefficient, and Sφ is the local source term (e.g. due to
viscous dissipation, internal heat generation or chemical reaction). Various LB schemes have been investigated for
modeling the CDE during the last two decades (e.g., [31, 42–50]). A novel numerical approach considered in this study
for the solution of Eq. (41) is as follows. The velocity u in the above equation can be obtained from the cascaded LB
scheme for the D2Q9 lattice presented in the previous section. Our goal is to solve for the passive scalar field φ whose
evolution is represented by the above CDE, but without the source term using a separate 2D cascaded scheme with
collide and stream steps involving another distribution function; then implement the effect of the source term Sφ via
additional source steps using an operator split scheme based on a symmetrization principle. To meet this objective, we
consider a new cascaded LB scheme for coupled fluid flow and scalar transport that we developed recently in different
dimensions [51] and further accelerated by using multigrid [52]. Here, a two-dimensional, five velocity (D2Q5) lattice
based cascaded LB method is introduced to represent the evolution of the passive scalar field via the CDE, which is
adopted in this work for further extension using an operator split source implementation.

The D2Q5 lattice is represented by means of the following components of the particle velocity vectors |ex〉 and |ey〉:

|ex〉 = (0, 1, 0,−1, 0)
†
, (42a)

|ey〉 = (0, 0, 1, 0,−1)
†
. (42b)

In addition, we introduce the following |1〉 vector:

|1〉 = (1, 1, 1, 1, 1)
†
. (43)
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The zeroth moment is the Euclidean inner product of this vector with the distribution functions. The corresponding
five orthogonal basis vectors are given by [52]

|L0〉 = |1〉 , |L1〉 = |ex〉 , |L2〉 = |ey〉 ,
|L3〉 = 5 |e2

x + e2
y〉 − 4 |1〉 , |L4〉 = |e2

x − e2
y〉 , (44)

which can be grouped together as the following transformation matrix L for mapping changes in the moment space
to those in the velocity space

L = [|L0〉 , |L1〉 , |L2〉 , |L3〉 , |L4〉] . (45)

In order to represent the structure of the cascaded collision operator for the passive scalar field, we define the following
central moments and raw moments, respectively, of the distribution function gα and its equilibrium geqα as(

κ̂φxmyn

κ̂eq,φxmyn

)
=
∑
α

(
gα
geqα

)
(eαx − ux)m(eαy − uy)n, (46)

and (
κ̂φ

′

xmyn

κ̂eq,φ
′

xmyn

)
=
∑
α

(
gα
geqα

)
emαxe

n
αy. (47)

By equating the discrete central moments of the equilibrium distribution function with the corresponding continuous
central moments based on the local Maxwellian (wherein the density is replaced by φ), we get

κ̂eq,φ0 = φ, κ̂eq,φx = 0, κ̂eq,φy = 0, κ̂eq,φxx = c2sφφ, κ̂
eq,φ
yy = c2sφφ, (48)

which will be used in the construction of the collision operator later. In this work, wet set c2sφ = 1/3. Then, the
2D cascaded LB scheme for the passive scalar transport without the source term can be represented by means of the
following collision and streaming steps:

gpα = gα + (L · ĥ)α, (49a)
gα(x, t) = gpα(x− eα∆t, t). (49b)

The procedure to obtain the change of different moments under cascaded collision, i.e. ĥ based on the central moment
equilibria Eq. (48) is analogous to that used in the previous section for fluid flow, with the main difference being that
in the present case, there is only one collisional invariant, i.e. φ, and hence ĥ0 = 0. Then, it follows that [52] (see
also [51] that elaborates such a formulation for a 3D cascaded LBM for CDE)

ĥ1 =
ωφ1
2

[
φux − κ̂φ

′

x

]
,

ĥ2 =
ωφ2
2

[
φuy − κ̂φ

′

y

]
,

ĥ3 =
ωφ3
4

[
2c2sφφ− (κ̂φ

′

xx + κ̂φ
′

yy) + 2(uxκ̂
φ′

x + uyκ̂
φ′

y ) + (u2
x + u2

y)φ
]

+ uxĥ1 + uyĥ2,

ĥ4 =
ωφ4
4

[
−(κ̂φ

′

xx − κ̂
′φ
yy) + 2(uxκ̂

φ′

x − uyκ̂φ
′

y ) + (u2
x − u2

y)φ
]

+ uxĥ1 − uyĥ2. (50)

where ωφ1 , ω
φ
2 , ω

φ
3 and ωφ4 are the relaxation parameters. Notice that the cascaded structure of the expressions for the

change of moments ĥ starts from the first order moments for the CDE, unlike those for the NSE given the previous
section. The relaxation parameters for the first order moments in the above determine the molecular diffusivity Dφ:
Dφ = c2sφ( 1

ωφj
− 1

2 )∆t, j = 1, 2. After the streaming step in Eq. (49b), the output passive scalar field φo is obtained

as the zeroth moment of gα as

φo =

4∑
α=0

gα. (51)
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The effect of the source term Sφ can then be introduced as the solution of the source subproblem split from Eq. (41):
∂tφ = Sφ. As before, this can be implemented by means of two symmetrized sequence of steps before and after
collision, each using a time step ∆t/2 and such a source operator will be denoted by R1/2. Thus, the extension of the
Strang splitting approach for the cascaded LBM to represent the source term in the CDE can be formulated as

gα(x, t+ ∆t) = S R1/2 C R1/2gα(x, t). (52)

Solving the above subproblem representing the evolution of the scalar field φ due to the source term Sφ yields the
following step before collision

Pre-collision Source StepR1/2 : φ = φo +
Sφ
2

∆t. (53)

This updated φ is then used to perform the cascaded collision relaxation step and determine the change of different
moments under collision ĥβ , where β = 1, 2, 3, 4, given in Eq. (50). Analogously, the other source half step following
collision can be represented as

Post-collision Source StepR1/2 : φp = φ+
Sφ
2

∆t = φo + Sφ∆t. (54)

In order to effectively implement this in the cascaded formulation, we take the zeroth moment of the post-collision
distribution gpα given by gpα = gα + (L · ĥ)α, which yields

φp =
∑
α

gpα =
∑
α

gα +
∑
β

〈Kβ |1〉ĥβ . (55)

Based on the orthogonal basis vectors given in Eq. (44), it follows that
∑
β 〈Kβ |1〉ĥβ = 5ĥ0, which when substituted

in Eq. (55), and along with Eq. (51), we obtain

φp = φo + 5ĥ0. (56)

Comparing the target result Eq. (54) with the above constructed field (Eq. (56)), we get the following result for the
zeroth order moment change due to the source Sφ

ĥ0 =
Sφ
5

∆t. (57)

This effectively implements the effect of the post-collision source step over a step length of ∆t/2. Using this result
(Eq. (57)) along with Eq. (50) for the change of moments under collision in Eq. (49a) and expanding (K · ĥ)α, we
obtain the post-collision distribution functions, which read as

gp0 = g0 +
[
ĥ0 − 4ĥ3

]
,

gp1 = g1 +
[
ĥ0 + ĥ1 + ĥ3 + ĥ4

]
,

gp2 = g2 +
[
ĥ0 + ĥ2 + ĥ3 − ĥ4

]
,

gp3 = g3 +
[
ĥ0 − ĥ1 + ĥ3 + ĥ4

]
,

gp4 = g4 +
[
ĥ0 − ĥ2 + ĥ3 − ĥ4

]
. (58)

The overall sequence of computational steps for the 2D cascaded LB scheme for passive scalar transport with a
source implementation based on the Strang splitting is similar to that for the fluid flow presented in the previous
section. Moreover, such a symmetrized operator splitting formulation can also be used to represent forces/sources in
the 3D central moment based LBM for thermal convective flows developed recently [51].

VI. RESULTS AND DISCUSSION

We will now present a numerical validation study of the various symmetrized operator split schemes to incorporate
forces/sources in the cascaded LB method presented earlier by comparison of their computed results against a set of
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benchmark problems with analytical solutions. In the following, all the numerical results will be generally reported
in the lattice units typical for LB simulations [39]. That is, unless otherwise specified, we consider ∆x = ∆t = 1 and
hence the particle speed c = ∆x/∆t is taken to be unity. The fluid velocity will be scaled by the particle speed c,
and the reference scale for the density ρ0 is 1.0. For the cascaded LB method for fluid flow presented in Sec. IV, the
considerations for the relaxation parameters are as follows: ω4 and ω5 determine the shear kinematic viscosity (via
ω4 = ω5 = 1/τ and ν = 1

3 (τ − 1
2 )∆t), which can be specified from the problem statement. The parameter ω3 is related

to the bulk viscosity (see e.g. [19]), while the remaining parameters for the higher order moments ω6, ω7 and ω8, along
with ω3 can be tuned to improve numerical stability. A detailed study of the influence of such parameters in the
cascaded LB scheme was performed in [53]. For turbulent flow computations, care needs to be exercised in choosing
the relaxation parameters for the higher order moments in order to avoid being over-dissipative. In this work, for the
incompressible, laminar flow benchmark flow problems considered in the following, we use ω3 = ω6 = ω7 = ω8 = 1.0.
On the other hand, for the cascaded LB method for the solution of the passive scalar transport presented in Sec. V, the
parameters ωφ1 and ωφ2 , which are related to the coefficient of diffusivity (i.e. ωφ1 = ωφ2 = 1/τφ and Dφ = 1

3 (τφ− 1
2 )∆t),

are assigned from the problem statement based on the characteristic dimensionless group; relaxation parameters ωφj ,
where j = 3, 4, 5, which influence the numerical stability, are set to unity in this work.

A. Poiseuille Flow

In these sections, we validate our 2D operator split forcing approach by considering various test problems involving
different types of body force fields. For the first problem, a two-dimensional Poiseuille flow in a channel discretized
with 3 × 100 lattice nodes is considered. In our computations, at the top and bottom walls, a no-slip boundary
condition, and at the inlet and outlet, periodic boundary conditions are applied. The no-slip boundary condition
is implemented by using the classical half-way bounce back scheme in this work [39, 54]. The analytical solution
of the velocity profile flow for this laminar flow problem can be written as follows: u(y) = Umax[1 − ( yL )2], where
Umax = FxL

2/(2ρν) is the maximum velocity along the central line. Here, L, ρ and ν are the channel half-width,
fluid density and kinematic viscosity respectively. Fx is a constant body force acting in the x-direction which drives
the flow. Comparison of the simulation results of the velocity profile against the analytical solution is shown in Fig. 1,
where the body forces for two cases with maximum velocities of 0.02 and 0.08 are set to the values of 10−8 and 10−7,
respectively. For the former case, the relaxation time τ is chosen to be 0.5019, which for the latter it is 0.5047. The
corresponding Mach numbers Ma are 0.034 and 0.138, respectively. It can be clearly seen that there is an excellent
agrement between the numerical simulation carried out using the 2D symmetrized operator split cascaded LB forcing
scheme and the analytical solution for the both cases.
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FIG. 1: Comparison of the computed velocity profiles using the 2D symmetrized operator split cascaded LB forcing
scheme with the analytical solution for Poiseuille flow for body force magnitudes of 10−7 and 10−8. The lines
indicate the analytical results, and the symbols are the solutions obtained by our present numerical scheme.
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Grid Convergence Study

In order to determine the order of accuracy of our symmetrized operator split forcing scheme, we perform a
grid convergence test by applying a diffusive scaling. According to this scaling, Mach number Ma = U/cs reduces
proportionally with the increase in the grid resolution at a fixed viscosity or fixed relaxation time τ = 1/ωj , j = 4, 5,
where ω4 and ω5 represent the relaxation parameters for the second order moments in the 2D cascaded LB scheme
(see Sec. 4), so that the scheme has asymptotic convergence to the incompressible flow limit. For our simulation, we
consider a Poiseuille flow with the same set up as considered earlier. We consider a sequence of 3×15, 3×31, . . . , 3×121
lattice nodes to study grid convergence under diffusive scaling when the relaxation time and Reynolds number are set
to τ = 0.55 and 100, respectively. Next, to quantify the grid convergence, we consider the global relative error (Eg,u)
of the flow field under a discrete `2-norm as follows:

‖Eg,u‖2 =

√
Σ(uc − ua)2

Σ(ua)2
, (59)

where uc and ua is the computed and analytical solutions, respectively, and the summation is carried out for the flow
domain. The relative error between the computed results and the analytical solution against different grid resolutions
is illustrated in Fig. 2. The relative errors have a slope of 2.00 which indicates that our new approach based on the
symmetrized operator split forcing scheme for the cascaded LB method is spatially second-order accurate.
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FIG. 2: Grid convergence for 2D Poiseuille flow with a constant Reynolds number Re = 100 and relaxation time
τ = 0.55 computed using the 2D symmetrized operator cascaded LB forcing scheme.

B. Hartmann Flow

As the next benchmark case study, a numerical comparison of the results with our 2D operator split forcing approach
is made for a specific type of magnetohydrodynamic (MHD) flow, i.e., the flow between two unbounded plates subjected
to a transverse magnetic field known as the Hartmann flow. This type of flow arises in a variety of engineering devices
including MHD pumps, fusion devices, generators and microfluidic devices. Furthermore, an inherent spatially-varying
body force makes this benchmark a particularly suitable test problem for the present study. The fluid is driven by a
constant body force Fb and retarded by a local variable force (i.e. Lorentz force) arising by an interaction between a
uniform steady magnetic field By = B0, acting perpendicular to the channel walls and the fluid motion. By choosing
the x axis for the flow direction and the y axis to be co-directional with the external magnetic field By = B0, the

induced magnetic field resulting from such an interaction can be represented as Bx(y) = FbL
B0

[
sinh(Ha yL )
sinh(Ha)

− y
L

]
. Here,

the Hartmann number, Ha is the square root of the ratio of the electromagnetic force to the viscous force and L and Fb
are the channel half-width and the uniform driving force, respectively. Consequently, the effectively spatially varying
body force which act on the flow is Fx = Fb+Fmx . This is a combination of the Lorentz force Fmx = B0

dBx
dy , and the

uniform driving force Fb. The analytical solution for such a problem is ux(y) = FbL
B0

√
η
ν coth(Ha)

[
1− cosh(Ha yL )

cosh(Ha)

]
.
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Here, ν is the kinematic viscosity and η is the magnetic resistivity, which can be represented by η = B0
2L2/Ha2ν.

We consider the same set up as considered for the Poiseuille flow simulation for the boundary conditions but now
with spatially varying body forces. For two different values of Ha, 3 and 10, corresponding to Mach numbers of 0.013
and 0.004, respectively, the computed velocity profiles against the analytical solution are illustrated in Fig. 3. It
can be observed that the present simulation is able to reproduce the analytical solution very well. In particular, the
significant flattening of the velocity profile at higher Ha is well reproduced by our forcing scheme.
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FIG. 3: Comparison of the computed velocity profiles using the 2D symmetrized operator split cascaded LB forcing
scheme with the analytical solution for Hartmann flow for Hartmann numbers Ha of 3 and 10. The lines indicate the

analytical results, and the symbols are the solutions obtained by our present numerical scheme.

C. Womersley Flow

We now turn to study the Womersley flow, which is a flow between two infinite parallel plates driven by a temporally
oscillatory external force. This benchmark problem is used to assess the ability of our symmetrized operator split
forcing scheme for representing time-dependent body forces. The external force Fmcos(ωt) oscillates with an amplitude
Fm and with an angular frequency ω = 2π/T , where T is the time period. Supposing that the flow is laminar and
incompressible, the analytical solution for the velocity field is given as

u(y, t) = Re
{
iFmω

[
1− cos(γy/L)

cosγ ]e(iωt)}, (60)

where γ =
√
iWo2, Wo = L

√
(ω/ν) being the Womersley number, which is a non-dimensional parameter representing

the ratio of the channel half width L to the diffusion length over an oscillation period (i.e., the Stokes layer thickness).
Re {·} represents taking the real part of the expression within the brackets. The simulation parameters are set as
follows. The computational domain is resolved by a 3 × 100 mesh, the time period T = 10000 and the maximum
force amplitude is set to Fm = 1 × 10−5. The boundary condition at the inlet and the outlet is periodic and the
half-way bounce-back scheme to represent the no-slip condition is used at the walls. The body force for this case
is implemented as a solution of Eq. (13) to update the velocity field. Since the explicit form of the time-dependent
force is known here, it can be either analytically integrated to perform the velocity update in the force step or solved
numerically by representing the body force Fx via the trapezoidal rule as 1

2Fm(cos(ωt) + cos(ωt+ ∆t/2)). The latter
approach is used in the present study. In general cases, if the body force F depends on u, then Eq. (13) needs to
be numerically integrated and used as an implicit equation to solve for u. Simulations are carried out to obtain the
velocity profiles across the channel at different time instants with the time period T . Figure 4 shows a comparison
for the velocity profiles for two values of the Womersley number, i.e. 4 and 10.7 at different time instants. It can
be clearly seen that the numerical results agree well with the analytical solution represented by Eq. (60). Thus, the
symmetrized operator split forcing scheme is able to represent flow profiles driven by time varying body forces with
excellent accuracy.
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FIG. 4: Comparison of computed and analytical velocity profiles at different instants within a time period of
pulsatile flow at two different Womersley numbers of Wo = 4 Wo = 10.7. Here, lines represent the analytical

solution and symbols refer to the numerical results obtained using the 2D symmetrized operator split cascaded LB
forcing scheme.

D. Flow through a Square Duct

In order to validate our 3D symmetrized operator split forcing scheme for a multidimensional flow subjected to a
body force, we consider flow through a square duct driven by a constant body force Fx. In our computations, we
apply periodic boundary conditions at the inlet and outlet and a no-slip boundary condition at the four wall surfaces.
For a channel with width 2a, this test problem has an analytical solution based on a Fourier series for the velocity
field, which reads as

u(y, z) =
16 a2 Fx
ρν π3

∞∑
n=1

(−1)
(n−1)

[
1−

cosh( (2n−1)πz
2a )

cosh( (2n−1)π
2 )

]
cos
(

(2n−1)πy
2a

)
(2n− 1)

3 , (61)

where ρ and ν are the fluid density and kinematic viscosity, respectively and x is the direction of the flow, and
−a < y < a, −a < z < a is the cross section of the duct. We chose a grid resolution of 3× 45× 45, with a relaxation
parameter τ equal to 0.76, and a body force magnitude of Fx = 1× 10−7 is applied. Figure 5 illustrates the velocity
profiles u(y, z) computed using our 3D symmetrized operator split scheme to incorporate forcing terms in the 3D
cascaded LB method for different values of y. In this figure, a comparison with the analytical solution given above is
also made. It is evident that there is a very good agreement between our computed results and the analytical solution
for this body force driven multidimensional flow problem.

E. Four-rolls Mill Flow Problem

Let us now consider a problem involving two-dimensional (2D), steady, fluid motion consisting of an array of counter-
rotating vortices in a square domain of side 2π that is periodic in both x and y directions, driven by a spatially varying
body force, i.e. Fx = Fx(x, y) and Fy = Fy(x, y). It is a modified form of the classical Taylor-Green vortex flow and
has been used as a benchmark problem to test body force implementations in prior LBM studies (e.g., [22, 55]). The
four-rolls fluid motion is established by imposing the following local body force components:

Fx(x, y) = 2ρ0νu0 sinx sin y, Fy(x, y) = 2ρ0νu0 cosx cos y,

where 0 ≤ x, y ≤ 2π, ρ0 is the reference density, ν is the kinematic viscosity, and u0 is the velocity scale. A
simplification of the Navier-Stokes equations with the above local body force leads to the following analytical solution
for the velocity field:

ux(x, y) = u0 sinx sin y, uy(x, y) = u0 cosx cos y.
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scheme and the analytical solution, for flow through a square duct in presence of a body force magnitude of

Fx = 10−7 for different values of y. Here, lines represent the analytical solution and symbols refer to the results
obtained using the present numerical scheme.

First, in order to validate the Strang splitting-based forcing scheme for the cascaded LBM, we consider u0 = 0.01,
ρ0 = 1.0 and ν = 0.0011, and the square domain of side 2π is resolved by N×N mesh grids, where N = 24, 48, 96, 192.
The mesh spacing ∆x then is given by ∆x = 2π/N . Considering the convective scaling ∆x/∆t = c = 1, the kinematic
viscosity may be written as ν = 1

3 (τ − 1
2 )∆x, where τ = 1/ω4 = 1/ω5. Figure 6 shows the velocity field uy(x, y = π)

computed using N = 96 along the horizontal centerline of the domain and compared agains the analytical solution
given above. Excellent agreement is seen. Furthermore, Fig. 7 presents the 2D computed and analytical results for

FIG. 6: Comparison of the computed and analytical vertical velocity profiles uy(x) at y = π for the four-rolls mill
flow problem at u0 = 0.01, ν = 0.0011 and N = 96. Here, line represents the analytical solution and the symbol
refers to the numerical results obtained using the 2D symmetrized operator split cascaded LB forcing scheme.

the streamlines, which are in very good agreement with each other. Evidently, counter-rotating pairs of vortices are
well reproduced by the present forcing scheme for the cascaded LBM based on Strang splitting.
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(a) Present work (b) Analytical

FIG. 7: Streamlines (a) computed using the 2D symmetrized operator split cascaded LB forcing scheme and (b)
obtained using the analytical solution for the four-rolls mill flow problem at u0 = 0.01, ν = 0.0011 and N = 96.

Grid Convergence Study

In order to verify the higher order accuracy provided by the Strang splitting, i.e., O(∆x2) ∼ O(∆t2), we use
the convective or acoustic scaling to study the convergence rate of the present operator-split forcing formulation
for different grid resolutions, rather than the diffusive scaling considered earlier. Thus, we again use u0 = 0.01,
ν = 0.0011 and N = 24, 48, 96 and 192. By maintaining ∆x/∆t = c = 1, for any pair of grid resolutions, Ni × Ni
and Nj ×Nj , the corresponding relaxation parameters τi and τj , respectively, under the convective scaling are related
by τj = 1

2 + (τi − 1
2 )
Nj
Ni

. Figure 8 illustrates rate of convergence using the relative error between the computed and
analytical solution for the x-component of the velocity field summed for the entire domain under the discrete `2 norm
(see Eq. (59)) for the above four different grid resolutions. It can be seen that the relative error varies with the grid
resolution in the log-log scale with a slope of −2.0. Hence, the present forcing scheme based on the Strang splitting
for the cascaded LBM is second order accurate under the convective scaling. In other words, this test demonstrates
second order accuracy in time, while the earlier test for Poiseuille flow under diffusive scaling in Fig. 2 is not.

F. Thermal Couette Flow with Viscous Heat Dissipation

For the purpose of validating the symmetrized operator split cascaded source scheme for the solution of a scalar
passive field represented by the CDE with a source term in Sec. 5, we perform the simulation of a thermal Couette
flow with viscous heat dissipation. Here, the passive scalar field φ is the temperature T , which is evolved under a
thermal diffusivity D, and modified by a source term Sr due to viscous dissipation arising from the shear flow. For
such a one-dimensional Couette flow, the top wall moves with a constant velocity U0 in a horizontal direction, which
is maintained at a higher temperature TH and the bottom wall is at a lower temperature TL and remains stationary.
The scalar source term Sr resulting from the viscous heat dissipation is given by

Sr =
2ν

Cv
(S : S), (62)

where S = [∇u + ∇uT ]/2 is the strain rate tensor and Cv is specific heat at constant volume. The source term
due to the viscous heating Sr in Eq. (62) is obtained in simulations from the cascaded LB solution for the flow field
presented in Sec. III. In particular, the strain rate tensor S in the cascaded LB formulation can be readily related



18

10
1

10
2

10
3

Grid resolution

10
-4

10
-3

10
-2

10
-1

R
e
la

ti
v
e
 e

rr
o
r

Ideal

Cascaded LBM

Slope=-2.0

FIG. 8: Grid convergence for the four-rolls mill flow problem at u0 = 0.01, ν = 0.0011 computed using the 2D
symmetrized operator split cascaded LB forcing scheme under the convective scaling.

TABLE I: Relative error between the numerical results obtained using the 2D symmetrized operator split cascaded
LB source scheme for a passive scalar transport and the analytical solution for the simulation of the thermal

Couette flow at various Eckert numbers Ec.
Eckert number Ec Relative error

10 2.840× 10−5

20 3.695× 10−5

40 4.317× 10−5

60 4.561× 10−5

80 4.691× 10−5

100 4.778× 10−5

to the second-order non-equilibrium moment components (see e.g., [19, 53]). For example, Sxy = 1
2 (∂xuy + ∂yux) =

− 3ω5

2ρ0
(
∑
α
fαeαxeαy − ρuxuy). This problem has the following analytical solution for the temperature profile [56]

T − TL
TH − TL

=
y

H
+

PrEc
2

y

H

(
1− y

H

)
, (63)

where Pr = ν/D is the Prandtl number and Ec = U2
0 /[Cv(TH − TL)] is the Eckert number. In Fig. 9, the Pr is

fixed at 0.71 while the Ec varies from 10 to 100 and the domain is discretized with 3× 64 lattice nodes. The velocity
of the top wall U0 is taken as 0.05, the boundary temperature TL and TH are specified as 0.0 and 1.0, respectively,
and the relaxation parameters τ and τφ are chosen as 0.70 and 0.782, respectively. Computed results obtained using
the symmetrized operator split cascaded source scheme are compared with the analytical solution given in Eq. (63).
It is found that the numerical results are in excellent agreement with the analytical solution for various values of
Ec, representing the source strength for this problem. In addition, the relative error between the computed results
obtained using the Strang splitting-based source scheme and the analytical solution measured under the discrete
`2-norm (Eq. (59)) for the simulation of the thermal Couette flow are reported in Table I.

VII. SUMMARY AND CONCLUSIONS

Symmetrized operator split forcing schemes for flow simulations in 2D and 3D and a method for incorporating
sources in a convection-diffusion transport of a scalar field using the cascaded lattice Boltzmann formulations are
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FIG. 9: Comparison between numerical results of the temperature profile computed using the 2D symmetrized
operator split cascaded LB source scheme for a passive scalar transport and the analytical solution for the thermal
Couette flow for various values of the Eckert number Ec. Here, lines represent the analytical solution and symbols

refer to the results obtained using the present numerical scheme.

developed. They involve force/source implementation steps before and following the collision step each taking a half
time step, and are consistent with the Strang splitting, which has second order rate of convergence by construction. The
post-collision half source/forcing step is effectively implemented in terms of the change of moments at the zeroth/first
order that is a function of the source/body force and the time step, and a normalization factor arising from the choice
of the basis for moments for the lattice set considered. The implementation of the pre-collision half source/forcing
step properly projects the effects of the force/source to the higher order moments that undergo relaxation by collision
and naturally eliminates the discrete effects. In contrast to the prior forcing schemes for the cascaded LB method that
required using extra terms at different orders in the moment space and cumbersome lattice-dependent transformations
to map them to the velocity space, the present symmetrized operator split forcing/source schemes result in a simpler
formulation, with all the force/source related computations performed only in the moment space, which facilitates
implementation. However, it may be noted that for efficient implementations of the LB algorithms, their performance
on current hardware is limited entirely by memory bandwidth rather than by floating point operations, and the
complexity of the aggregate collision operator (including forcing) does not affect performance. Comparisons of the
numerical solutions obtained using the Strang splitting based forcing/source implementation methods for cascaded
LB schemes against various benchmark solutions validate them for flow computations in both 2D and 3D as well as
for the passive scalar transport with a local source. Furthermore, the numerical results demonstrate the second order
accuracy for the convergence rate in time under the acoustic scaling of the symmetrized operator split forcing scheme.
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Appendix A: Strang Splitting Implementation of Body Forces in 3D Central Moment LB Method

For the propose of illustration, we will consider the 3D central moment LB method using the three-dimensional,
fifteen velocity (D3Q15) [57] lattice, but can be readily extended for other lattices such as the D3Q27 lattice. The
components of the particle velocity vectors along with the |1〉 vector (which is used to represent the zeroth moment
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with the distribution function) for this lattice are

|ex〉 = (0, 1,−1, 0, 0, 0, 0, 1,−1, 1,−1, 1,−1, 1,−1)
†
,

|ey〉 = (0, 0, 0, 1,−1, 0, 0, 1, 1,−1,−1, 1, 1,−1,−1)
†
,

|ez〉 = (0, 0, 0, 0, 0, 1,−1, 1, 1, 1, 1,−1,−1,−1,−1)
†
,

|1〉 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
†
. (A1)

The corresponding linearly independent orthogonal basis vectors are given by [57]

|K0〉 = |1〉 , |K1〉 = |ex〉 , |K2〉 = |ey〉 , |K3〉 = |ez〉 ,
|K4〉 = |exey〉 , |K5〉 = |exez〉 , |K6〉 = |eyez〉 ,

|K7〉 = |e2
x − e2

y〉 , |K8〉 = |e2
x + e2

y + e2
z〉 − 3 |e2

z〉 , |K9〉 = |e2
x + e2

y + e2
z〉 − 2 |1〉 ,

|K10〉 = 5 |ex(e2
x + e2

y + e2
z)〉 − 13 |ex〉 ,

|K11〉 = 5 |ey(e2
x + e2

y + e2
z)〉 − 13 |ey〉 , |K12〉 = 5 |ez(e2

x + e2
y + e2

z)〉 − 13 |ez〉 ,
|K13〉 = |exeyez〉 ,

|K14〉 = 30 |e2
xe

2
y + e2

xe
2
z + e2

ye
2
z〉 − 40 |e2

x + e2
y + e2

z〉+ 32 |1〉 . (A2)

Then, the orthogonal matrix K follows as

K = [|K0〉 , |K1〉 , |K2〉 , |K3〉 , |K4〉 , |K5〉 , |K6〉 , |K7〉 , |K8〉
|K9〉 , |K10〉 , |K11〉 , |K12〉 , |K13〉 , |K14〉] , (A3)

which maps the change of moments under collisions back to the changes in the distribution functions. The central
moments and raw moments of the distribution function and its equilibrium of order (m+n+p) are defined, respectively,
as (

κ̂xmynzp
κ̂eqxmynzp

)
=
∑
α

(
fα
feqα

)
(eαx − ux)m(eαy − uy)n(eαz − uz)p, (A4)

and (
κ̂

′

xmynzp

κ̂eq
′

xmynzp

)
=
∑
α

(
fα
feqα

)
emαxe

n
αye

p
αz. (A5)

The central moment equilibria used for the construction of the 3D cascaded collision operator for the D3Q15 lattice
is presented in [57]. The collide and stream steps of the 3D cascaded method are formally represented in Eqs. (22a)
and (22b), respectively. Owing to the mass and momentum being collision invariants, it follows that ĝ0 = ĝ1 = ĝ2 =
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ĝ3 = 0. For the non-conserved moments, the change of moments under cascaded collision are given by

ĝ4 =
ω4

8

[
−κ̂

′

xy + ρuxuy

]
,

ĝ5 =
ω5

8

[
−κ̂

′

xz + ρuxuz

]
,

ĝ6 =
ω6

8

[
−κ̂

′

yz + ρuyuz

]
,

ĝ7 =
ω7

4

[
−(κ̂

′

xx − κ̂
′

yy) + ρ(u2
x − u2

y)
]
,

ĝ8 =
ω8

12

[
−(κ̂

′

xx + κ̂
′

yy − 2κ̂
′

zz) + ρ(u2
x + u2

y − 2u2
z)

ĝ9 =
ω9

18

[
−(κ̂

′

xx + κ̂
′

yy + κ̂
′

zz) + ρ(u2
x + u2

y + u2
z)
]
.

ĝ10 =
ω10

16

[
−κ̂

′

xyy + 2uyκ̂
′

xy + uxκ̂
′

yy − 2ρuxu
2
y

]
+ uy ĝ4 +

1

8
ux(−ĝ7 + ĝ8 + 3ĝ9),

ĝ11 =
ω11

16

[
−κ̂

′

xxy + 2uxκ̂
′

xy + uyκ̂
′

xx − 2ρu2
xuy

]
+ uxĝ4 +

1

8
uy(ĝ7 + ĝ8 + 3ĝ9),

ĝ12 =
ω12

16

[
−κ̂

′

xxz + 2uxκ̂
′

xz + uzκ̂
′

xx − 2ρu2
xuz

]
+ uxĝ5 +

1

8
uz(ĝ7 + ĝ8 + 3ĝ9),

ĝ13 =
ω13

8

[
−κ̂

′

xyz + uxκ̂
′

yz + uyκ̂
′

xz + uzκ̂
′

xy − 2ρuxuyuz

]
+ uz ĝ4 + uy ĝ5 + uxĝ6,

ĝ14 =
ω14

16

[
−κ̂

′

xxyy + 2uxκ̂
′

xyy + 2uyκ̂
′

xxy − u2
xκ̂

′

yy − u2
yκ̂

′

xx − 4uxuyκ̂
′

xy

+˜̂κxx˜̂κyy + 3ρu2
xu

2
y

]
− 2uxuy ĝ4 +

1

8
(u2
x − u2

y)ĝ7

+
1

8
(−u2

x − u2
y)ĝ8 +

(
3

8
(−u2

x − u2
y)− 1

2

)
ĝ9 + 2uxĝ10 + 2uy ĝ11, (A6)

The output velocity field u0 = (uox, u
o
y, u

o
z) is obtained following the streaming step as

ρuox =
∑14
α=0 fαeαx, ρuoy =

∑14
α=0 fαeαy ρuoz =

∑14
α=0 fαeαz. (A7)

As in the 2D case, the pre-collision forcing step F1/2 involves the following update to the velocity field:

ux =
1

ρ

(
ρuox +

Fx
2

∆t

)
, uy =

1

ρ

(
ρuoy +

Fy
2

∆t

)
, uz =

1

ρ

(
ρuoz +

Fz
2

∆t

)
, (A8)

which will be used in the determination of the cascaded collision based change of different moments, i.e. ĝβ , where
β = 4, 5, · · · , 14 as given in Eq. (A6). Analogously, the other post-collision step F1/2 in the symmetrized operator
splitting can be written as

ρupx = ρux +
Fx
2

∆t, ρupy = ρuy +
Fy
2

∆t, ρupz = ρuz +
Fz
2

∆t, (A9)

which, via Eq. (A8), reads as

ρupx = ρuox + Fx∆t, ρupy = ρuoy + Fy∆t, ρupz = ρuoz + Fz∆t. (A10)

In order to effectively introduce this effect into the 3D cascaded formulation, we take the first order moments of the
post-collision distribution function fpα = fα + (K · ĝ)α, which yields

ρupx = Σαf
p
αeαx = Σαfαeαx + Σβ〈Kβ |ex〉ĝβ , (A11a)

ρupy = Σαf
p
αeαy = Σαfαeαy + Σβ〈Kβ |ey〉ĝβ , (A11b)

ρupz = Σαf
p
αeαz = Σαfαeαz + Σβ〈Kβ |ez〉ĝβ . (A11c)

Based on the orthogonal basis vectors Kβ given in Eq. (A2), it follows that

Σβ〈Kβ |ex〉gβ = 10ĝ1, Σβ〈Kβ |ey〉gβ = 10ĝ2, Σβ〈Kβ |ez〉gβ = 10ĝ3. (A12)
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Using Eqs. (A11a)- (A11c) along with Eqs. (A7) and (A12) and comparing with (A10), we obtain the following
result for the change of first order moments due to the force field:

ĝ1 =
Fx
10

∆t, ĝ2 =
Fy
10

∆t, ĝ3 =
Fz
10

∆t. (A13)

Finally, using Eq. (A13) and Eq. (A6) for the change of moments under cascaded collision in (K · ĝ)α and expanding
it, we get the expressions for the post collision-distribution function, which read as

fp0 = f0 + [ĝ0 − 2ĝ9 + 32ĝ14] ,

fp1 = f1 + [ĝ0 + ĝ1 + ĝ7 + ĝ8 − ĝ9 − 8ĝ10 − 8ĝ14] ,

fp2 = f2 + [ĝ0 − ĝ1 + ĝ7 + ĝ8 − ĝ9 + 8ĝ10 − 8ĝ14] ,

f3 = f3 + [ĝ0 + ĝ2 − ĝ7 + ĝ8 − ĝ9 − 8ĝ11 − 8ĝ14] ,

fp4 = f4 + [ĝ0 − ĝ2 − ĝ7 + ĝ8 − ĝ9 + 8ĝ11 − 8ĝ14] ,

fp5 = f5 + [ĝ0 + ĝ3 − 2ĝ8 − ĝ9 − 8ĝ12 − 8ĝ14] ,

fp6 = f6 + [ĝ0 − ĝ3 − 2ĝ8 − ĝ9 + 8ĝ12 − 8ĝ14] ,

fp7 = f7 + [ĝ0 + ĝ1 + ĝ2 + ĝ3 + ĝ4 + ĝ5 + ĝ6 + ĝ9 + 2ĝ10 + 2ĝ11 + 2ĝ12

+ĝ13 + 2ĝ14] ,

fp8 = f8 + [ĝ0 − ĝ1 + ĝ2 + ĝ3 − ĝ4 − ĝ5 + ĝ6 + ĝ9 − 2ĝ10 + 2ĝ11 + 2ĝ12

−ĝ13 + 2ĝ14] ,

fp9 = f9 + [ĝ0 + ĝ1 − ĝ2 + ĝ3 − ĝ4 + ĝ5 − ĝ6 + ĝ9 + 2ĝ10 − 2ĝ11 + 2ĝ12

−ĝ13 + 2ĝ14] ,

fp10 = f10 + [ĝ0 − ĝ1 − ĝ2 + ĝ3 + ĝ4 − ĝ5 − ĝ6 + ĝ9 − 2ĝ10 − 2ĝ11 + 2ĝ12

+ĝ13 + 2ĝ14] ,

fp11 = f11 + [ĝ0 + ĝ1 + ĝ2 − ĝ3 + ĝ4 − ĝ5 − ĝ6 + ĝ9 + 2ĝ10 + 2ĝ11 − 2ĝ12

−ĝ13 + 2ĝ14] ,

fp12 = f12 + [ĝ0 − ĝ1 + ĝ2 − ĝ3 − ĝ4 + ĝ5 − ĝ6 + ĝ9 − 2ĝ10 + 2ĝ11 − 2ĝ12

−ĝ13 + 2ĝ14] ,

fp13 = f13 + [ĝ0 + ĝ1 − ĝ2 − ĝ3 − ĝ4 − ĝ5 + ĝ6 + ĝ9 + 2ĝ10 − 2ĝ11 − 2ĝ12

+ĝ13 + 2ĝ14] ,

fp14 = f14 + [ĝ0 − ĝ1 − ĝ2 − ĝ3 + ĝ4 + ĝ5 + ĝ6 + ĝ9 − 2ĝ10 − 2ĝ11 − 2ĝ12

−ĝ13 + 2ĝ14] . (A14)

The overall algorithmic sequence of steps for the 3D cascaded LB method with the operator split forcing implementa-
tion is similar to that presented in Sec. 4. Notice the significant simplification offered by the present 3D symmetrized
operator split forcing scheme, when compared to that presented in [57].
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