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The plastic deformation of amorphous solids is mediated by localized shear transformations in-
volving small groups of particles rearranging irreversibly in an elastic background. We introduce and
compare three different computational methods to extract the size and orientation of these shear
transformations in simulations of a two-dimensional (2D) athermal model glass under simple shear.
We find that the shear angles are broadly distributed around the macroscopic shear direction, with
a more or less Gaussian distribution with a standard deviation of around 20◦ about the direction of
maximal local shear. The distributions of sizes and orientations of shear transformations display no
substantial sensitivity to the shear rate. These results can notably be used to refine the description
of rearrangements in elastoplastic models.

I. INTRODUCTION

Polydisperse foams, highly concentrated emulsions,
molecular glasses, and bulk metallic glasses exhibit mi-
croscopically heterogeneous mechanical properties. As
a result, these disordered solids do not deform affinely
under shear. Instead, their deformation features bursty
rearrangements of small groups of particles embedded in
an otherwise elastically deforming medium. It is now
well accepted that these microscopically localized shear
transformations (ST) are the elementary carriers of plas-
tic deformation in sheared amorphous solids [1, 2]. By
straining its surroundings, each ST gives rise to a char-
acteristic long-range deformation halo around it [3, 4],
which mediates most collective effects in the material,
such as cascades of rearrangements [5, 6].

Based on this picture at the particle scale, mesoscale
elastoplastic models of amorphous plasticity have been
formulated, which divide the material into small regions
(blocks) that are loaded elastically until they fail plasti-
cally [7]. The failure of a block is described as an ideal
ST which partly dissipates the local stress and partly
redistributes it to the other blocks. For an ST aligned
with the principal direction of the macroscopic shear in
d-dimensional space, the Green’s function G for the non-
local redistribution of the shear stress satisfies

G(r, θ) ' C cos[4θ + 2θpl]/rd (1)

in the plane of the transformation, with a dimension-
dependent prefactor C, where (r, θ) are the polar coordi-
nates in the frame centered on the plastic block and θpl
(defined precisely in Eq. (3)) refers to the orientation of
the individual ST. The far field limit of this expression
for G matches Eshelby’s solution for a spherical inclusion
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endowed with a spontaneous strain [8], and was shown
to suitably describe the disorder-averaged response of an
amorphous solid to an ideal ST in atomistic simulations
[9].

Mesoscale models, however, rest on several assump-
tions concerning the STs, including their idealized "Es-
helby" nature, their equal size, and their orientation
along the direction of maximal local shear [10, 11], or
even along the macroscopic shear direction in scalar mod-
els [12, 13] (in this regard, ref. [14] is an exception). To
give them stronger footing, experimental and numeri-
cal efforts have been made to characterize plastic rear-
rangements, as exposed in Sec. II. In particular, much
attention has been paid to their shape and their size
[1, 15–17], while the question of their orientation has re-
mained largely unexplored, despite its obvious relevance
for the buildup of spatial correlations between individual
STs [18, 19]. In this contribution, we simulate the shear
deformation of a two-dimensional (2D) athermal model
glass (described in Sec. III) with molecular dynamics in
order to study the statistical properties of actual rear-
rangements for different shear rates. Strong emphasis is
placed on their angles of failure. To this end, we propose
(in Sec. III) and compare (in Sec. V) several numeri-
cal methods to extract these angles. We find that these
angles are broadly distributed around the macroscopic
shear direction, with a more or less Gaussian distribu-
tion with a standard deviation of around 20◦. Overall,
the sizes and orientations of the detected rearrangements
are fairly insensitive to the shear rate, but many of them
actually differ from ideal STs. Even when the ideal ST
description works reasonably well, local methods relying
exclusively on the displacements (or forces) of the most
active rearranging particles give poor estimates of the ST
orientation; the latter is recovered if a broader selection
of particles near the ST is considered.
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II. PREVIOUS ENDEAVORS TO
CHARACTERIZE PLASTIC

REARRANGEMENTS

Leaving aside Schwarz’s early attempts to classify re-
arrangements in a 3D foam at rest [20], Argon and Kuo
were the first to report localized rearrangements in a dis-
ordered system, more precisely a 2D foam (‘bubble raft’)
that was used as a model system for metallic glasses [1].
Interestingly, they mentioned two types of STs: sharp
slips of rows of about 5 bubbles in length and more dif-
fuse cooperative rearrangements of regions of 5 bubbles
in diameter. In the 1980’s, Princen studied the swap of
neighbors between four bubbles (in 2D) to account for
some rheological properties of foams and concentrated
emulsions [21]; the detailed dynamics of this swap pro-
cess were investigated much later in clusters of 4 bub-
bles [22]. In slowly sheared colloidal glasses, STs were
directly visualized using confocal microscopy and their
core was observed to be around 3 particle diameters in
linear size [15]. In metallic glasses, direct visualization of
STs cannot be achieved experimentally but estimates for
their volumes can be obtained indirectly (e.g., via nano-
indentation tests and their sensitivity to the shear rate)
and typically correspond to a few dozen atoms (∼ 30 in
the Zr-based glass studied with nano-indentation tests
in [23]), with a possible dependence on the sample mor-
phology (for instance, for a Ni-Nb metallic glass, the ST
size was reported to decrease from 83 atoms to 36 atoms
when the material was cast into a µm-thin film [16]).

Numerically, the most comprehensive characterization
of rearrangements to date was performed by Albaret et
al. [17] on a 3D atomistic model for amorphous bulk
silicon under quasi-static shear. Rearrangements were
detected by artificially reverting the applied strain incre-
ments at every step and deducing the irreversible changes
that took place; the detected rearrangements were then
modeled as a collection of Eshelby inclusions, whose sizes
(or volumes V0) and eigenstrains ε? were fitted to best
reproduce the displacement field measured during the ac-
tual strain increment. These inclusions were shown to
account for all plastic effects visible in the stress–strain
curves of these materials and the effective volume γ?V0
(where γ? is the maximal shear component of ε?) was
found to be exponentially distributed, with a typical size
of 70 Å3, while both dilational and contractional volumet-
ric strains were observed. The evolution of the effective
volume γ?V0 during the transformation was computed in
[24] by detecting the saddle point; the value of the effec-
tive volume at this saddle point, called activation volume,
was found to amount to around 20% of the final γ?V0.

Figure 1. Detection of plastic events via (a) the d2min criterion,
(b) by the average kinetic energy of a particle and (c) the
magnitude of the linearized "Hessian" forces (see text). The
scale bar is 10 particle diameter.

III. NUMERICAL MODEL AND METHODS

A. Model and simulation protocol

In order to get information on the morphology and
orientation of STs, we perfom molecular dynamics simu-
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lations of an amorphous material (a glass) under simple
shear, in 2D and in the athermal limit. The model glass is
a binary mixture of A and B particles, with NA = 32500
and NB = 17500, of respective diameters σAA = 1.0
and σBB = 0.88, confined in a square box of dimensions
205σAA × 205σAA, with periodic boundary conditions.
The system, at density 1.2, was prepared by quenching
an equilibrated configuration at temperature T = 1 with
a fast quenching rate dT

dt = 2 · 10−3, at constant volume.
The particles, of mass m = 1, interact via a pairwise
Lennard-Jones potential,

Vαβ (r) = 4εαβ

[(σαβ
r

)12
−
(σαβ
r

)6]
,

where α, β = A, B, σAB = 0.8,εAA = 1.0, εAB = 1.5, and
εBB = 0.5. The potential is truncated at r = 2.5σAA and
shifted for continuity. Simple shear γ is imposed at rate
γ̇ by deforming the (initially square) box into a paral-
lelogram and remapping the particle positions. After an
initial transient (20% strain), the system reaches a steady
state, which is the focus of the present study.

In the athermal limit, the equations of motion read

dri
dt

= vi; m
dvi
dt

= −
∑
i 6=j

∂V (rij)

∂rij
+ fDi .

The dissipative force fDi experienced by particle i is com-
puted with a Dissipative Particle Dynamics scheme, viz.,

fDi = −
∑
j 6=i

ζw2 (rij)
vij · rij
r2ij

rij (2)

where w(r) ≡
{

1− r
rc

if r < rc ≡ 3σAA,

0 otherwise.

Here, vij ≡ vi − vj denotes the relative velocity of par-
ticle i with respect to j, rij ≡ ri − rj , and ζ = 1/τLJ
controls the damping intensity (the effect of the damping
was studied in [25]). Equations (2) are integrated with
the velocity Verlet algorithm with a time step dt = 0.005.
In all the following, we use τLJ ≡

√
mσ2

AA/ε as the unit
of time and σAA as the unit of length.

B. Detection of rearrangements

As expected, the simulations display fast localized re-
arrangements. Several measures are available to identify
them and are known to yield comparable results [26]. In
Fig. 1, we compute three of these diagnostics of non-
affinity on a typical snapshot of a simulation at shear
rate γ̇ = 10−4. These diagnostics are based on the dis-
placements δuj of particles j during a short time interval
[t, t+ δt], with δt = 2. Panel (a) shows the amplitude of
the minimized mean-square difference

d2min = min
G

∑
rj∈C

[δuj − δu0 −G · (rj − r0)]
2

Figure 2. Representation of the angle of failure θpl. The
orange arrows indicate the elongational and contractional di-
rections of an ideal ST, while the dashed line represents the
elongational direction of the macroscopic shear.

between the actual displacements δuj of particles j in
a circular region C around a given particle r0 and any
set of affine displacements, i.e., displacements resulting
from a uniform displacement gradient G during δt [2].
This measure of the nonaffine residual strain has become
a quasi gold standard for identifying plastic rearrange-
ments in amorphous solids. Panel (b) shows a simpler
measure, namely the amplitude of the average kinetic
energy of a particle averaged over δt. The motivation is
that in an athermal system, only particles undergoing a
rearrangement are expected to have large marginal ve-
locities. Lastly, in panel (c) we consider the magnitudes
of the (linearized) forces f (H)

i = −∑jHij(t) ·δuj , where
Hij(t) = ∂2V

∂rirj
is the Hessian matrix at time t. These are

the forces that effectively drive plastic rearrangements.
As discussed by Lemaître [19], they also localize in re-
gions of high non-affine strain.

Figure 1 confirms that the three methods studied give
very similar results. Accordingly, for convenience, we
choose to use a criterion based on kinetic energies to de-
tect rearrangements. More precisely, particles with a ki-
netic energy larger than an arbitrary threshold emin are
considered to be rearranging; the threshold value is low-
ered to 3/4 emin for the neighbors of rearranging particles,
in order to obtain more compact ST shapes, where two
particles are defined as neighbors if they are separated
by a distance smaller than 2. Finally, rearranging parti-
cles are partitioned into clusters of neighbors, each corre-
sponding to an individual ST (clusters with fewer than 3
particles were discarded). The distributions p(S) of sizes
of the resulting clusters for distinct thresholds emin and
distinct shear rates γ̇ are represented on Fig. 3; neither
the threshold nor the shear rate seem to considerably
alter the seemingly slower-than-exponential (but faster-
than-power-law) decay of p(S). In the following, we shall
see that all our results are fairly insensitive to these pa-
rameters emin and γ̇. We have also checked (though inex-
haustively) that the distributions of orientations of rear-
rangements detected on the basis of the linearized forces
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Figure 3. Distribution of sizes S of the rearranging clusters
detected with the kinetic energy based criterion (a) for two
different threshold values emin at γ̇ = 10−5 and (b) for three
different shear rates γ̇ with emin = 0.11. The thin dashed line
in the top panel is proportional to exp(−S/S0) with S0 = 7.

f
(H)
i are compatible with those shown below.

C. Methods to measure ST orientations

In order to study ST orientations, a rearrangement is
likened to a circular Eshelby inclusion with an eigenstrain
ε?, i.e., a region whose stress-free state is not reached for
a deformation ε(r) = 0, but for ε(r) = ε? (if it were
unconstrained). The eigenstrain ε? can be split into a
deviatoric part, associated with shape change, and a vol-
umetric part, associated with local dilation, viz.,

ε? = ε?
(

sin 2θpl cos 2θpl

cos 2θpl − sin 2θpl

)
+ εv

(
1 0
0 1

)
(3)

with ε? > 0. We define the ST orientation as the angle
of failure θpl ∈] − 90◦, 90◦]; it is thus the angle between
the elongational principal direction of the ST and that of
the macroscopic shear, as sketched in Fig. 2.

1. Fit to an Eshelby inclusion

We are now left with the problem of determining ε? in
practice. Drawing inspiration from Albaret et al. [17],
we exploit the elastic field induced by an inclusion à la
Eshelby. For homogeneous isotropic elastic media, the
deformation εin within any embedded elliptical inclusion
will be constant. It naturally follows that, for a circular
inclusion, the principal directions of εin and ε? will be
identical, owing to symmetry arguments. Outside the
circular inclusion (of radius a and centered at r = 0), the
induced displacements δu are given by [27]

δu1(r) =
x1

8(1− ν)
ã2
{[

2(1− 2ν) + ã2
]

(ε11 − ε22) + 2ã2 (ε11 + ε22) + 4
(
1− ã2

) (
x̃21ε11 + x̃22ε22

)}
(4)

+
x2

8(1− ν)
ã2 · 2ε12

[
2(1− 2ν) + ã2 + 4

(
1− ã2

)
x̃21
]

δu2(r) =
x2

8(1− ν)
ã2
{[

2(1− 2ν) + ã2
]

(ε22 − ε11) + 2ã2 (ε11 + ε22) + 4
(
1− ã2

) (
x̃21ε11 + x̃22ε22

)}
+

x1
8(1− ν)

ã2 · 2ε12
[
2(1− 2ν) + ã2 + 4

(
1− ã2

)
x̃22
]
,

where r = (x1, x2) and tildes denote distances rescaled
by the norm of r (viz., x̃1 = x1/r).

For each rearranging cluster, the equivalent size a and
eigenstrain components ε?, εv, and θpl defined in Eq. (3)
are calculated as the parameters minimizing the squared
difference between the particle displacements δu′i over
δt = 2 and the theoretical expectations of Eq. (4), for all
particles i that are at a distance between 2a and a large
distance dmax away from the cluster center; the quality of

the fit will be measured by the relative squared difference
χ2. (Note that the results turned out to be insensitive to
the value of dmax.) However, unlike ref. [17], the displace-
ments δu′i are not extracted from the actual dynamical
simulation. Instead, in order to avoid the superposition
of many STs, we run an auxiliary simulation for each re-
arranging cluster so as to measure the response induced
only by this cluster. Pragmatically, starting from the
configuration at t, we move particles j belonging to the
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Figure 4. Elastic reponse computed in the auxiliary MD simulations (see text) to a selection of three STs exhibiting a
quadrupolar response. In the left column, particles in the ST are colored in orange, while the colors of the other particles
depend on the norms of their displacements δui (warmer colors denote larger displacements). The arrows with wide shafts
represent the directions of δui for a random subset of particles, while the (directions of) displacements represented by narrower
arrows are the response to the best-fitting Eshelby inclusion. The figures shown are zooms on a 50 × 50 portion of the global
system (of size 205×205). The right column presents the coarse-grained strain field δεcxy computed from the associated auxiliary
simulations, in a 100 × 100 square around the cluster.
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Figure 5. Distribution of the dilational strengths πa2εv (cir-
cles) and the shear strengths πa2ε? (squares) of the STs de-
tected at γ̇ = 10−5 (with threshold emin = 0.11). The dashed
blue line is proportional to exp(−x/0.3)

cluster by a fraction α� 1 of their actual displacements
δuj , pin them to their new positions and obtain the re-
sponse αδu′i of the other particles to this local rearrange-
ment by minimization This strategy, which we refer to
as MD/Esh, will be our main method to access the ST
morphology. One should nevertheless be aware that the
results of the auxiliary simulations display a slight sensi-
tivity to the details of the minimization procedure, but
the consistency of our results will prove that this sensi-
tivity can be overlooked.

2. Azimuthal modes of the displacements induced by the
STs

A variant of this method may save us the cost of the
fitting step. As mentioned in the introduction, the strain
field δε induced by the shear part (ε?) of an ST has a four-
fold azimuthal symmetry. Therefore, focusing on δεxy for
instance, the m = 4 azimuthal mode of δεxy(r) contains
all information pertaining to the ST orientation (whereas
the m = 2 component results from the dilational part
εv). In practice, using the auxiliary simulations described
above, we compute the local strain around each particle
(i.e. the tensor δεi which minimizes the local non-affine
deviations d2min introduced in Sec. III B), coarse-grain the
xy-shear strain field into boxes of linear size rc = 3 (see
Fig. 4), and compute the azimuthal Fourier modes cm
of the resulting coarse-grained field δεcxy along a circle of
radius r (much larger than the cluster size), viz.,

cm =

∫ 2π

0

e−imθδεcxy(r, θ)dθ. (5)

Calculating c4 for the quadrupolar strain field and writ-
ing it as c4 = |c4|eiφ4 , we find that the angle of failure
is related to φ4 via θpl = φ4/2. We call this method

−90 −45 0 45 90

θpl

0

p(
θp

l )

γ̇ = 10−5

γ̇ = 10−4

γ̇ = 10−3

(a)

−90 −45 0 45 90

θpl

0

p(
θp

l )

(b)

Figure 6. Distributions of angles of failure θpl obtained with
the MD/Esh method. (a) Comparison of p(θpl) between dis-
tinct shear rates γ̇. The dashed line represents a normal distri-
bution with standard deviation δθpl = 23◦. (b) Distribution
p(θpl) at γ̇ = 10−5 before (filled blue) and after (red) remov-
ing the STs which substantially deviate from their Eshelby
fits (χ2 > 0.5).

Esh/azi.

3. Methods exclusively based on the forces or displacements
of rearranging particles

The two methods described above involve minimiza-
tion steps and/or additional (auxiliary) simulations and
are therefore numerically costly. To bypass this cost, we
will try to get information on the ST by using only the
observed displacements δui of the particles i within the
rearranging cluster. A first idea is to compute the inter-
nal part σ of the local stress tensor: σ = −V −1∑i fi⊗ri,
where V is the cluster size, the sum runs over all parti-
cles i in the cluster, each subjected to an average force
fi and undergoing a displacement δui between t and
t + δt. The analogue for the displacements is the ten-
sor M = −V −1∑i δui ⊗ ri. Positions ri are expressed
relative to the cluster centers of gravity, and the mean
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force (or displacement) among the ST particles is drawn
off the fi (or ui). A yield angle θpl can be extracted from
these tensors by symmetrising them and writing their
deviatoric (traceless) part sdev as

sdev = −α
(

sin 2θpl cos 2θpl

cos 2θpl − sin 2θpl

)
, (6)

with a coefficient α > 0 (the minus sign comes from the
sign convention used to define the Cauchy stress). These
methods will be referred to as Loc. We have checked
that they yield the same result as the inspection of the
azimuthal mode c4 of the response of an isotropic homo-
geneous elastic continuum to the set of pointwise forces
Fi = fi, or Fi ∝ δui for the displacement-based version,
as computed by means of the Oseen-Burgers tensor. (We
have underlined the word continuum to insist on the dif-
ference with the MD/azi method).

IV. CHARACTERISTICS OF STS

In this Section, we employ the method based on fitting
rearranging clusters to Eshelby inclusions in order to un-
veil key characteristics of the rearrangements. Although
STs are often idealized as pure shear transformations, the
volumetric deformations are found not to be negligible in
practice. In Fig. 5, we report the distributions of the di-
lational strengths πa2εv and the shear strengths πa2ε? of
the STs detected at γ̇ = 10−5, where πa2 is the surface of
the inclusion and εv and ε? were defined in Eq. (3). The
corresponding plots at γ̇ = 10−4, 10−3 are very similar.
As in ref. [17], we observe an exponential distribution
of shear strengths, with a typical value around 0.3 here.
One should however note that, since the present simu-
lations are not quasi-static, the detected rearrangements
(computed over δt = 2) often do not cover the whole
transformation, which lasts for several time units.

Moving on to the ST orientations, we plot the distri-
bution p(θpl) of angles of failure obtained at the three
shear rates in Fig. 6(a). We observe no significant sensi-
tivity to the shear rate. Besides, the central part of p(θpl)
can be approximated by a normal distribution with stan-
dard deviation δθpl = 23◦, but p(θpl) has heavier tails. If
we discard the STs for which the elastic response signifi-
cantly deviates from the Eshelby fit (Fig. 6(b)), the peak
of p(θpl) sharpens slightly, but this does not strongly af-
fect its shape.

It is interesting to compare these results with those
predicted by a mainstream tensorial elasto-plastic model
in simple shear [28]. The latter also showed a Gaussian-
like distribution p(θpl) which was virtually insensitive to
the shear rate, but which was by far narrower than the
present ones, with standard deviations of 3 − 4◦ that
could increase up to ≈ 7◦ if cooperativity in the flow was
enhanced by increasing the duration of plastic events or
if elasto-plastic blocks were advected along the flow, in-
stead of being static (see Chap. 9.2, p. 111, of [28]). In
these models, angular deviations from the macroscopic

shear direction θpl = 0 are exclusively due to coopera-
tive effects, whereby the stress redistributed during an
ST (Eq. (1)) may load other blocks along a direction
θpl 6= 0, depending on their relative positions. The much
broader distribution p(θpl) measured in the present atom-
istic simulations hints at the impact of the granularity of
the local medium, which may favor failure along a direc-
tion distinct from that of the local loading.

V. COMPARISON BETWEEN DISTINCT
METHODS TO MEASURE ST ORIENTATIONS

Having characterized the strengths and orientations of
STs, we now discuss to what extent the ST characteristics
can be extracted from methods that do not rely on fits
to Eshelby inclusions.

A. Azimuthal mode of the induced strain

We start by considering the MD/azi method intro-
duced in Sec. III C 2, which extracts the quadrupolar az-
imuthal mode of the xy-strain (from the auxiliary MD
simulations) on a circle of radius r to determine θpl. The
angles of failure θpl measured at distinct r (r = 17 and
r = 23) are typically within ±10◦ of one another (data
not shown); there are outliers, but these very generally
correspond to STs that strongly deviate from the Eshelby
fits. Hereafter, we fix the radius at r = 17. Figure 7(a)
shows that the individual MD/azi angles of failure agree
relatively well with those determined with the MD/Esh
method used so far, with absolute differences smaller
than 20◦ for STs with reasonable Eshelby fits.

B. Methods based on local forces or displacements

Turning to the results obtained with local methods
(Sec. III C 3), we report that we have not found any cor-
relation between the MD/Esh angles of failure and those
determined with force-based local methods, whether it be
the total force fi or the ’linearized’ forces f

(H)
i (both be-

ing averaged over δt). On the other hand, displacement-
based local methods broadly agree with MD/Esh, even
though this does not immediately transpire from the scat-
ter plot of Fig. 7(b). To prove the overall consistency of
the methods despite this large noise, we split the detected
STs into 10◦-wide bins depending on their orientation
θplMD/Esh and, for each bin, plot the average angle θplLoc
(measured with the displacement-based local method) in
Fig. 8. On a technical note, one should mention that,
to average over angles θ1, ..., θn, we computed the circu-
lar average arg

(∑
j e

iθj
)
. With these averaged data, the

two methods are found to be in good accordance [29].
To shed light on the discrepancies in the one-to-one

comparison, we extend the local method by including the
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Figure 7. Scatter plot of angles of failure θpl measured at
γ̇ = 10−5 with (a) the MD/Esh method vs. the MD/azi
method and (b) the MD/Esh method vs. the displacement-
based Loc method. Large (orange) crosses refer to STs with
good Eshelby fits, while small (blue) crosses indicate poor fits;
more precisely, the sizes of the crosses are inversely propor-
tional to the χ2-deviation from the fit.

displacements (measured in the auxiliary simulation) of
all particles within a distance R of the center of grav-
ity of the ST, instead of only the rearranging particles,
with the expectation that both methods converge when
R→∞. In Fig. 9, we apply this method to STs detected
at γ̇ = 10−5 for which a mismatch between θplLoc and
θplMD/Esh was observed, despite fairly good fits to Eshelby
inclusions. The figure suggests a reasonably quick con-
vergence between the two methods, although the radii
R at which convergence is reached strongly depend on
the ST. This implies that the deficiency of the pristine
Loc method stems from its biased selection of too few
particles for the computation of the local tensor.
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Figure 8. Comparison between the angles of failure θplMD/Esh

and θplLoc measured with the MD/Esh method and the
displacement-based local method, respectively. The STs have
been binned into 10◦-wide angular windows, according to the
value of θplMD/Esh.
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Figure 9. Differences ∆θpl between the angles of failure found
with the local method based on the displacements of all par-
ticles within a distance R of the ST center of gravity (in the
auxiliary simulation) and the MD/Esh method for four STs
that displayed good Eshelby fits (χ2 < 1) but large discrep-
ancies with the Loc method. For R = 0, the local method
makes only use of the rearranging particles as identified by
the kinetic energy threshold.

VI. CONCLUSION

This paper has introduced and compared three ap-
proaches to extract the size and orientation of STs in
sheared amorphous solids. Rearranging particles were
grouped into clusters based on a threshold criterion for
the kinetic energy, which is reliable for athermal solids,
and their displacements over a small time interval were
recorded. Once these clusters are extracted, auxiliary
simulations are performed in which the particles taking
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part in a given ST are displaced and the remainder is
relaxed via energy minimization. In the first approach,
which we consider to be the most general one, the result-
ing displacment field is then analyzed by fitting to the
ideal "Eshelby" solution for the far-field displacements.
In the second method, this fitting is avoided by instead
computing the azimutal mode of the (coarse grained)
strain field resulting from the ST. Angles of failure ob-
tained from these two methods agree well with each other
as long as the Eshelby fit itself is reasonable.

A third and purely local method that avoids auxiliary
simulations altogether consists in computing the devia-
toric part of the displacement (inertia) tensor after the
rearranging clusters have been identified. These angles
of failure agree less well with those from Eshelby fits in
a point by point comparison, but can be shown to be
overall consistent after the noise is reduced through av-
eraging. The inclusion of a larger number of particles
improves the agreement between the methods consider-
ably. In practice, this extended local method is the most
efficient one as long as the STs do not overlap.

It will be interesting to compare the angles of failure

of STs to the local configurations prior to failure, in par-
ticular the direction of the maximal shear stress and the
directional dependence of the local yield stress, which
can be measured by deforming a small region embedded
in a purely affinely deforming region [30, 31]. Moreover,
our results suggest that mesoscopic elastoplastic models
[7] should be refined to better describe the deviations
from the idealized Eshelby picture observed at the parti-
cle scale, and the sensitivity of their predictions to such
microscopic details should be examined.
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