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We perform first-principles path integral Monte Carlo (PIMC) and density functional theory
molecular dynamics (DFT-MD) calculations to explore warm dense matter states of aluminum. Our
equation of state (EOS) simulations cover a wide density-temperature range of 0.1−32.4 g cm−3 and
104−108 K. Since PIMC and DFT-MD accurately treat effects of the atomic shell structure, we find
two compression maxima along the principal Hugoniot curve attributed to K-shell and L-shell ion-
ization. The results provide a benchmark for widely used EOS tables, such as SESAME, QEOS, and
models based on Thomas-Fermi and average-atom techniques. A subsequent multi-shock analysis
provides a quantitative assessment for how much heating occurs relative to an isentrope in multi-
shock experiments. Finally, we compute heat capacity, pair-correlation functions, the electronic
density of states, and 〈Z〉 to reveal the evolution of the plasma structure and ionization behavior.

PACS numbers:

I. INTRODUCTION

The analysis and interpretation of high energy density
states of matter, commonly found in stellar and planetary
interiors [1, 2] and inertial confinement fusion [3–5] exper-
iments, requires knowledge of thermophysical material
properties at extreme conditions. Aluminum, a simple
metal, has been one of the most commonly-studied pro-
totype materials for gaining insight into physical proper-
ties at such conditions. The wide breadth of experimental
and theoretical research on aluminum includes studies of
solid phase transitions [6, 7], shock physics [8–18], x-ray
diagnostics for basic plasma physics [19–34], and opti-
cal [35–39] and transport [40–47] properties.

In addition to aluminum being a prototype for study-
ing basic plasma physics, laser-induced shock-wave ex-
periments often use aluminum as a shock standard [18]
whose mechanical response is assumed to be well-
represented by equation of state (EOS) tables [48], such
as SESAME [49] and QEOS [50–52]. The EOS of
aluminum has been the focus of a number of shock
experiments [11, 13, 15, 53] and theoretical investiga-
tions, including approaches based on Thomas-Fermi [54],
semi-empirical [55–59], density functional theory molec-
ular dynamics (DFT-MD) [36, 40, 60–63], average
atom [42, 64–68], orbital-free DFT (OF-DFT) [63, 69],
and extended-plane-wave DFT [70] models. There have
been some attempts to compare various models [71, 72],
which find general agreement with available shock mea-
surements. However, the highest-pressure shock data,
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derived from nuclear tests, tend to have large error bars,
and models can differ significantly in the stiffness of the
shock Hugoniot curve. Furthermore, models vary sub-
stantially in their treatment of shell-ionization effects,
with DFT-MD-based methods providing the most rigor-
ous quantum mechanical treatment so far.

In this paper, our focus is on further exploring the ac-
curacy of the equation of state of aluminum in the WDM
and plasma regimes, particularly where the influence of
electronic shell structure becomes important [12]. Be-
cause of the relevance of aluminum for WDM physics, it
is desirable to have a first-principles EOS that spans the
the condensed matter, warm dense matter, and plasma
physics regimes as a reference for shock experiments and
hydrodynamic simulations. In recent works, we have de-
veloped a first-principles framework to compute coherent
EOSs across a wide range of density-temperature regimes
relevant to WDM by combining results from state-of-
the-art path integral Monte Carlo (PIMC) and DFT-
MD methods for first [74]- and second-row [75] elements.
Here, we use PIMC and DFT-MD to compute a bench-
mark for the EOS of aluminum in the WDM regime.
We also study the temperature-density evolution of the
plasma structure and ionization throughout the WDM
regime. And, finally, we compare our PIMC/DFT-MD
shock Hugoniot curves with widely-used models and ex-
periments.

The paper is organized as follows: Section II describes
the simulation methods and details. Section III exam-
ines the internal energy and pressure EOS. Section IV
discusses the shock Hugoniot curves. Section V charac-
terizes the plasma structure evolution and ionization as a
function of temperature and density via pair-correlation
functions. Section VI analyzes the electronic density of
states as a function of density and pressure, and finally
section VII summarizes our work.
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FIG. 1: (a) Comparison of the PIMC/DFT-MD principal
shock Hugoniot curve (P-ρ/ρ0 space, ρ0=2.70 g cm−3) with
experiments [11, 13, 15, 53] and various models, including the
QEOS [50, 73] and SESAME-1100 [49] tables, Purgatorio [64],
ACTEX [56], Pseudoatom MD [68], and extended-plane-wave
DFT [70]. Methods that treat the quantum-mechanical shell
structure of the ions reveal two compression maxima due to
K-shell and L-shell ionization. The QEOS and SESAME ta-
bles are derived from models that do not explicitly treat shell
effects and, thus, only predict an average ionization behavior.
Plot (b) shows a magnification of the compression maxima.

II. SIMULATION METHODS

Rigorous discussions of the PIMC [76–78] and DFT
molecular dynamics (DFT-MD) [79–81] methods have
been provided in previous works, and the details of our
simulations have been presented in some of our previ-
ous publications [74, 75, 82–93]. Here, we summarize the
methods and provide the simulation parameters specific
to simulations of aluminum plasma.

The general idea of our approach is to perform simula-
tions along isochores at high temperatures (T≥2×106 K)
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FIG. 2: Temperature-pressure conditions for the PIMC and
DFT-MD calculations along isochores corresponding to the
densities of 0.1-fold (0.27 g cm−3) to 12-fold (32.38 g cm−3).
The blue, dash-dotted line shows the principal Hugoniot curve
for an initial density of ρ0 = 2.70 g cm−3.

using PIMC and at low temperatures (T≤2×106 K) using
DFT-MD. We show the two methods produce consistent
results at overlapping temperatures. The PIMC method
samples the space of all quantum paths to determine the
thermal density matrix of the many-body system. PIMC
increases in efficiency with temperature (scaling as 1/T)
as quantum paths become shorter and more classical in
nature. In contrast, DFT-MD becomes increasingly in-
efficient with increasing temperature, as the number of
partially occupied bands increases unfavorably with tem-
perature (scaling roughly as ∼T3/2). The only uncon-
trolled approximation in PIMC is the use of the fixed-
node approximation, which restricts paths to avoid the
well-known fermion sign problem [94]. The fermion sign
problem is a numerical instability due to the Pauli ex-
clusion principle. We have shown the associated error
is small for relevant systems at high enough tempera-
tures [74, 76, 78]. The main approximation in DFT-MD
is the use of an approximate exchange-correlation (XC)
functional, though at temperatures relevant to WDM,
error in the XC is small relative to the total internal en-
ergy, which is the most relevant quantity for EOS and
Hugoniot simulations [46].

PIMC uses a small number of controlled approxima-
tions, whose errors can be minimized by converging pa-
rameters, such as the time step and system size. To ad-
dress the fermion sign problem, we used the restricted
path approach with Hartree-Fock nodes [75, 90]. The
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nodes were enforced in imaginary time steps of 1/8192
Ha, while the pair density matrices were evaluated in
steps of 1/1024 Ha. This results in using between 1200
and 12 time slices for the temperature range studied
with PIMC (2×106 to 2.16×108 K) and these choices
converged the internal energy per atom to better than
1%. Regarding finite size errors, we have shown that
simulations of 8- and 24-atom cubic cells provide inter-
nal energies that agree within 1.0% and pressures that
agree within 0.5% over the relevant temperature range
for PIMC (T>1×106 K) [85]. Our results for the inter-
nal energy and pressure typically have statistical errors
of 0.3% or less.

We employ standard Kohn-Sham DFT-MD simula-
tion techniques for our low temperature (T ≤ 2×106

K) calculations. The bulk of these simulations are per-
formed with the Vienna Ab initio Simulation Package
(VASP) [95] using the projector augmented-wave (PAW)
method [96, 97], and a NVT ensemble, regulated with
a Nosé thermostat. Exchange-correlation effects are de-
scribed using the local density approximation (LDA) [98].
We used a corresponding PAW-LDA pseudopotential,
which will be discussed further below. Electronic wave
functions are expanded in a plane-wave basis with a en-
ergy cut-off as high as 8,000 eV in order to converge the
total energy. Size convergence tests up to a 64-atom
simulation cell at temperatures of 10,000 K and above
indicate that internal energies are converged to better
than 0.1% and pressures are converged to better than
0.5%. We find, at temperatures above 250,000 K, 8-atom
supercell results are sufficient for both energy and pres-
sure since the kinetic energy far outweighs the interaction
energy at such high temperatures [85]. The number of
bands in each calculation were selected such that orbitals
with occupations as low as 10−4 were included, which re-
quires up to 15,000 bands in a 8-atom cell at 2×106 K
and 1-fold compression. All simulations are performed
at the Γ-point of the Brillouin zone, which is sufficient
for high temperature fluids, converging total energy to
better than 0.01% compared to a grid of k-points.

We encountered some convergence difficulties with the
VASP 1s-core pseudopotential (cut-off radius of 1.7 Bohr)
at high temperatures (T ≥ 2.5×105 K) because the num-
ber of projectors used to produce the PAW Al pseudopo-
tentials in the standard VASP library are not optimized
for the high-energy cutoffs needed for warm dense mat-
ter conditions. In order to alleviate this issue, we first
performed MD simulations using a larger, 2s-core pseu-
dopotential (cut-off radius of 2.0 Bohr) in order to gener-
ate a sensible statistical ensemble. We then re-computed
energies of twenty snapshots chosen randomly from the
reference ensemble with the smaller, 1s-core pseudopo-
tential, which is necessary for including core-electron ex-
citations at high temperatures and avoiding core-overlap
at high densities. In order to reweight the snapshot en-
ergies according to the reference ensemble, we employ
a umbrella sampling technique. Umbrella sampling is a
well-known molecular simulation technique [99] in which

non-Boltzmann Monte Carlo is used to estimate free en-
ergies. We reweight the energies of the twenty snapshots
according the reference ensemble as follows:

〈O〉2 =
〈O(R) exp−(β2E2(R)− β1E1(R))〉1

〈exp−(β2E2(R)− β1E1(R))〉1
, (1)

where O denotes the thermodynamical quantity whose
average we are computing (energy or pressure), the sub-
scripts 1 and 2 denote the ensemble with which the av-
erage is associated, E is the energy, and β = 1/(kBT ).
In order to further validate our VASP pseudopotential

results and the umbrella sampling approach, we sought
to verify our results with a more robust pseudopotential
specifically designed for high temperature and densities.
For this effort, we constructed a new, PAW pseudopo-
tential for the ABINIT package [100], which allows one
to build a specific PAW-pseudopotential using the Atom-
PAW plugin [101]. We built a hard PAW pseudopotential
with a cut-off radius of 0.6 Bohr and a frozen 1s core. To
ensure the robustness of the pseudopotential at high tem-
perature, we included projectors with energies as high as
330 Ha. We checked the accuracy of the pseudopoten-
tial by reproducing cold-curve results provided by the
ELK software in the linearized augmented plane wave
(LAPW) framework [102]. With this pseudopotential,
we performed DFT-MD calculations with ABINIT using
16-atom and 8-atom cells for three densities (4-, 4.5-, and
5-fold of ρ0), which are most significant for shell-structure
effects in subsequent shock Hugoniot curve analysis, and
temperatures up to 4×106 K. The hardness of the pseu-
dopotential required a plane-wave energy cut-off of at
least 6800 eV, which required significantly more com-
puter time than the VASP calculations and made it un-
realistic to explore the entire EOS ρ-T regime with such
a demanding pseudopotential. ABINIT results for pres-
sure and energy will be compared with VASP and PIMC
in Section III.

III. EQUATION OF STATE RESULTS

In this section, we report our combined PIMC and
DFT-MD EOS results for the WDM and plasma regimes
at several densities in the range of 2.70–32.38 g cm−3 and
temperatures ranging from 104–108 K. The full-range of
our EOS data is shown in pressure-density space in Fig. 1
and in temperature-pressure space in Fig. 2. These two
figures will be discussed more thoroughly in Section VI.
The Supplemental Material [103] provides a table of our
full EOS data set. In order to put the PAW-LDA pseu-
dopotential energies on the same scale as all-electron
calculations, we shifted all of our VASP DFT-MD en-
ergies by -241.30 Ha/atom. The ABINIT pseudopoten-
tial shift is -161.33. These shifts were determined by
performing isolated, all-electron atomic calculations with
the OPIUM code [104] and corresponding calculations in
VASP and ABINIT.
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FIG. 3: Aluminum excess pressure, relative to the ideal Fermi
gas, computed with PIMC, DFT-MD, and the Debye-Hückel
plasma model. The results are plotted at densities corre-
sponding to 4-fold, 4.5-fold, and 5-fold compression as a func-
tion of temperature. DFT-MD results using a more robust
pseudopotential in ABINIT validate the VASP DFT-MD cal-
culations. The 4- and 4.5-fold curves were shifted vertically
for visibility by -3 and -1.5, respectively.

In order to analyze the coherence of our EOS data sets,
Figs. 3 and 4 display the pressure and internal energy, re-
spectively, along three isochores from PIMC, DFT-MD,
and the classical Debye-Hückel plasma model [105] as
a function of temperature. The pressures, P , and in-
ternal energies, E, are plotted relative to a fully ion-
ized Fermi gas of electrons and ions with pressure, P0,
and internal energy, E0, in order to compare only the
excess pressure and internal energy contributions that
result from particle interactions. With increasing tem-
perature, the pressure and internal energy contributions
due to interactions gradually decrease from the strongly-
interacting condensed matter regime, where bound states
dominate, to the weakly-interacting, fully-ionized plasma
regime, where PIMC converges to the classical the Debye-
Hückel model. As expected, the Debye-Hückel model be-
comes inadequate for lower, WDM-range temperatures
(T<107 K) since it fails to treat bound electronic states.
While the range of temperatures over which PIMC EOS
data is needed to fill the temperature gap between DFT-
MD and Debye-Hückel (roughly 2×106 − 1×107 K) is rel-
atively small compared to the entire temperature range
of the high energy density physics regime, this tempera-
ture range encompasses significant portions of the L-shell
and K-shell ionization regime.
Figures 3 and 4 provide a coherent EOS over wide

density-temperature range, where PIMC and DFT-MD
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FIG. 4: Aluminum excess internal energy, relative to the ideal
Fermi gas, computed with PIMC, DFT-MD, and the Debye-
Hückel plasma model. The results are plotted for densities
corresponding to 4-fold, 4.5-fold, and 5-fold compression as a
function of temperature. DFT-MD results using a more ro-
bust pseudopotential in ABINIT validate the VASP DFT-MD
calculations. The 4- and 4.5-fold curves were shifted vertically
for visibility by -5.5 and -3, respectively.

provide consistent results at 2×106 K, with differences
of 0.5–3.2% in the pressure and 1–4% (≤5 Ha/Al) in
the internal energy. We note the overall agreement be-
tween PIMC and DFT-MD provides validation for the
use of zero-temperature exchange correlation functionals
in WDM applications and the use of the fixed-node ap-
proximation in PIMC in the relevant temperature range.
At lower temperatures, PIMC results become inconsis-
tent with DFT-MD results because the nodal approxi-
mation in PIMC simulations is no longer appropriate.
Additionally, we verified the integrity of our calculations
in the VASP code by comparing the pressure and inter-
nal energy with calculations from the ABINIT DFT-MD
code that employ a more robust PAW pseudopotential.
In Fig. 5, we show the heat capacity, cv, of hot dense

aluminum at various densities. The heat capacity was
derived by interpolation of the internal energy and sub-
sequent differentiation with respect to temperature. For
low temperatures of T ≤ 30 000K, all curves approach
constant values between 4.3-4.8 kb/atom, which reflects
electronic excitations in the metallic liquid and kinetic
plus potential contributions from the nuclear motion. At
very high temperature where aluminum is fully ionized,
we recover the expected nonrelativistic limit of 21kb =
3/2 N kb where N = 14 is the number of free particles
(one nucleus and 13 electrons).
For T ≥ 105K, the heat capacity increases as electrons
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FIG. 5: The heat capacity of aluminum, spanning the warm
dense matter and plasma regimes, derived from DFT-MD and
PIMC calculations.

become free. At lower density, this rise occurs slightly
faster due to Saha ionization equilibrium favoring free
electrons. For the density range of 0.5−12.0 ρ0, we see
a well defined maximum in cv at T ≈ 5 × 106K, which
reflects the ionization of K-shell electrons. For low den-
sities of ρ0 < 0.5, this ionization peak shifts to lower
temperatures, again due to Saha ionization equilibrium.

IV. SHOCK COMPRESSION

Dynamic shock compression experiments allow one to
directly measure the equation of state and other physi-
cal properties of hot, dense fluids. Such experiments are
often used to determine the principal Hugoniot curve,
which is the locus of final states that can be obtained
from different shock velocities. Density functional the-
ory has been validated by experiments as an accurate
tool for predicting the shock compression of a variety of
different materials [106–108].
During a shock wave experiment, a material whose ini-

tial state is characterized by an internal energy, pressure,
and volume, (E0, P0, V0), will change to a final state de-
noted by (E,P, V ) while conserving mass, momentum,
and energy. This leads to the Rankine-Hugoniot rela-
tion [109],

(E − E0) +
1

2
(P + P0)(V − V0) = 0. (2)

Here, we solve this equation for our computed first-
principles EOS data set, which is reported in the Supple-
mental Material [103]. We obtain a continuous Hugoniot
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FIG. 6: (a) Comparison of PIMC/DFT-MD shock Hugo-
niot curves with SESAME-1100 [49], in T-ρ/ρ0 space. As in
Fig. 1, PIMC/DFT-MD predicts shell structure effects along
the Hugoniot, while SESAME predicts the average ionization
behavior, without distinct shell effects.

curve by interpolating the EOS data with a rectangular-
bivariate spline as a function of ρ and T . We have com-
pared several different spline algorithms and find the dif-
ferences are negligible given that reasonable selections
are made for the isochore densities with respect to Hugo-
niot features. In order to obtain the principal Hugoniot
curve, we used the initial condition based on the energy
and pressure of ambient, solid, f.c.c. aluminum com-
puted with static DFT (P0 = 0.0 GPa, E0 = −241.442
Ha/atom, V0 =16.603 Å3/atom, ρ0 =2.70 g cm−3).

The resulting Hugoniot curve has been plotted in P -ρ
space in Fig. 1, in T -P space in Fig. 2, and in T -ρ/ρ0
space in Fig. 6. In the high-temperature limit, the Hugo-
niot curve converges to a compression ratio of 4, which is
the value of a nonrelativistic, ideal gas. We also show the
magnitude of the relativistic and radiation corrections to
the Hugoniot in the high-temperature limit. The shock
compression and structure along the Hugoniot is deter-
mined by the excitation of internal degrees of freedom,
such as dissociation and ionization processes, which in-
creases the compression, and, in addition, by the inter-
action effects, which decrease the compression [110].

In the structure of the principal Hugoniot curves,
we identify two pronounced compression maxima corre-
sponding to ionization of the L-shell and K-shell. The
L-shell maximum occurs at ρ/ρ0 = 4.86, T=1.1×106 K
(94.8 eV), and P=0.34 Gbar. The L-shell peak temper-
ature is consistent with the atomic ionization energies,
where the final ionization energy of the M-shell is 28.4 eV
and the first ionization energy of L-shell is 120 eV [111].
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Similarly, the K-shell maximum occurs at ρ/ρ0 = 4.90,
T=7.3×107 K (628.0 eV), and P=3.6 Gbar. Likewise,
the K-shell peak temperature is consistent with atomic
ionization energies, where the final ionization energy of
the L-shell is 442 eV and the first ionization energy of the
K-shell is 2086 eV. Propagating errors from our equation
of state data, we estimate that the statistical uncertainly
along the Hugoniot curve is at most 4% in the density
and 3% in the pressure.

In both Fig. 1 and Fig. 6, we compare our PIMC
principal Hugoniot curve with several, widely-used EOS
tables, such as SESAME (Table 1100) [49, 112] and
QEOS [50, 73], and models, including activity expansion
(ACTEX) [56], extended-plane-wave DFT [70], and av-
erage atom methods (Purgatorio [113] and pseudoatom
MD (PAMD) [68]). The SESAME and QEOS tables are
largely dependent on the Thomas-Fermi model, which
treats electrons in an ion-sphere as a non-uniform elec-
tron gas, neglecting quantum shell effects. Therefore, we
see that, while the SESAME and QEOS Hugoniot curves
have a rough overall agreement with PIMC/DFT-MD,
they do not exhibit any compression maximum related
to shell structure. The free energy expansion model,
ACTEX, is a semianalytic plasma model parameterized
by spectroscopic data, which allows it to incorporate ef-
fects of shell structure accurately in the weak-coupling
regime (K-shell ionization regime), but less accurately in
strong-coupling regime (L-shell ionization regime). The
DFT extended-plane-wave and DFT-based average-atom
methods compute the shell structure from first-principles
and, thus, predict ionization features in good agreement
with PIMC. The DFT-based average atom and extended-
plane-wave methods tend to predict slightly softer com-
pression in the L-shell ionization regime and stiffer com-
pression in the K-shell ionization regime compared to
PIMC.

We compare computed Hugoniot curves with experi-
mental data in Fig. 1. Experimental data is available in
the Gbar regime from nuclear tests and at various lower
pressures from shock experiments. All models agree rea-
sonably well with the low-pressure experimental shock
data. Near the L-shell compression maxima, QEOS pre-
dicts a much stiffer response, while ACTEX predicts a
significantly softer response compared with the experi-
mental data and first-principles-based models.

In Fig. 7, we compare an isentrope with various multi-
shock Hugoniot curves in order to determine how closely
one can trace an isentrope by breaking up a single shock
experiment into multiple smaller shocks. All curves start
from ambient density, 144 GPa, and 50,000 K. The
isentrope [114] was derived from our EOS table using
dT
dV |S = −T dP

dT |V /
dE
dT |V . For weak shocks, the Hugo-

niot curve does not deviate much from an isentrope. For
strong shocks, a substantial amount of shock heating oc-
curs. The resulting single-shock Hugoniot curves are thus
much hotter than an isentrope if both are compared at
the same pressure. The discrepancy depends significantly
on pressure, which reflects the fact that the final shock
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FIG. 7: Comparison of an isentrope and various multi-shock
Hugoniot curves.

density cannot exceed ∼5-fold the initial density (Fig. 1).
To reach a large final shock pressure, a substantial pres-
sure contribution must come from the thermal pressure,
which requires high temperatures.

One can, however, get arbitrarily close to isentropic
compression by breaking up a single shock experiment
into multiple weaker shocks. The purpose of Fig. 7 is
to assess quantitatively how well this method works for
shocks in aluminum and to determine the extent to which
shock heating still occurs if the shock is broken up into
N=2-5 steps. In our multi-shock calculations, we suc-
cessively solve Eq. 2 to connect the intermediate shock
states. In order to obtain the lowest possible shock tem-
perature for a given number of shocks, we keep the final
shock pressure fixed while we carefully adjust the tem-
peratures of the intermediate shocks until we determined
the global minimum of the final shock temperature with
sufficient accuracy.

As expected, all the resulting multi-shock Hugoniot
curves converge to an isentrope for weak shocks. For
strong shocks such as Pfinal/Pinitial = 100, we find the
temperature of single-shock temperature is 3.22 times
higher than the corresponding temperature on the isen-
trope. If this shock is broken up into two, well-chosen
smaller shocks, the final shock temperature is reduced to
1.87 times the value on the isentrope. If three, four, or
five shocks are employed the final shock temperature can,
respectively, be reduced to 1.46, 1.30 and 1.22 times the
isentropic value, which are substantial reductions com-
pared to the single-shock temperatures.



7

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
r (Å)

0.0

0.5

1.0
(b)

0.0

0.5

1.0
(a)

DFT-MD, 1×106 K

PIMC, 2×106 K

PIMC, 8×106 K

PIMC, 32×106 K

PIMC, 216×106 K

g
A
l−

A
l(

r)

FIG. 8: Pair-correlation functions of Al nuclei computed with
PIMC and DFT-MD simulations over a wide range of temper-
atures in 8-atom simulations cells. Functions are compared
for densities of (a) 5.40 (2-fold compression) and (b) 32.38
g cm−3 (12-fold compression).

V. PAIR-CORRELATION FUNCTIONS

In this section, we provide a discussion of the temper-
ature and density dependence of various pair-correlation
functions, g(r), in warm dense aluminum. The radial pair
correlation function is defined as

g(r) =
V

4πr2N2

〈

∑

j>i

δ(r − |~ri − ~rj |)

〉

, (3)

where N is the total number of particles, and V is the
cell volume.
Figure 8 shows the temperature dependence of the nu-

clear pair correlation functions for 2- and 12-fold com-
pression. At low temperatures, the atoms are kept far-
thest apart, as expected. As temperature increases, ki-
netic energy of the nuclei increases, leading to stronger
collisions and making it more likely to find them at close
range. At the same time, the atoms become increas-
ingly ionized, which gradually reduces the Pauli repul-
sion, while increasing the ionic Coulomb repulsion. In
comparison, the likelihood of finding two nuclei at close
range rises only slightly, as density increases. At the
highest temperatures, the system approaches the Debye-
Hückel limit, behaving like a weakly correlated system
of screened Coulomb charges. Figure 8a shows that we
find favorable agreement in the structure as predicted by
PIMC at 2×106 K and DFT-MD at 1×106 K.
Figure 9 shows the integral of the nucleus-electron pair

correlation function, N(r), as a function of temperature

r (Å)
0

1

2

3
(a)

0.0 0.1 0.2 0.3 0.4 0.5
r (Å)

0

1

2

(b)

1s core state

2×106 K

4×106 K

8×106 K

216×106 K

N
A
l−

e
(r

)
FIG. 9: Number of electrons contained in a sphere of radius, r,
around an Al ion. PIMC data at two densities of (a) 5.40 (2-
fold compression) and (b) 32.38 g cm−3 (12-fold compression)
and four temperatures is compared with the doubly occupied
Al 1s core ground state (8-atom simulation cells).

and density. N(r) provides information about the de-
gree of ionization since it represents the average number
of electrons within a sphere of radius r around a given
nucleus. N(r) is given by the formula

N(r) =

〈

1

NI

∑

e,I

θ(r − |~re − ~rI |)

〉

, (4)

where the sum includes all electron-ion pairs and θ rep-
resents the Heaviside function.
In Fig. 9 we also plot the N(r) function for an iso-

lated Al nucleus with a doubly-occupied 1s core state for
comparison. We find that the 1s state is fully occupied
at 2×106 K. As the temperature increases, the 1s state
becomes gradually ionized, which drastically reduces the
N(r) function at small distance (r<0.1 Å). For given
temperature, the degree of ionization is higher at low
density. This implies the K-shell ionization is driven by
Saha ionization equilibrium in the density range under
consideration, as we have observed for other first- and
second-row elements in our previous work [86, 115]. At
higher densities where Pauli exclusion effects between 1s
states of different nuclei are of importance, one expects to
enter the regime of pressure-driven 1s ionization. How-
ever, this is not yet seen in the density regime under
consideration.
Fig. 10 shows electron-electron pair correlations for

electrons having opposite spins. The functions are mul-
tiplied by the mass density ρ, so that the integral under
the curves is proportional to the number of electrons.
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FIG. 10: The electron-electron pair-correlation functions for
electrons with opposite spins in PIMC calculations of Al
plasma. Results are compared for densities of (a) 5.40 (2-fold
compression) and (b) 32.38 g cm−3 (12-fold compression).

This makes it easier to compare g(r) functions of different
densities than the usual normalization, g(r → ∞) = 1, in
Eq. (3). One finds that the electrons are most highly cor-
related at low temperatures, which reflects that multiple
electrons occupy bound states around a given nucleus. As
temperature increases, electrons are thermally excited,
decreasing the correlation among each other. The posi-
tive correlation at short distances increases with density,
consistent with a lower ionization fraction at high density
as we have seen in our N(r) plots.
Fig. 11 shows electron-electron pair correlations for

electrons with parallel spins. The positive correlation at
intermediate distances (r ≈ 0.15 Å) reflects that differ-
ent electrons with parallel spins are bound to a given nu-
cleus. For short separations, electrons strongly repel due
to Pauli exclusion and the functions decay to zero. As
density increases, the peak at intermediate distances de-
creases and clearly shows the effect of pressure ionization
of the L shell. Pressure ionization is expected for L-shell
orbitals because they are much larger than the K-shell
orbitals and are therefore subject to Pauli exchange with
nearby nuclei. As temperature increases, more electrons
become free, which causes their correlation to diminish
except for at very small distances (r < 0.10 Å).

VI. ELECTRONIC DENSITY OF STATES AND

IONIZATION BEHAVIOR

In this section, we report DFT-MD results for the elec-
tronic density of states (DOS), binding energies, and the
average charge state of aluminum at various temperature-
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FIG. 11: The electron-electron pair-correlation functions for
electrons with parallel spins in PIMC calculations of Al
plasma. Results are compared for densities of (a) 5.40 (2-fold
compression) and (b) 32.38 g cm−3 (12-fold compression).

density conditions. This analysis provides further insight
into the temperature-density evolution of ionization ef-
fects important for continuum lowering [29, 116]. All
DOS calculations were well-converged in 64-atom simula-
tion cells and 2×2×2 Monkhorst-Pack k-point sampling.
Smooth curves were obtained by averaging over MD-
simulation snapshots and applying a Gaussian smearing
of 0.5 eV to the band energies. All snapshots were ini-
tially aligned at the Fermi energy, averaged together, and
then the average Fermi energy was subtracted out. The
integral of each occupied DOS is normalized to 1. Our
general DOS structures display two peaks, representing
bound 2s and 2p electrons, followed by the valence band
gap and a continuum of conducting states. Since our
pseudopotential has a frozen 1s core, we did not show
these states in the DOS plots.

Fig. 12 shows the effects of varying density and tem-
perature independently on the occupied DOS. As density
increases at a fixed temperature in Fig. 12(a), the DOS
peaks and the Fermi energy are both upshifted. However,
the Fermi energy upshifts at a faster rate than the peaks,
and, therefore, the 2s and 2p binding energies increase
with density. We also note a significant peak-broadening
effect as density increases. On the other hand, as temper-
ature increases at a fixed density in Fig. 12(b), thermal
ionization reduces the electronic screening of the ions,
which downshifts the DOS peaks and the Fermi energy.
However, the Fermi energy downshifts at a faster rate
than the peaks, and, therefore, the 2s and 2p binding en-
ergies decrease with temperature, which is the opposite
effect of density. We note that we found similar edge and
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FIG. 12: (a)Density-driven upshifting of the occupied DOS
and Fermi energy at a fixed temperature of 5×105 K. (b)
Temperature-driven downshifting of the occupied DOS and
Fermi energy at a fixed, ambient density.

Fermi shift behavior in our previous study of warm dense
oxygen [86], and recent work by others on optical prop-
erties of dense CH [117, 118] and iron [119, 120] report
similar effects.

Fig. 13 shows the total and occupied DOS at five
density-temperature points chosen along the principal
Hugoniot curve. As the density and temperature in-
crease simultaneously along the Hugoniot curve, com-
peting electronic effects determine the net shift in the
DOS peak location, consistent with the behavior pre-
sented in Fig. 12. Comparing DOS peaks for the low-
est two density-temperature conditions, the peaks shift
to slightly higher energies and, thus, their positions are
dominated by the density change, as the temperature is
not yet high enough to have ionized the L-shell. For the
higher density-temperature conditions, the L-shell begins
to ionize and temperature effects begin to dominate the
DOS shift, causing the DOS peaks to shift towards lower
energies. When the temperature reaches 106 K, the peaks
have shifted nearly 50 eV lower in energy. The Fermi en-
ergies, marked by style-matched vertical lines, downshift
more rapidly, such that the 2s- and 2p-ionization energies
significantly decrease along the Hugoniot path. We also
note peak broadening of the bound electronic states due
to compression and thermal fluctuations.

In Fig. 12(b), we also note that the near-ambient ion-
ization energy is roughly 63 eV for our DFT-MD(LDA)
calculation. This value is lower than the ambient, ex-
perimentally measured value of 72.7 eV [121]. It is well
known that standard Kohn-Sham DFT is often inaccu-
rate for computing band gaps of insulators and semi-
conductors near the ground-state, which can sometimes
be corrected by using advanced hybrid functionals [122]
or the GW approximation [123]. Previous DFT ioniza-
tion energy calculations [124] using the PBE (64.7 eV)
and the hybrid HSE (68.9 eV) functional improve agree-
ment with experiment in this case at near-ambient con-
ditions.

However, we do not expect the uncertainty in our com-
puted, LDA ionization energy to significantly alter the ef-
fects of ionization in our EOS or Hugoniot curve results.
We first note that corrections to DFT band gaps are ex-
pected to become much less significant as temperature
increases [125]. Secondly, since the DFT error in the ion-
ization energy is very small relative to the total internal
energy, especially at higher temperatures, one does not
expect an ionization-energy uncertainty to significantly
affect our overall EOS or Hugoniot curve results. Ad-
ditionally, we note that when one considers density and
temperature effects on the DOS separately, the shifts in
the DOS are larger than the uncertainty in the ioniza-
tion energy, as was shown in Fig. 12. Therefore, the
onset of thermal or pressure ionization, which affects the
location of the L-shell compression peak in our Hugoniot
curves, is not expected to be overly sensitive to the DFT
ionization energy uncertainty. Hence, there is little moti-
vation to expect improvements in the EOS or ionization
behavior by applying advanced band-gap corrections to
DFT. We also note that PIMC does not suffer from the
band gap problem and the ionization energy uncertainty
is a small part of the small, 1-4 Ha/atom, internal en-
ergy differences we find between DFT and PIMC near
T∼1×106 K.

In Fig. 14 we report the DFT-MD valence band gap
width as a function of compression at T=8.6 eV. The
error bars, in the two points shown at 1- and 12-fold
compression, represent a four-sigma statistical error com-
puted from approximately 20 snapshots. These results
show that the DFT-MD valence band gap only decreases
slightly with compression over the compression range.
There is no expectation for the band gap to go to zero
monotonically, as can be seen in the upshifting behav-
ior of core states in other works [86, 117, 118]. The fact
that the band gap does not go to zero over the exam-
ined compression range means that DFT-MD does not
predict any pressure ionization of the L shell for 12-
fold compression or lower. We juxtapose our DFT-MD
curve with atomic ionization energy calculations from
a recent atomic-kinetics model (REODP) [126] that in-
corporates continuum lowering based on the ion-sphere
model known as Stewart-Pyatt [127]. The results differ
in that the atomic models predict that the ionization en-
ergy goes to zero before 12-fold compression, indicating
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L-shell pressure ionization.

This discrepancy between the DFT-MD and atomic
model predictions of pressure ionization is likely due to
approximate ways that models introduce ionization po-
tential depression. The continuum lowering models, such
as Stewart-Pyatt, are generally based on an isolated-
atom picture that is only valid in the low-density plasma
regime. We also note that the atomic ionization energy
difference in Fig. 14 is taken with respect to a fixed,
ground state Al3+ ionization potential. That is, the
continuum level is fixed in an the isolated atomic cal-
culations. DFT-MD, on the other hand, provides a self-
consistent, first-principles treatment of dynamic ion in-
teractions and their effect on electronic structure. The
continuum is treated dynamically in DFT with those
states maintaining orthogonality to the shifting bound
states. Therefore, DFT-MD predictions for dense, many-
body systems are generally considered to be more reliable
than atomic models. We note that recent, high-resolution
spectroscopy data for highly compressed iron [119] show
that K-edge shifts are in good agreement with DFT-MD
and not in agreement with the common atomic models
for ionization depression, such as Stewart-Pyatt.

However, it should be noted that DFT-MD calcula-
tions can be limited in accuracy by the pseudopotential,
which, in the present study, has a frozen 1s core and a 1.7
a Bohr cut-off radius. The nearest-neighbor ion distances
at 12-fold compression can be as low as 1.5 Bohr, while
our pseudopotential only guarantees the proper charge
density between ions for separations > 1.7 Bohr. By in-
cluding 4-sigma error bars in Fig. 14, we acknowledge
that DFT band gaps have some room for improvement,
as usual, but there is no indication that the gap is close
to zero in the considered range. We did spot-check our
12-fold DFT-MD band gap calculation with our more
expensive 0.6 Bohr cut-off radius pseudopotential and
found identical results. We have also carefully tested
the integrity of our results for k-point convergence. We
expect the effects of 1s-core upshifting, given one had an
all-electron potential, would have a small effect on the
computed gaps. And, ultimately, the consistency of our
DFT-MD results with all-electron PIMC results, even at
12-fold compression, indicates that DFT-MD errors are
likely small.

In order to further characterize the ionization behav-
ior predicted by our DFT-MD (LDA) and PIMC simu-
lations, we also examine the average ionic charge, 〈Z〉 .
In our method of extracting 〈Z〉 from DFT-MD simula-
tions, we integrate the occupied DOS above the valence
band gap, which is visualized at the red-shaded area in
Fig. 15. We also compute 〈Z〉 from the higher tempera-
ture PIMC results by extracting the occupation fraction
of the 1s state from the N(r<0.1 Å) functions in Fig. 9.
We only considered PIMC results where all other bound
states are fully ionized. Combining the DFT and PIMC
analysis allows us to construct a coherent 〈Z〉 across the
ambient, WDM, and fully plasma regimes.

Fig. 16 shows 〈Z〉 as a function of temperature com-

0.00

0.02

0.04

0.06

0.08

0.10

0.12

EFermi

(a)

2p2s

2ρ0, 13,000 K all

3ρ0, 100,000 K all

4ρ0, 300,000 K all

4.5ρ0, 446,000 K all

5ρ0, 1,000,000 K all

−150 −100 −50 0
E (eV)

0.00

0.02

0.04

0.06

0.08

0.10
(b) 2ρ0, 13,000 K occ

3ρ0, 100,000 K occ

4ρ0, 300,000 K occ

4.5ρ0, 446,000 K occ

5ρ0, 1,000,000 K occ

D
e
n
si

ty
 o

f 
S
ta

te
s 

(e
V
−1
)

FIG. 13: The computed (a) total (all) and (b) occupied (occ.)
electronic DOS at rho-T conditions along the principal Hugo-
niot curve from DFT-MD. The Fermi energies are marked by
vertical lines with colors and line-styles corresponding to their
respective DOS curve.

puted from DFT-MD and PIMC at densities corre-
sponding to ambient and 12-fold compression. Our 〈Z〉
at ambient density compares well with various models
(SESAME, QEOS, REODP) that are based on ion-sphere
continuum lowering approaches. The good agreement of
our 〈Z〉 with other models helps to confirm the accu-
racy of our DFT-MD ionization energies, and, therefore,
the accuracy of our EOS and Hugoniot curve. For a
given temperature, the 〈Z〉 at higher density is always
less than at lower density, which is consistent with ion-
ization trends discussed in Fig. 12 and Fig. 14. We noted
that in addition to the effect of the Fermi shift on ioniza-
tion, there is also substantial density-driven peak broad-
ening of the DOS, which further reinforces the ionization
trends.

Additionally, Fig. 17 shows 〈Z〉 as a function of com-
pression. For the lower temperature curve and for
low densities, our DFT-MD results compare well with
the same variety of models (QEOS, SESAME, Stewart-
Pyatt, and REODP). As we noted previously in Fig. 14,
the continuum lowering models predict pressure ioniza-
tion before 12-fold compression, while DFT-MD does
not predict any pressure ionization over the same range.
Hence, the low-temperature DFT-MD curve stays con-
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FIG. 14: The valence band gap, computed with DFT-MD
as a function of compression ratio at fixed temperature 8.6
eV. Results are compared with 2p-ionization energies from
REODP and Stewart-Pyatt models for the isolated atom at
a temperature of 12.5 eV [126].

stant at the ground-state 〈Z〉 of 3, while the other models
show 〈Z〉 increasing due to pressure ionization. At high-
temperature, DFT-MD curve shows 〈Z〉 decreasing with
compression. This result is consistent with the result
of Fig. 12a, which shows that the Fermi energy upshifts
more rapidly than the L-shell energies under compression
at a fixed temperature. Therefore, it is more difficult to
temperature-ionize the L-shell at higher densities.
Generally, several effects may contribute to discrep-

ancies between DFT-MD and atomic ionization models.
First, we note there is no rigorous way to derive 〈Z〉
from a many-body wave function at high density [128].
〈Z〉 is well-defined in a low-density plasma state, where
there is little hybridization of the atomic orbitals. At
high density and temperature, the electrons partially oc-
cupy states in broad energy bands that span many atoms.
For this reason, it is challenging to separate bound and
free electrons to derive a consistent 〈Z〉 . As noted by
Hansen et al. [119], particular codes differ in their im-
plementation of ionization potential depression models
and they often have idiosyncratic choices for electronic
state deconstruction between bound and unbound states.
These choices likely play a significant role in the differ-
ences observed between the various models in Fig. 17.

VII. CONCLUSIONS

In this paper, we have constructed a first-principles
EOS of aluminum over a wide temperature-density range
with DFT-MD and PIMC. We used constructed a coher-
ent EOS that bridges the WDM and plasma regimes. We
showed that both PIMC and DFT-MD produce consis-
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FIG. 15: An example DOS showing that 〈Z〉 is computed
by integrating occupied conducting states above the valence
band gap, which is shaded red for clarity.
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FIG. 16: 〈Z〉 as a function of temperature, computed from our
DFT-MD and PIMC simulations, for densities corresponding
to ambient (2.70 g cm−3) and 12-fold (32.38 g cm−3) compres-
sion. The results are compared with a variety of other models
at ambient density conditions. The inset shows a zoom-in of
the comparisons.

tent EOS data at T=2×106 K, validating the use of the
fixed-node approximation in PIMC and zero-temperature
XC functionals in DFT-MD for warm dense aluminum.
We examined the shock compression behavior of alu-
minum and computed a first-principles benchmark for
the principal Hugoniot. We compare our PIMC Hugo-
niot results with widely used Thomas-Fermi-based mod-
els, which do not include shell effects and DFT-based
models, which show the same trends as we observe in
PIMC, with only small differences in compression. Sub-
sequently, we showed a multi-shock analysis can allow one
to get arbitrarily close to isentropic compression. Finally,
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we then studied heat capacity, pair-correlation functions,
electronic density of states, and 〈Z〉 , to reveal the evo-
lution of the plasma structure and ionization behavior.
Overall, we demonstrate that PIMC is an important tool

to benchmark the EOS in the WDM regime. Kohn-Sham
based DFT simulations are not efficient enough to access
physics at temperatures corresponding to the core ion-
ization, and the more efficient, but approximate models
do not necessarily capture all of the complex physics of
the WDM regime.

Acknowledgments

We would also like to thank Gérard Massacrier for
insightful discussions. This research was supported by
the U. S. Department of Energy under grants DE-
SC0010517 and DE-SC0016248. This work was also per-
formed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory un-
der Contract No. DE-AC52-07NA27344. Computational
support was provided by the Blue Waters sustained-
petascale computing project (NSF ACI 1640776), which
is supported by the National Science Foundation (awards
OCI-0725070 and ACI-1238993) and the state of Illinois.
Blue Waters is a joint effort of the University of Illinois
at Urbana-Champaign and its National Center for Su-
percomputing Applications. This research also used re-
sources of the National Energy Research Scientific Com-
puting Center, a DOE Office of Science User Facility sup-
ported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231.

[1] T. Guillot, Annu. Rev. Earth Planet. Sci. 33, 493
(2005).

[2] G. Wallerstein, I. Iben, P. Parker, A. M. Boes-
gaard, G. M. Hale, A. E. Champagne, C. A. Barnes,
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J. Chalupskỳ, et al., Physical review letters 109, 245003
(2012).

[23] S. Vinko, O. Ciricosta, B. Cho, K. Engelhorn, H.-K.
Chung, C. Brown, T. Burian, J. Chalupskỳ, R. Falcone,
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[116] C. Lin, G. Röpke, W.-D. Kraeft, and H. Reinholz, Phys-
ical Review E 96, 013202 (2017).

[117] S. Hu et al., Physical review letters 119, 065001 (2017).
[118] S. Hu, L. Collins, J. Colgan, V. Goncharov, D. Kilcrease,

et al., Physical Review B 96, 144203 (2017).
[119] S. Hansen, E. Harding, P. Knapp, M. Gomez, T. Na-

gayama, and J. Bailey, High Energy Density Physics
24, 39 (2017).

[120] S. Hansen, E. Harding, P. Knapp, M. Gomez, T. Na-
gayama, and J. Bailey, Physics of Plasmas 25, 056301
(2018).

[121] E. Gullikson, P. Denham, S. Mrowka, and J. Under-
wood, Physical Review B 49, 16283 (1994).

[122] J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin,
The Journal of chemical physics 123, 174101 (2005).
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