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A networked oscillator based analysis is performed to examine and control the transfer of ki-
netic energy for periodic bluff body flows. The dynamics of energy fluctuations in the flow field are
described by a set of oscillators defined by conjugate pairs of spatial POD modes. To extract the net-
work of interactions among oscillators, impulse responses of the oscillators to amplitude and phase
perturbations are tracked. Tracking small energy inputs and using linear regression, a networked
oscillator model is constructed that reveals energy exchange among the modes. The model captures
the nonlinear interactions among the modal oscillators through a linear approximation. A large
collection of system responses are aggregated to capture the general network structure of oscillator
interactions. The present networked oscillator model describes the modal perturbation dynamics
more accurately than the empirical Galerkin reduced-order model. The linear network model for
nonlinear dynamics is subsequently utilized to design a model-based feedback controller. The con-
troller suppresses the modal amplitudes that result in wake unsteadiness leading to drag reduction.
The strength of the proposed approach is demonstrated for a canonical example of two-dimensional
unsteady flow over a circular cylinder. The present formulation enables the characterization of
modal interactions to control fundamental energy transfers in unsteady bluff body flows.

I. INTRODUCTION

Oscillations play an important role in a variety of phys-
ical and biological systems. These oscillations often re-
sult from a set of fluctuating entities called oscillators.
Biological oscillators, including neurons and heart cells
are integral to the various rhythms and regulatory sys-
tems of the human body. Such collective rhythms arise
from the coupling of multiple oscillators with the physics
encapsulated by the transfer of energy between them.
There has been a rich history of studies on the collec-
tive dynamics of oscillators, in particular by Kuramoto
[1] and Strogatz [2]. The foundational work laid out by
Kuramoto [3] elegantly describes the interactive phase
dynamics between oscillators. Mutual synchronization of
a system occurs when interacting oscillators affect their
phases so as to spontaneously lock on to a particular
frequency or phase [4]. The collective phase sensitivity
of globally coupled oscillators to external perturbations
was investigated by Kawamura et al. [5]. In the works
of Aizawa [6] and Mirollo and Strogatz [7], the oscilla-
tor phase interactions were generalized to incorporate
amplitude variation effects. Yamaguchi and Shimizu [8]
discovered the amplitude death phenomenon associated
with coupled oscillators leading to suppression of oscil-
lator amplitudes to steady state. In the present work,
we examine the coupled oscillator dynamics in unsteady
fluid flows.

Unsteady fluid flows governed by the Navier-Stokes
equation exhibit strong nonlinear dynamics and are char-
acterized by spatio-temporal oscillations. In flows past
bluff bodies, oscillatory behavior of the flows is revealed
through shedding of coherent vortices observed in the
wake. Such periodic shedding generates unsteady forces
on the body which can lead to detrimental increase in
drag associated structural fatigue due to the emergence
of flow-induced vibrations [9, 10]. In the work of Roshko

[11], the relationship between form drag and vortex shed-
ding was explored in detail. It was demonstrated that
unsteady force oscillations and drag can be reduced by
mitigating the wake unsteadiness. Since then, a myriad
of studies using active and passive flow control strate-
gies have focussed on controlling bluff-body wake vortex
shedding and the resulting unsteady forces, summarized
in a review by Choi et al. [12]. Although there have been
tremendous breakthroughs in applying flow control tech-
niques for drag reduction, only a few studies make use of
the fundamental energy transfer mechanisms and interac-
tions in unsteady fluid flows and controlling the flow un-
steadiness therein. Also, suppression of these oscillations
are intrinsically associated to the amplitude death phe-
nomena by modification of coupling interactions [13, 14].

The oscillations embedded in fluid flows can be ex-
tracted naturally as spatial structures (modes) and their
associated temporal weights using modal decomposition
techniques [15]. For time-periodic flows, individual co-
herent structures are described by conjugate mode pairs
which can be viewed as a set of modal oscillators exhibit-
ing periodic fluctuations. In particular, proper orthog-
onal decomposition (POD) [16–18] and dynamic mode
decomposition (DMD) [19–21] techniques can extract
modal oscillators from snapshot flow field data based on
energy and dynamics of the flow, respectively. The gen-
eral behavior of nonlinear flows can also be described by
spectral analysis of the linear, infinite-dimensional Koop-
man operator which yields Koopman modes [20, 22, 23]
closely related to DMD.

The interactions between the modes in unsteady fluid
flows can be captured by reduced-order models while dra-
matically reducing the computational expense to model
fluid flows of interest [17, 24]. The projection of the
Navier–Stokes equations onto the modal basis results in
an empirical Galerkin formulation [25]. However, mode
deformations and truncation of energy cascade in un-
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steady fluid flows pose a significant challenge in develop-
ing accurate reduced-order models [26, 27]. In the cur-
rent study, we examine how modal oscillators in unsteady
fluid flows interact to distribute energy in unsteady con-
ditions. The present model is constructed by tracking
perturbations introduced to the modal oscillators and an-
alyzing the resulting energy transfer dynamics.

The mathematical framework to describe a graph G =
{V, E ,W} consists of a set of nodes V connected by edges
E with associated edge weights W [28, 29]. The network
nodes form the quantities of interest with the interac-
tions between them as edges. Network analysis is pri-
marily concerned with interactions between quantities of
interest [28, 30] and has found widespread applications in
social sciences [31], biological sciences [32–35] and many
other fields [36]. In epidemiology, network analysis has
aided in analyzing epidemics and designing appropriate
containment and control measures [37–39].

The application of network analysis has recently been
extended to represent vortical interactions in fluid flows
[40]. The network-theoretic framework is comprised of
discrete point vortices as nodes and interactions between
them as edges. The network representation allows for the
utilization of techniques such as spectral sparsification
[41] to identify key vortical interactions and development
of sparsified-dynamics models, which preserve the invari-
ants of discrete vortex dynamics. Moreover, the extrac-
tion of the vortical network structure of turbulent flows
has revealed the scale-free network property of decaying
two-dimensional isotropic turbulence [42]. The resulting
framework enables the assessment of the resilience of tur-
bulent flow structures. In the present work, we extend
network analysis to describe and control modal interac-
tions in fluid flows, by casting fluid flow in terms of a
networked oscillator system. Here, we view the modal
oscillators as nodes and coupling interactions between
them as edges, highlighting complex energy transfer dy-
namics. We utilize modal decomposition techniques in
conjuction with coupled oscillator models to capture the
interactive physics involved in unsteady fluid flows.

The objective of the present work is three-fold; (1)
characterize the nonlinear energy transfer between modes
and construct a networked dynamics model for track-
ing amplitude and phase perturbations in unsteady fluid
flows, (2) describe interactive dynamics between modes
from a network-theoretic perspective and (3) control the
perturbations with respect to the limit cycle state of pe-
riodic flows as well as the full state itself. To accomplish
these goals, mode pairs describing individual coherent
structures in baseline (unforced and unperturbed) time-
periodic flows are considered as a set of oscillators. Ex-
amining the impulse responses of the oscillators to per-
turbations, the associated network structure is extracted
using a linear regression procedure [43].

A networked oscillator model herein describes the tem-
poral dynamics of modes in unsteady fluid flow with a
network structure embedded in it. With the network
dynamics model established, we are able to study the

amplitude and phase dynamics of coupled oscillators in
the presence of perturbations on the modal interaction
network [44]. Thus, we arrive at a reduced-order net-
work model using modal oscillators that highlight energy
transfer dynamics among the modes which can subse-
quently be used for the control of flow unsteadiness. We
design flow control strategies to suppress modal fluctua-
tions using the network based insights that consequently
leads to drag reduction. In what follows, we first lay
the theoretical foundation of this work in §II. We then
demonstrate the strength of our approach using a canon-
ical example of two-dimensional cylinder flow in §III. We
end the paper with concluding remarks in §IV.

II. FORMULATION

A. Oscillator representation

Let us first consider the baseline case corresponding to
time-periodic flow without any forcing or perturbations
introduced in the Navier–Stokes equations. The POD
technique, also known as Karhunen–Loève decomposi-
tion and principal component analysis, can be utilized
to extract coherent structures in fluid flows that span a
sequence of finite-dimensional subspaces of the full phase
space [25]. POD decomposes the data set to capture
maximum energy content with minimum number of ba-
sis functions or modes. Using the method of snapshots
[16] to compute POD modes, the unsteady velocity field
u can be approximated by a finite series in terms of a
mean (time-averaged) velocity field ū and N orthonor-
mal spatial POD modes φu

j as

u(x, t) ≈ ū(x) +

N∑

j=1

aj(t)φ
u
j (x), (1)

where aj(t) = 〈u(x, t) − ū(x),φu
j (x)〉 are the tempo-

ral coefficients and 〈·, ·〉 denotes the inner product over
the computational domain. The kinetic energy of the
fluctuating velocity field is given by E = 〈u(x, t) −
ū(x),u(x, t) − ū(x)〉/2. As the temporal fluctuations
of the spatial modes are represented by their temporal
coefficients, the contribution of the individual modes to
the fluctuation kinetic energy is given by a2j/2, providing

a total modal energy of E ≈ ∑N
j=1 a

2
j/2. In this work,

we track the variations in the modal fluctuation energy.
We obtain modes in conjugate pairs from POD for

time-periodic flows. Each conjugate mode pair, describ-
ing periodic coherent structures in the baseline case de-
fine an oscillator in our analysis. A set of N POD modes
results in M = N/2 oscillators. Conjugate mode pairs
(φu

2j−1,φ
u
2j) with temporal coefficients (a2j−1, a2j) can

be represented in the complex plane as

zm = a2j−1 + ia2j = rm exp(iθm), (2)

where m = I, II . . .M , j = 1, 2 . . . N/2, rm = |zm|, and
θm = ∠zm. Throughout this work, the oscillators will
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be numbered by m ∈ {I, II ... M} in roman numerals to
distinguish from mode numbering, j ∈ {1, 2, ... N}. Each
oscillator m is associated with a temporal coefficient (zm)
which consists of an odd-number mode with coefficient
a2j−1 and an even-number mode with coefficient a2j . The
temporal coefficient corresponding to the mean flow (ū),
z0 = 1. Equivalent to Eq. (1), we can recover the velocity
field in terms of oscillators as

u(x, t) = ū(x)

+

M∑

m=1

[
Re(zm(t))φu

2m−1(x) + Im(zm(t))φu
2m(x)

]
,

(3)
where Re(zm) and Im(zm) represent real and imaginary
components of zm, respectively.

In the baseline case, oscillators follow a natural limit-
cycle, which is described by the Stuart–Landau equation

żbm = zbm(λm − |zbm|2 + iΩbm) (4)

with zbm = rbm exp(iθbm), λm = (rbm)2 and Ωbm is the os-
cillator frequency, where · denotes the time average and
superscript ()b denotes the baseline case. The dynam-
ics of a set of oscillators can be represented by Eq. (4).
In our case, we approximate the dynamics of networked
conjugate POD mode pairs by the Stuart-Landau equa-
tion. The conjugate mode pairs of each oscillator ex-
change energy among themselves to describe the self-
sustaining equilibrium behavior of each coherent struc-
ture in an unsteady fluid flow. Similar to the present
analysis, the work of Bagheri [45] demonstrates the use
of Stuart-Landau equation to perform multi-scale Koop-
man expansion of the cylinder wake.

To highlight interactions between the oscillators, we
introduce perturbations impulsively in direct numerical
simulation (DNS) to the baseline temporal coefficients
of oscillators at t = t0. These perturbations introduced
to the baseline state enable the emergence of nonlinear
interactions and energy exchange among the oscillators
resulting in fluctuations described by

z′m = a′2j−1 + ia′2j = ε′mr
b
m exp(i[θbm + θ′m]), (5)

where ()′ denotes the perturbation quantity and ε′m(t0)
and θ′m(t0) are the amplitude and phase perturbations for
the mth oscillator, respectively. Note that ε′m is normal-
ized by the baseline amplitude of each oscillator. The en-
ergy exchange between the oscillators captures the trans-
fer of fluctuation kinetic energy.

The total temporal coefficient for each oscillator in the
perturbed case can then be described by combining the
baseline temporal coefficient and fluctuation as

zm = rm exp(iθm) = zbm + z′m. (6)

The overall oscillator model, including perturbations, is
shown in figure 1. The blue circle in the top left figure in-
dicates the natural limit-cycle for oscillator m (zbm). The
perturbations in amplitude (ε′m) and phase (θ′m) result

in a total temporal coefficient (zm) off the limit cycle.
Perturbations can be introduced to each oscillator m by
specifying the initial amplitude of perturbation ε′m(t0)
and initial phase perturbation size θ′m(t0). Once these
factors are prescribed, using Eqs. (5), (6), and (3), the
initial velocity field for DNS is prepared.

Once the perturbations are introduced to the flow, the
perturbation energy is distributed among the oscillators
according to natural advection and diffusion. The tem-
poral dynamics of the modes are attributed to the in-
teractions resulting primarily from the advective term of
the Navier–Stokes equation. The temporal coefficients
of the modes in the perturbed case can be extracted by
projection, as aj = 〈u − ū,φu

j 〉. We then construct zm
for each oscillator m using Eq. (2). To capture the fluc-
tuating amplitude ε′m(t) and phase θ′m(t) of the temporal
coefficients due to interactions, we track the normalized
fluctuation

ζm = z′m/z
b
m = ε′m exp(iθ′m). (7)

The amplitude fluctuations of the oscillators are re-
lated to the variation in oscillator fluctuation energy
E′m(t) compared to the baseline, given by

E′m =
1

2

(
|zm|2 − |zbm|2

)
=

1

2
[(1 + ε′m)2 − 1](rbm)2, (8)

where E′m(t0) represents the oscillator energy input and

the total baseline modal energy, Eb =
∑M
m=I(r

b
m)2/2.

If only phase perturbations are introduced in the simu-
lation, a variation in oscillator energy may be observed
due to oscillator interactions, although E′m(t0) = 0. The
quantities E′m/(r

b
m)2 and θ′m are used to track the energy

perturbations and phase of the oscillators, respectively.
The perspective of viewing the flow as a ensemble of limit
cycle Stuart-Landau oscillators, each with their own in-
trinsic frequency, enables a network-based representation
of the fluid flow dynamics as discussed below.

B. Networked oscillator representation

Based on the oscillator representation using the POD
modes and the fluctuations about the baseline flow, we
can now create a network-theoretic representation of the
unsteady fluid flow system. We consider the collection of
oscillators (modes pairs) characterizing unsteady fluctu-
ations to be the nodes (V) of the network and the inter-
action between them as edges (E). To characterize the
interactions between oscillators, we need a model that
captures the coupling between the oscillators. This moti-
vates a networked oscillator model of M linearly coupled
oscillators given by

ζ̇m =

M∑

n=I

[AG ]mn (ζn − ζm) = −
M∑

n=I

[LG ]mnζn, (9)

where, [AG ]mn and [LG ]mn are the adjacency and the
in-degree graph Laplacian matrices, respectively. The
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FIG. 1. Modal oscillator model in complex plane and os-
cillator network. The circle in oscillator model describes the
limit-cycle trajectory of the oscillators (zbm) and the perturbed
temporal coefficients (zm). The nodes of the network corre-
spond to oscillators with directed edges showing interactions.
Modal interactions corresponding to edge from oscillator I
to II highlighted in red (bottom shaded edge) is further ex-
panded (top right).

dynamics of normalized fluctuations of temporal coeffi-
cients are nonlinear in general due to convective physics
in unsteady fluid flows.

For a set of M oscillators, the above adjacency matrix
AG ∈ CM×M concisely describes the network connectiv-
ity given as

[AG ]mn = wmn = |wmn| exp (i∠wmn) (10)

The rows of the adjacency matrix indicates the depen-
dence of the oscillators n on the dynamics of oscillators
in column m, i.e., wmn. The in-degree (km) of a node
m represents the summation of the incoming weights of

the edges connected to it given by km =
∑M
n=I[AG ]mn.

The (in-degree) graph Laplacian is related to the adja-
cency matrix as LG = DG − AG , where DG is a diag-
onal matrix with elements equal to the in-degree of the
nodes, DG = diag([km]Mm=I). The graph Laplacian is a
discrete analog of the continuous Laplacian operator. In
the current study, it encodes structural properties of the
networked oscillator model.

Using the time series of normalized fluctuations of
each oscillator from DNS, (i.e., ζ and ζ̇), we use a lin-
ear regression procedure to determine the adjacency ma-
trix weights for the networked oscillator model. These
weights could also be obtained through a Galerkin re-

gression approach [46]. The temporal coefficient associ-
ated with the mean flow is assumed to be fixed at unity
and does not contribute to normalized fluctuations of the
modes. Thus, the mean flow is considered as an isolated
node in this formulation.

The oscillator network representation is illustrated in
figure 1. The magnitudes of the edge weights (|wmn|) sig-
nify the influence of oscillator n on oscillator m as illus-
trated in figure 1. The phase of the edge weights (∠wmn)
represent the individual modal contributions in oscilla-
tor phase interactions. In particular, it highlights the
phase advances or delays imposed between modes of in-
teracting oscillators. The odd-odd mode interactions and
even-even mode interactions are given by |wmn| cos∠wmn
while the odd-even and even-odd mode interactions are
given by |wmn| sin∠wmn and −|wmn| sin∠wmn, respec-
tively. Details are provided in Appendix A.

For comparison with the networked oscillator model,
we also consider the Galerkin projection model for the in-
compressible Navier-Stokes equations, by projecting the
equations onto the POD modes to construct the POD-
Galerkin reduced-order model [25, 47]. The resulting
Galerkin model can be expressed as

ȧj = γj +

N∑

k=1

ψjkak +

N∑

k, l=1

χjklakal, i = 1, 2, . . . N,

(11)

with

γj =
1

Re
〈φj ,∇2ū〉 − 〈φj ,∇ · (ūū)〉

ψjk =
1

Re
〈φj ,∇2φk〉 − 〈φj ,∇ · (ūφk)〉 − 〈φj ,∇ · (φkū)〉

χjkl = −〈φj ,∇ · (φkφl)〉,
(12)

where γj , ψjk and χjkl are the constant mean shift coef-
ficient, linear coefficient, and quadratic coefficient terms,
respectively. The linear term represents diffusive physics
of the modes, while the quadratic term represents the
advective physics.

III. APPLICATION TO FLUID FLOW

We now consider the application of the networked oscil-
lator approach to the two-dimensional flow over a circular
cylinder, which serves as a canonical flow.

A. Computational approach

We gather the flow field data from DNS of incom-
pressible flow past a circular cylinder using the immersed
boundary projection method [48–50] at a diameter-based
Reynolds number of Re = 100. This method em-
ploys a Cartesian grid with the immersed boundary
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formulation to generate the cylinder. We take advan-
tage of the multi-domain technique to simulate cylinder
flow in free space. The innermost domain is chosen as
−1 ≤ x/d ≤ 29,−15 ≤ y/d ≤ 15 with a resolution of
600 × 600 grid points where d is the cylinder diameter.
Here, x is the streamwise direction and y is the cross-
stream direction. The outermost domain is chosen as
−16 ≤ x/d ≤ 44,−30 ≤ y/d ≤ 30, far enough so as to
not affect the results in the near field. Uniform flow is
prescribed at the far-field boundaries. For time integra-
tion, this solver uses an implicit Crank-Nicholson scheme
for the viscous term and an Adam-Bashforth method for
the advective term.

From the simulation, the drag coefficient (CD) and lift
coefficient (CL) are computed as

CD =
FD

1
2ρU

2d
and CL =

FL
1
2ρU

2d
, (13)

where, FD and FL are the drag and lift forces on
the cylinder, ρ is the freestream density, and U is the
freestream velocity field. The Strouhal number for the
flow is St ≡ fnd/U , where fn is the natural shedding
frequency. We obtain a Strouhal number of St = 0.164,
drag coefficient CD = 1.35 ± 0.009 and lift coefficient
CL = ±0.325 from DNS which agree well with those re-
ported in the literature [48, 51, 52]. The flow exhibits
vortex shedding behavior in the cylinder wake, as shown
by the instantaneous vorticity field in figure 2 (a). Such
vortex shedding characterizes a von Kármán vortex street
due to the repetitive pattern of vortices in the unsteady
wake. The time-averaged (mean) vorticity field is shown
in figure 2 (b). We collect the snapshots of the flow
field and perform POD on the velocity field (u) with
the method of snapshots [16]. The POD modes and tem-
poral coefficients obtained are in agreement with those
from the work by Noack et al. [24]. The extracted spa-
tial modes in terms of the vorticity field, φω

j = ∇ × φu
j

is shown in figure 2 (c).

B. Unperturbed flow (Baseline)

We define the conjugate mode pairs as independent os-
cillators in our formulation. The oscillators are ordered
in terms of decreasing energy content, shown in figure
2 (top to bottom). As the first eight POD modes cap-
ture 99.98% of the fluctuation kinetic energy, we choose
N = 8 for our analysis. The energy content of oscilla-
tors I, II, III and IV are 96.87%, 2.18%, 0.88% and 0.05%,
respectively. The oscillator temporal coefficients in the
complex plane (zbm) are shown in figure 2 (d). For this
canonical problem, the frequencies associated with the
higher-order oscillators are harmonics of the lowest-order
oscillator, Ωbm = mΩbI with ΩI = St = 0.164. As the fre-
quency (Ωbm) associated with the temporal coefficients of
the mode pairs increases, the size of the spatial modal
structures becomes finer. Again, the oscillators in the
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FIG. 2. (a) Instantaneous and (b) time-averaged (mean) vor-
ticity fields. Proper orthogonal decomposition (POD) applied
to cylinder flow problem results in (c) spatial modes and (d)
temporal coefficients of oscillators in complex plane. The col-
orbar of the spatial modes indicates the contour level and
colorbar of the temporal coefficients and oscillators indicates
phase of the oscillators varying from [−π, π] over the periodic
limit cycles.

baseline flow are associated with limit cycle temporal dy-
namics described by Eq. (4). The lack of coupling in the
generalized limit-cycle dynamics is unable to capture the
oscillator interactions in unsteady fluid flow, which calls
for the analysis below.

C. Perturbed flow

To capture interactions between oscillators, additional
fluctuation energy and phase perturbations are intro-
duced to the simulation through the initial condition.
These perturbations cause added fluctuations in the tem-
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poral coefficients of the modes. The projected coefficients
from the perturbed case are extracted from DNS and the
normalized fluctuation ζm(t) is tracked using the net-
worked oscillator model discussed in §II. We expect that
as the perturbation convects downstream, the normal-
ized fluctuation of the oscillators will decay to zero and
the perturbed flow will return to the baseline limit cy-
cle. However, the addition of a perturbation to the flow
results in a constant phase shift of each oscillator in the
final limit cycle, compared to the unperturbed limit cy-
cle.

In two-dimensional unsteady cylinder flow, the lead-
ing POD mode pair (oscillator I) holds the largest en-
ergy content. Any deviations from the baseline limit
cycle is immediately reflected in the phase of oscillator
I (θI). Thus, to construct the normalized fluctuation
time series for each oscillator, we align the phase of os-
cillator I for the perturbed case and the baseline case
as ζm = (zm − zbm|θ=θI)/zbm|θ=θI . Once the normalized
fluctuation ζm is evaluated, we also determine its time
derivative ζ̇m. We then construct the bases (ζn − ζm)
for each oscillator m. We perform a simple linear regres-
sion on the time series to obtain the network structure
[AG ]mn. Once the network structure is obtained, we solve
the linear networked oscillator model in Eq. (9) for pre-
diction with a prescribed initial condition and compare
the fluctuations with those obtained in DNS. While it is
not necessary, one could also consider quadratic or higher
interaction terms [46, 53].

Let us demonstrate the model development for a case
where we first introduce an amplitude perturbation to
oscillator II. Addition of a perturbation at this harmonic
frequency perturbs not only the natural shedding process
but also the oscillators associated with higher harmon-
ics of the flow due to interactions. Let us consider the
addition of 20% of baseline modal energy to oscillator
II. No perturbation in phase is added, i.e., θ′II(t0) = 0.
As the introduced perturbation in oscillator II convects
downstream in the numerical simulation, its energy prop-
agates to other oscillators through interactions. Using
the procedure discussed above, we can extract the adja-
cency matrix AG that captures network interactions.

The magnitude and phase of the adjacency matrix are
shown in figure 3 (a). In this example, the dynamics of
oscillator I is not affected noticeably by the other oscilla-
tors. The dynamics of oscillators II and III show strong
dependence on oscillator I. This is consistent with our
expectation as most of the energy in the flow is held in
oscillator I and passes down to higher-order oscillators.
For the dynamics of oscillator II (modes 3 and 4), the
phase of the edge weights indicates that interactions be-
tween modes 1 → 3, 2 → 4, 8 → 3 and 7 → 4 are larger
than other modal interactions. For this perturbed case,
phase advancing effects are generally predominant for the
oscillators affecting each other. The network structure
of oscillators is visualized in figure 3 (b) illustrating the
leading influence of oscillator I.

We then solve the linear networked oscillator model
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FIG. 3. (Color online) Response of the system to amplitude
perturbation introduced to oscillator II. (a) Adjacency matrix
of networked oscillator model and (b) corresponding network
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ements of AG . (c) Oscillator dynamics from DNS, networked
oscillator model and POD-Galerkin model (color of tempo-
ral dynamics of oscillators indicates phase). The red dot in
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FIG. 4. (a) Modal amplitude and (b) energy tracking for
amplitude perturbation introduced to oscillator II. Network
model and Galerkin model dynamics are shown by red (darker
grey) and green (lighter grey) dashed lines, respectively.

specifying the perturbed initial condition. For compari-
son, we also prepare the empirical Galerkin reduced-order
model. The oscillator dynamics from DNS (reference)
and those predicted from the networked oscillator and
POD-Galerkin models are shown in figure 3 (c). The
initial amplitude of the perturbed temporal coefficients
for oscillator II (rII(t0)) corresponds to the red dot. The
initial amplitude and phase of the other oscillators are
unchanged, as no perturbations are introduced to these
oscillators. It can be seen in figure 3 (c) that the oscilla-
tor dynamics predicted by the networked oscillator model
agree well with DNS trajectories, particularly oscillators
I, II and III. Due to its low energy content, any small de-
viations in the dynamics of lower-order oscillators causes
comparable changes in the trajectory of oscillator IV. On
the other hand, the POD-Galerkin model overpredicts
the fluctuations in oscillators. As discussed in the work
by Rempfer [54], restricted completeness property of the
POD basis creates problems for integrating the POD-

Galerkin system for any initial conditions lying outside
the ensemble of trajectories used to compute the basis.
Thus, small perturbations or disturbances created by nu-
merical error in integration of the Galerkin model leads
to incomplete representation of the Navier–Stokes oper-
ator.

There are two mechanisms of kinetic energy transfers
in incompressible fluid flows, one from advection and the
other from dissipation. In the incompressible Navier–
Stokes equations, the advective term −(∇·u)u results in
advection of kinetic energy in the flow while the diffusion
term ν∇2u results in dissipation of energy [55]. In the
Galerkin model, the energy dissipation is modeled by the
linear term and the advective energy transfer is modeled
by the quadratic term [56]. In the networked oscillator
model, the diagonal terms of the Laplacian contribute to
the dissipative physics of the individual oscillators and
the off-diagonal terms model the advective physics. The
absence of the mean in the network oscillator model re-
sults in energy exchanges only between the oscillators.

To further compare the details of the predicted trajec-
tories, we track the fluctuations in modal amplitude and
oscillator energy in figure 4. The networked oscillator
model shows excellent agreement with DNS, tracking the
amplitude (a2j−1) and energy transfers (E′m). Moreover,
we see agreement in the long-time behavior of the fluctu-
ations as the flow returns to the baseline state for the net-
worked oscillator model. In contrast, the POD-Galerkin
model is not well-designed for modeling the long-time be-
havior of modal fluctuations and hence is not expected to
work well as time progresses [57, 58]. As indicated by the
green dashed line, the POD-Galerkin model overpredicts
these fluctuations and their associated time scales.

D. Aggregate network model

The network structure of interactions can be extracted
individually by tracking the trajectory of the oscillator
fluctuations from DNS as demonstrated above. While
the corresponding linear networked oscillator models can
be built for each specific case, the resulting network struc-
ture obtained depends on the initial perturbations intro-
duced. Thus, one may argue that such individually tuned
models do not necessarily capture the overall interactions
in response to a generic perturbation. A general network
interaction model is desired not only to capture inter-
actions for any combination of perturbations but also to
design effective strategies for flow control. In this section,
we describe our approach to build an aggregate network
model that captures the fluid flow response to a variety
of perturbation inputs.

We consider a range of perturbed flow cases by vary-
ing the amplitude and phase of perturbations to differ-
ent combinations of oscillators. For a particular oscil-
lator perturbed, we vary the energy input from 5% to
100% additional baseline modal fluctuation energy in the
flow. We also vary the phase perturbation size (θ′m) from
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−2π/3 to 2π/3 to cover a broad coverage of plausible
initial perturbations introduced. The range of ampli-
tude and phase perturbations considered here are quite
large. These large perturbations lead to the emergence
of strong nonlinear interactions between the oscillators.
For the variety of perturbation cases, we collect the oscil-
lator fluctuation data from DNS. To build an aggregate
network model, we concatenate the trajectories of all the
perturbed cases obtained from DNS instead of individu-
ally tracking perturbations and monitoring the oscillator
fluctuations in each perturbed case.

We then segregate the collection of data into train-
ing and test sets to perform cross-validation and eval-
uate the predictive capabilities of the network model.
Varying fractions of the combined input-output data are
randomly chosen as the training sets. For each train-
ing set, regression analysis is performed to extract a
corresponding network model. We then examine the

in-degree (km =
∑M
n=I[AG ]mn) and out-degree (kn =∑M

m=I[AG ]mn) of the network nodes for each model ex-
trated. The variation of the network degrees with respect
to the fraction of the chosen training set is shown in fig-
ure 5 (a). We observe that as the fraction of the training
data used increases, convergence of the network degree
is obtained. We also learn that the average in-degree
increases from low-order oscillators to higher-order oscil-
lators and the average out-degree decreases. Oscillators I
and IV have maximum out-degree and in-degree, respec-
tively. Oscillator I influences the other oscillators most,
while oscillator IV is the most influenced. Oscillators II
and III have a more balanced in and out-degrees indicat-
ing more balanced energy transfer for each mode.

We observe a convergence of network degree for a frac-
tion of training data, ftrain ≥ 0.8. We randomly choose
80% of the combined input-output data as the training
set and use the remaining 20% of the data to assess the
performance of the network model extracted. Using the
training set, the adjacency matrix for aggregate network
model extracted is shown in figure 5 (b). The magni-
tude of the network reveals that the lower-order oscilla-
tors have more influence on the dynamics of the higher-
order oscillators. This follows from our earlier discussion
regarding the network node degrees and agrees with our
intuition that energy is passed from lower-order oscil-
lators to higher-order oscillators. Alternatively, we can
construct the aggregate network model by considering
complete trajectories of randomly chosen perturbed cases
yielding a very similar aggregate network model.

We also compare the aggregate network model with
network models built with selectively chosen training
sets. In particular, we consider trajectories of perturbed
cases of individual oscillators. Combining the perturbed
trajectories for various amplitude and phase perturbation
sizes for each oscillator, we build network models corre-
sponding to oscillators I, II, III and IV. We use the same
test data set as before to assess the performance of each
of these models along with the aggregate model. We pre-
dict the time derivative of the normalized fluctuation ζ̇m
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tions of training data. (b) Adjacency matrix of the aggregate
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color and thickness of the edges in the network represent the
magnitude of the elements of AG .

with each of the models on the test data set and compare
with DNS reference values. In figure 5 (c), we assess the
prediction error through a normalized root mean square
deviation (4m), given by

4m =
1

max(|ζ̇m|)

√∑nt

k=1 |
ˆ̇
ζm(k)− ζ̇m(k)|2

nt
, (14)
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where nt is the length of test data set. Here, ζ̇m(k) is
the time derivative of oscillator m obtained from DNS

and
ˆ̇
ζm(k) is the predicted time derivative value based

on oscillator network model for the kth test data point.
The root mean square deviation is normalized by the
range of the measured data. We can observe from figure
5 (c) that the aggregate model achieves the lowest error
level in predicting the normalized fluctuation time deriva-
tive. As the aggregate model contains more information
of the general interactions based on various oscillator per-
turbations, it yields enhanced predictive capabilities for
energy transfer amongst all oscillators. Thus, the ag-
gregate network structure shown in figure 5 (d) yields a
global oscillator interaction model. For the cylinder flow
problem, the passage of energy from lower-order oscilla-
tors to the higher-order ones is highlighted. Based on the
modal interactions characterized using the aggregate net-
work model, we design flow control strategies to suppress
modal fluctuations.

E. Feedback control

Suppression of modal oscillations is critical in reducing
the wake unsteadiness. Roshko [11] and Mao et al. [59]
reported the strong relationship between unsteadiness in
the wake and the drag force acting on the bluff body.
As mentioned previously, modal oscillations in the flow
are reflected in the temporal coefficients associated with
the modes. If the application of control forces the modal
temporal coefficients to zero, the flow will approach the
mean flow. However, the mean flow is not a steady solu-
tion to the Navier–Stokes equation in general, and hence
the flow diverges from the mean towards the unstable
steady state in this cylinder flow case.

In the seminal work of Noack et al. [24], it was shown
that the mean flow and the unstable steady state are con-
nected by a shift mode. The shift mode for the cylinder
flow problem is shown in figure 6 (top left). This shift
mode captures the transient dynamics between the onset
of vortex shedding near the unstable steady state shown
in figure 6 (bottom left) and the baseline mean flow of
the periodic von Kármán vortex street in the globally
stable limit cycle. This evolution takes place along the
parabolic inertial manifold shown in grey. The vertical
axis represents the change in the temporal dynamics as-
sociated with the shift mode with application of control.
The drag coefficient also varies between the mean base-
line value and the unstable fixed point value. A minimum
drag coefficient is attained at the unstable steady state
C∗D, which also gives zero lift force on the cylinder. The
kinetic energy associated with the shift mode varies as
a24 and the drag force on the cylinder in the mean shift

regime scales as
√
C ′D ∝ a4, as shown in figure 6 where,

C ′D = CD−C∗D. Thus, a mean shift towards the unstable
steady state achieves a reduction in drag force.

We first develop a low-dimensional control framework
based on the networked oscillator model to attenuate per-

Baseline mean

Shift mode
a4

q
C 0

D

Drag coefficient

a1

a2

Unstable 
steady state

Parabolic inertial 
manifold

Baseline 
limit cycle

FIG. 6. (Color online) Shift mode temporal coefficient (red)
and drag coefficient (blue) variation (indicated by arrows)
with application of control. Parabolic inertial manifold shown
in grey.

turbations in the flow. We then extend the formulation to
suppress the overall flow unsteadiness. As the networked
oscillator model given by Eq. (9) is linear, we can ex-
ploit the use of the linear quadratic regulator (LQR) to
control the modal fluctuations. Adding a forcing input
to the networked oscillator model (in vector form), we
arrive at

ζ̇ = −LGζ +Bv, (15)

where ζ = [ζI, ζII . . . ζM ]T , v ∈ CM×1 is the forcing in-
put and B ∈ RM×1 is the actuation input matrix. The
mth entry of B corresponds to forcing being added to
oscillator m.

We implement an optimal full-state control with v =
−Kζ such that

ζ̇ = (−LG −BK)ζ, (16)

where the gain matrix K is determined from the Ric-
cati equation for LQR. Here, we assume that the POD
mode pairs can be used as forcing inputs. While this
viewpoint may appear as naive, it provides tremendous
insights and guidance in designing localized actuation
techniques. An optimal control strategy using LQR min-
imizes the quadratic cost function of the form,

J =

∫ ∞

0

[
ζ(t)TQζ(t) + v(t)TSv(t)

]
dt , (17)

where Q and S are the state deviation and input usage
weights respectively. Here, we set Q = I and S = σI
and consider a range of values for σ.

We can force the individual oscillators or a combina-
tion of oscillators. To aid the selection of which oscilla-
tors to force, we examine the movement of the eigenval-
ues of LG with control for different combinations of input
matrix B as shown in figure 7. Eigenvalues of Laplacian
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matrix λ(−LG) reveal the dynamical characteristics of
the system. As four oscillators are considered in this
work, we obtain four eigenvalues (λI . . . λIV) for varying
σ in figure 7. Note that λm ≤ 0 for all eigenvalues which
is a characteristic feature of Laplacian-based systems.

We compare the response for input matrix B for both
single oscillator input and some multiple oscillator in-
put cases. For each input case, we determine the LQR
gain matrix K for values of σ ranging from 0.1 to 1000
and examine the movement of eigenvalues of operator,
(−LG−BK) which govern the behavior of the controlled
system. For the single-oscillator input cases, we observe
large movement of the eigenvalue corresponding to the
forced oscillator as σ is decreased, i.e., the real part of
λm decreases when more forcing input is provided to os-
cillator m. We also notice that an input in oscillator I
affects all eigenvalues while inputs to the higher-order os-
cillators do not move the λI eigenvalue. This is expected
as oscillator I has maximum out-degree and correspond-

ingly has the highest influence in the network.

As an input to oscillator I is required to affect the λI
eigenvalue, we consider multiple oscillator input cases in-
cluding oscillator I. A noticeable movement in the eigen-
values is observed with inputs on oscillators I and IV. For
forcing inputs added to all oscillators, only λI eigenvalue
is affected with no influence on the other system eigen-
values. To summarize the effectiveness of forcing input
on controlling the system behavior, we track max(Re(λ))
for multiple oscillator input cases in figure 7 (b). We ob-
serve that for small σ, oscillator input combinations of I
and IV outperform the other input combinations.

We consider the LQR controller such that system
eigenvalues move towards the left side of the complex
plane as much as possible. Thus, we select the input ma-
trixB = [1 0 0 1]T which adds forcing input to oscillators
I and IV. Considering full-state feedback control with this
choice of B, we compute the control gain matrixK using
LQR for a particular σ. Introducing control modifies the
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interaction between oscillators. We extract this modified
network structure of interactions for σ = 0.1 from the
controlled Laplacian (−LG−BK) as shown in 7 (c). We
can clearly notice that control added to oscillators I and
IV result in self-loops which attenuate their fluctuations.
Strong interactions are observed between oscillators I and
IV. In addition, we also observe interactions correspond-
ing to transfer of energy from oscillators II and III to
oscillators I and IV. The incoming interactions to oscilla-
tors II and III are weakened considerably. Thus, energy
transfers are concentrated to the oscillators where control
is added which are ultimately attenuated due to the forc-
ing resulting in self-loops. In the following discussion, we
examine two control scenarios. First, we attenuate modal
perturbations introduced in the flow. Then, we apply the
LQR-based feedback control to suppress all modal am-
plitudes altogether.

We first illustrate the control of modal disturbances in-
troduced to the cylinder flow. This entails the control of
fluctuations in the modal temporal coefficients (z′m). To
demonstrate the control, we consider random amplitude
perturbations added to all oscillators about 2% of re-
spective baseline fluctuations. The temporal coefficients
of the oscillators for this perturbed case obtained from
DNS are shown in figure 8 (left). The networked oscilla-
tor control system given by Eq. (16) describes control of
temporal coefficients associated with the modes. To im-
plement control design in DNS, a body force correspond-
ing to −BKζ is added to the momentum equation with
the spatial modal information incorporated along with
the temporal coefficients. The results with the applica-
tion of control in DNS for σ = 0.1 are shown in figure 8
(right). We can drive the oscillators to the natural limit
cycle much faster with control. We notice that as control
is introduced in oscillators I and IV, the effectiveness of
control is more pronounced with these oscillators. This
also follows from figure 7 where the correspondence be-
tween the Laplacian eigenvalues and oscillator inputs was
discussed. Similar analysis can be performed for control-
ling a variety of modal perturbations introduced.

We then consider the control of total modal oscillations
in the flow associated with wake unsteadiness. This re-
quires the control of the temporal coefficients associated
with the oscillators (zm). Though the oscillator interac-
tions characterized in this work are based on fluctuations
with respect to the natural limit cycle (baseline) state,
we consider these interactions to be characteristic of the
modal oscillations in the flow. In fact, the energy transfer
mechanism should be similar for z′m and z′m+zbm. We re-
alize that by suppressing zm, the flow is attracted towards
the unstable steady state. Since we can assume that the
above networked oscillator based LQR control is applica-
ble near the baseline limit cycle, we expect that there is
some region of validity of control to achieve drag reduc-
tion. Inhibiting nonlinear energy transfer should remove
the energy input to sustain wake oscillations. Hence, we
expect to use the same aggregate model extracted to sup-
press the limit cycle along with fluctuations of the modes
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Figure 1: Oscillator dynamics without control and with control implemented in DNS for suppressing perturbations
to limit cycle.

FIG. 8. Oscillator dynamics without control and with control
implemented in DNS for suppressing perturbations to limit
cycle.

to some degree.
Our objective is to control the temporal coefficients

associated with the modes, yielding a control system of
the form,

żm = −
M∑

n=I

[LG −BK]mnzn. (18)

In DNS, this amounts to adding a body force correspond-
ing to −BKz. This control input steers the modal am-
plitudes corresponding to the baseline limit cycle to zero
as shown in figure 9 (a). Here, we show the control per-
formance for σ = 0.1 and 1. With control, the temporal
coefficient associated with oscillator I first decays to zero
followed by the higher-order oscillators. The energy lost
by oscillator I is compensated with an initial increase in
energy associated with oscillator IV. This is expected as
oscillator IV is the most influenced node in the network.
This highlights the energy transfers from lower-order to
higher-order oscillators. As control input is added to os-
cillator IV, we suppress the corresponding modal oscilla-
tions. Once the modal amplitudes are forced to zero, the
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FIG. 9. Oscillator dynamics without control and with control
implemented in DNS for suppressing modal oscillations.

flow returns to the mean flow. This is expected as the
unsteady flow field is decomposed into mean flow and
modal components, so that forcing the modal compo-
nents to zero reduces the flow to the mean. However, the
mean flow is not an equilibrium and a shift in the mean
flow is observed as time progresses. This mean flow defor-
mation is attributed to the Reynolds stress generated by
the modal fluctuations which modifies the base flow [27].
The change in the base flow leads to a corresponding
decrease in modal energy until equilibrium is achieved.
In the case of the cylinder flow problem, the flow tends
towards the unstable steady state.

The mean shift between the mean flow and the unsta-
ble steady state can be described by the shift mode. The
temporal coefficient (a4) corresponding to the shift mode
(u4) can be obtained by projection as a4 = 〈u−ū,u4〉.
We also perform control considering σ = 10 and 100.
The variation of shift mode temporal coefficients with
respect to temporal coefficients of the dominant POD
modes for the range of σ considered is shown in figure
10 (a). For reference, the evolution of the flow from

FIG. 10. (Color online) (a) Shift mode temporal dynamics
on parabolic inertial manifold for a range of σ and (b) shift
mode temporal dynamics in the time domain. (c) Drag force
compared to the baseline.

unstable steady state to the mean flow that follows a
parabolic inertial manifold is shown in grey [24]. The
darker grey region of the manifold indicates the region
of effective control using the networked oscillator model.
In this region, the nonlinear energy transfers are inhib-
ited to reduce wake oscillations. Thus, in suppressing the
modal oscillations, we achieve a mean shift in the flow re-
sulting in drag reduction. For the case corresponding to
σ = 1, we collect velocity snapshots in the time inter-
val between t = 19.3 and 80 and perform POD analysis
on the controlled data. Considering the first 10 addi-
tional POD modes for control, we construct a linearized
model by curve-fitting the temporal coefficients. Design-
ing an additional controller (patch controller) based on
these coefficients, we can force the flow to the bottom of
the manifold corresponding to the unstable steady state
shown in magenta (σ = 1 with patch) in figure 10 (a).

The temporal dynamics associated with the shift mode
is shown in figure 10 (b). It can be observed that initially
a4 = 0 in the limit cycle and as control is applied, the
shift mode temporal coefficient decreases and approaches
the unstable steady state. As σ decreases, we achieve a
steeper decrease in a4. Examining the long time history
of the temporal variation of the shift mode, the choice of
lower σ results in low frequency oscillations in a4. These
low frequency oscillations are attributed to the exchange
of energy between the low and moderate drag states [60].
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For control effort corresponding to σ = 100, a steady
state with application of control is achieved more rapidly.

The unsteady forces on the cylinder with application of
control compared to the baseline drag variation is shown
in figure 10 (c). The variation in the drag coefficient is
similar to the shift mode variation as discussed previ-
ously. Almost a 12% reduction in drag is achieved with
the application of control. With the addition of patch
controller, minimum drag state is achieved. The net-
worked oscillator control framework considered here is
based on interactive dynamics of the baseline POD modes
and does not include any other modes. We however note
that the shift mode itself can be incorporated into the
controller [47, 61].

The unsteady forces on the cylinder can be reduced
by suppressing modal oscillations in the flow and inhibit-
ing energy transfers therein. Using a networked oscilla-
tor model in conjunction with optimal control, we can
control energy transfer dynamics effectively for unsteady
wake flows.

IV. CONCLUDING REMARKS

In summary, we constructed a networked oscillator
model to describe modal interactions in unsteady wake
flows. The modal oscillators comprised of POD conju-
gate mode pairs constitute the modal network nodes.
The interactions between the oscillators form edges of the
network, which were characterized by analyzing impulse-
responses to the fluid flow. Small perturbations were
introduced in the modal oscillators and their transfer of
perturbation energy over the network was studied. In the
weakly nonlinear limit, the amplitude and phase pertur-
bations introduced in the Navier–Stokes equations were
tracked using linear regression to develop the networked
oscillator framework. The networked oscillator model is a
linear approximation to the nonlinear modal interactions
in unsteady fluid flows.

Using a canonical example of unsteady flow over a
cylinder, the energy transfer dynamics were analyzed.
Agreement of the model with DNS was observed for both
amplitude and phase perturbation cases. The modal per-
turbation dynamics is more faithfully captured using the
networked oscillator model compared to the empirical
Galerkin formulation. A system identification of impulse
responses over a collection of perturbed cases lead to an
aggregate network model that captures general oscillator
interactions in the flow. The aggregate network model is
attributed with the least error in terms of prediction of
the temporal dynamics of the modal oscillators. The de-
gree of the nodes corresponding to the aggregate network
structure provides insights on the importance of individ-
ual oscillators to energy transfers and the overall system
dynamics.

With the knowledge of network interactions between
oscillators, an optimal feedback control strategy was de-
signed to suppress oscillator fluctuations with respect to

the natural limit cycle faster. A judicious choice of the
forcing input was made by examining the movement of
the poles of the graph Laplacian with LQR. Upon the
control of modal disturbances, faster return of modal co-
efficients to the baseline limit cycle was achieved. Con-
trolling the overall fluctuations of the oscillators resulted
in inhibiting energy transfers that sustain wake oscilla-
tions and a mean shift towards the (lower energy) unsta-
ble steady state. The mean shift correspondingly led to
a reduction in the unsteady forces on the cylinder.

The networked oscillator modeling and control ap-
proach shown here leverages the knowledge of modal
interactions, providing insights beyond traditional ap-
proaches. The embedding of nonlinear dynamics in
the linear framework has enabled the design of con-
trol strategies based on network structure. The data-
driven approach can be extended to more complex flows
with broadband modal fluctuations incorporating net-
work models with uncertainty quantification. A stochas-
tic component can also be added to the networked os-
cillator model to extend it to flows of increasing com-
plexity involving systems with chaotic limit-cycles. Con-
trolling the modal interactions at a fundamental level
paves the path for analogous studies using localized ac-
tuators and limited sensors for modeling and controlling
unsteady fluid flows.
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APPENDIX

A. Modal interactions

The networked oscillator model of M linearly coupled
oscillators is given by Eq. (9). Here, the graph Laplacian
is

[LG ]mn = diag([

M∑

n=I

wmn]Mm=I)− wmn, (19)

where edge weights are wmn = |wmn| exp (i∠wmn) =
|wmn|(cos(∠wmn) + i sin(∠wmn)). The interactions be-
tween oscillators correspond to the off-diagonal terms of
the Laplacian wmn. The normalized oscillator fluctua-
tions can be decomposed into modal fluctuations as

ζm = β2j−1 + iβ2j . (20)

Here, β2j−1 and β2j are the normalized fluctuations of
the odd modes (φu

2j−1) and even modes (φu
2j), respec-

tively. The time evolution of the normalized fluctuation
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of oscillator m is given by,

ζ̇m = β̇2j−1 + iβ̇2j . (21)

Substituting Eqs. (19) and (20) in Eq. (9), the modal
dynamics corresponding to oscillator m is given as

ζ̇m = −
[
M∑

n=I

wmn

]
(β2j−1 + iβ2j)

+

M∑

n=I

|wmn|(cos(∠wmn) + i sin(∠wmn))(β2k−1 + iβ2k).

where, k = 1, 2 . . . N/2 corresponds to the respective con-
jugate mode pairs of oscillator n = I, II . . .M .

Thus,

ζ̇m = −
[
M∑

n=I

wmn

]
(β2j−1 + iβ2j)

+

M∑

n=I

|wmn|(cos(∠wmn)β2k−1 − sin(∠wmn)β2k)

+ i(|wmn|(sin(∠wmn)β2k−1 + cos(∠wmn)β2k)). (22)

Comparing Eqs. (21) and (22), the effect of the odd mode
φu

2k−1 on the dynamics of mode φu
2j−1 is determined to

be the coupling interaction term |wmn| cos(∠wmn), the
odd-odd mode interaction. Similarly, we see that the
even-even mode interactions are given by |wmn| cos∠wmn
while the odd-even and even-odd mode interactions are
provided by |wmn| sin∠wmn and −|wmn| sin∠wmn, re-
spectively, as illustrated in figure 1.
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[37] M. Salathé and J. H. Jones, PLOS Computational Biol-
ogy 6, e1000736 (2010).



15

[38] K. Robinson, T. Cohen, and C. Colijn, Theoretical Pop-
ulation Biology 81, 89 (2012).

[39] G. Dudas, L. M. Carvalho, T. Bedford, A. J. Tatem,
G. Baele, N. Faria, D. Park, J. Ladner, A. Arias, D. Aso-
gun, et al., bioRxiv , 071779 (2016).

[40] A. G. Nair and K. Taira, Journal of Fluid Mechanics 768,
549 (2015).

[41] D. A. Spielman and N. Srivastava, SIAM Journal on
Computing 40, 1913 (2011).

[42] K. Taira, A. G. Nair, and S. L. Brunton, Journal of Fluid
Mechanics 795 (2016).

[43] M. H. Kutner, C. Nachtsheim, and J. Neter, Applied
linear regression models (McGraw-Hill/Irwin, 2004).

[44] H. Kori, Y. Kawamura, H. Nakao, K. Arai, and Y. Ku-
ramoto, Physical Review E 80, 036207 (2009).

[45] S. Bagheri, Journal of Fluid Mechanics 726, 596 (2013).
[46] J. Loiseau and S. L. Brunton, to appear, Journal of Fluid

Mechanics (2017).
[47] B. R. Noack, M. Morzynski, and G. Tadmor, Reduced-

order modelling for flow control (Springer-Verlag, 2011).
[48] K. Taira and T. Colonius, Journal of Computational

Physics 225, 2118 (2007).
[49] T. Colonius and K. Taira, Computer Methods in Applied

Mechanics and Engineering 197, 2131 (2008).
[50] T. Kajishima and K. Taira, Computational Fluid Dynam-

ics: Incompressible Turbulent Flows (Springer, 2017).
[51] C. Liu, X. Zheng, and C. H. Sung, Journal of Computa-

tional Physics 139, 35 (1998).
[52] D. Canuto and K. Taira, Journal of Fluid Mechanics 785

(2015).
[53] S. L. Brunton, J. L. Proctor, and J. N. Kutz, Proceedings

of the National Academy of Sciences 113, 3932 (2016).
[54] D. Rempfer, Theoretical and Computational Fluid Dy-

namics 14, 75 (2000).
[55] B. R. Noack, M. Schlegel, B. Ahlborn, G. Mutschke,
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