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The modulus of a rigid network of harmonic springs depends on the sum of the energies in each of
the bonds due to an applied distortion such as compression in the case of the bulk modulus or shear
in the case of the shear modulus. However, the distortion need not be global. Here we introduce
a local modulus, Li, associated with changing the equilibrium length of a single bond, i, in the
network. We show that Li is useful for understanding many aspects of the mechanical response
of the entire system. It allows an efficient computation of how the removal of any bond changes
the global properties such as the bulk and shear moduli. Furthermore, it allows a prediction of the
distribution of these changes and clarifies why the changes of these two moduli due to removal of a
bond are uncorrelated; these are the essential ingredients necessary for the efficient manipulation of
network properties by bond removal.

I. INTRODUCTION

Disordered spring networks are a common starting
point for studying the mechanical properties of amor-
phous materials. On the microscopic level, the stress dis-
tribution due to any deformation forms complicated non-
affine patterns strongly depending on details of the net-
work structure. At large length scales, this microscopic
complexity becomes irrelevant for small deformations.
The response to such deformations is well described by
continuum elasticity[1] in terms of a small number of elas-
tic constants. When the system is isotropic there are only
two relevant elastic constants, the bulk modulus, B, and
a single shear modulus, G.

Inevitably in a disordered system, some regions must
be softer than others. In glasses, such regions can prefer-
entially fail under strain via particle rearrangements [1–
4]. Similarly, when disordered networks are placed under
strain, bonds under large stresses are more likely to fail
than those under smaller stress [5, 6]. When bonds break,
the global moduli decrease by amounts that depend on
the details of the broken bonds. This bond-to-bond vari-
ation can be exploited to manipulate the elastic prop-
erties of a solid by removing select bonds [7]. Indeed,
it has been shown that disordered networks are highly
tunable so that the ratio of the shear to bulk modulus,
G/B, can be varied over nearly twenty orders orders of
magnitude by removing only of order 1% of the bonds
[7]. This allows the design of auxetic metamaterials.

In this paper we explore the relation between mi-
croscopic local bond properties and macroscopic elastic
moduli. Our key insight is that an important quantity

in understanding this link is a new “local modulus”, Li,
which measures the modulus associated with pinching a
bond. This modulus is a measure of the local rigidity that
characterizes the propensity of a bond to carry stress un-
der a global deformation. Using the local modulus, we
derive an exact linear-response relation that predicts how
an arbitrary modulus, M , will change when bond i is re-
moved. In this paper, we are primarily interested in the
cases where M represents either the bulk or the shear
modulus.

We find that ∆Mi, the change in modulus M when
bond i is removed, depends on both the local modulus,
Li, and the stress in bond i due to the applied deforma-
tion. By analyzing the relationship of Li to the global
moduli we show that there are only weak correlations
between ∆Bi and ∆Gi. Our theoretical arguments, sup-
ported by numerical simulations, also indicate that the
distribution of ∆Gi, and in many cases also ∆Bi, obeys
a universal functional form. In addition, we demonstrate
that the distribution of Li is governed by the critical
properties of packings from which the networks are de-
rived. This analysis gives insight into the local elastic-
ity of disordered networks and is useful in the design of
meta-materials.

II. DERIVATION OF THE RELATION:
∆Mi = kiMi/Li

We will consider the simplest model of a mechanical
network, in which nodes are connected by unstretched
central-force harmonic springs. The total energy due to a
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deformation is the sum of the energy on all the individual
springs, labeled by i:

E =
1

2

∑
i

ki (δxi)
2

=
1

2

∑
i

t2i /ki (1)

where ki are the spring constants, δxi are the spring ex-
tensions and ti are the stresses on the bonds. Both the
δxi and the ti depend on the deformation applied to the
system and will be different for compression and shear.

The additive nature of the energy allows us to decom-
pose any modulusM into the sum of individual bond con-
tributions: M =

∑
iMi [7], where Mi = 2ki (δxi)

2
/V ,

where V is the volume. Our aim is to calculate ∆Mi, the
change in M due to the removal of bond i.

We consider an infinitesimal perturbation that alters
the equilibrium length of the single spring, i, by an
amount δ`i. This local strain perturbation leads to
stresses on all the springs. The total energy, Ei, is the
sum of all the bond energies: Ei = 1

2

∑
j(t

i
j)

2/kj . (The
superscript on Ei and ti represents the applied deforma-
tion – in this case the perturbation in the length of spring
i.) We define the local modulus Li ≡ 2Ei/δ`2i . We note
that Li is “local” only in the sense that the applied de-
formation is restricted to a single bond. The resulting
stresses typically decay as a power-law function of dis-
tance [8] and are not local. We also emphasize that Li is
distinct from previous definitions of local moduli that are
defined as the response of a finite region of the system
[9].

For simplicity, we consider all springs to have the same
spring constant, k. (Appendix A Information shows that
this exact relation is also true in the general case where
ki can be different on each bond.) The derivation is
based on the formalism of states-of-self-stress [10, 11],
which are the set of combinations of tensions {ti} result-
ing in force balance on all nodes . In the following we
use the bra-ket notation, where |v〉 denotes a vector, 〈v|
its transpose, vi its ith component and the inner prod-
uct 〈v | u〉 =

∑
i viui. We use α and β to index these

states of self stress: sα,i is the tension on bond i in the
state |sα〉. Typically, there are an extensive number of
such combinations and we define an orthonormal basis
satisfying 〈sα | sβ〉 = δα,β .

Within linear response the energy of a deformation,
derived in [12–15], can be expressed in terms of |sα〉 and∣∣eM〉, the bond extensions resulting from the affine con-
tribution to the deformation giving rise to the modulus
M (For example, this would be compression in the case
of the bulk modulus.). The idea behind this calcula-
tion involves performing the deformation in two stages.
First, the system is deformed in an affine manner (hence
the dependence on eMi ). When there is disorder, the
affine deformation does not satisfy force balance; as a re-
sult there will be forces on the nodes and stresses on the
bonds. Subsequently, the system is allowed to relax to

the final mechanical equilibrium. The stresses that can-
not be eliminated by the motion of the nodes are those
that satisfy force balance, spanned by the states of self
stress. The resulting energy and bond tensions are:

EM =
k

2

Ns∑
α=1

〈
sα | eM

〉2
, (2)

∣∣tM〉 = k

Ns∑
α=1

〈
sα | eM

〉
|sα〉 , (3)

where Ns is the number of states of self stress. The sys-
tems we consider are rigid, implying that Ns ≥ d(d+1)/2
which correspond to the number of independent global
deformations [14]. The affine bond extensions are de-
noted by eMi =

∑
µν δri,µε

M
µν

ˆδri,ν and depend on the
strain tensor εMµν corresponding to the applied deforma-
tion and the bond vector δri. Here µ and ν index the
spatial coordinates.

There is large degeneracy in choosing a basis since any
linear combination of |sα〉 is also a state of self stress.
For convenience we choose |s1〉 to be in the direction of∣∣eM〉 so that

〈
eM | sα6=1

〉
= 0 and only the α = 1 term

contributes to the deformation energy [16]. With this
choice of basis,

Mi = Ms21,i. (4)

where the modulus M = k
V

〈
eM | s1

〉2 and V is the vol-
ume.

In order to compute ∆Mi, the change in a modulus af-
ter bond i is removed, we need a new basis in the pruned
network, |s′α〉. Fortunately, this can be expressed using
|sα〉 of the unpruned network. To see this, we note that
any linear combination of |sα〉 which has zero tension on
bond i is also a state of self stress of the pruned network,
since force balance is still obeyed.

We introduce a new state of self stress that depends
on i, the targeted bond: |Si〉 =

∑Ns

α=1 sα,i |sα〉. |Si〉 is
independent of the choice of basis and has several nice
properties. First, using Eq. 3 with eij = δij , one can
verify that the stress on bond j resulting from a unit
change in equilibrium length of bond i is tij = kSi,j =
kSj,i[17]. We can compute the energy from these values
of the stresses, Ei = 1

2k
∑
j S

2
i,j . We also compute the

energy from Eq. 2 using eij = δij [18]:

Ei =
k

2

Ns∑
α=1

s2α,i =
k

2
Si,i. (5)

This implies that Li = kSi,i = kS2
i ≡ k 〈Si | Si〉 is the lo-

cal modulus. Eq. 5 along with linear response formalism
are used to compute S2

i numerically.
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Using S2
i we now prove that, with our basis choice, the

only state of self stress that contributes to the modulus
M after bond i is removed is:

|s′1〉 = C

(
|s1〉 −

s1,i
S2
i

|Si〉
)
, (6)

and as a result stresses in the system are proportional
to |s′1〉 (here, C =

(
1− s21,i/S2

i

)−1/2 is a normalization
constant). To this end it must be shown that the re-
maining, |s′α>1〉, orthogonal to |s′1〉, are orthogonal to
the applied strain,

∣∣eM〉. The vector space orthogonal
to |s′1〉 can be constructed explicitly from the Ns − 1
states of self stress |sα>1〉 using linear combinations of
|s̃α〉 = sγ,i |sα〉 − sα,i |sγ〉, where both α > 1 and γ > 1.
This construction insures that the tension on the tar-
geted bond i is zero. To see that these are orthogonal
to |s′1〉, we note that by the definition 〈s1 | s̃α〉 = 0, and
that 〈Si | s̃α〉 = 0 as can be verified using the definition
of |Si〉. Since the basis vectors |s′α>1〉 are all linear com-
binations of |sα>1〉, which were chosen to be orthogonal
to
∣∣eM〉, also 〈s′α | eM〉 = 0 thus completing the proof.
Using Eq. 2 and noting that within linear response the

modulus is proportional to elastic energy, the modulus
after bond i is removed is therefore: M ′ = k

V

〈
eM | s′1

〉2.
The change in modulus, ∆M ≡ M −M ′ due to the re-
moval of bond i, is ∆Mi = Mi/S

2
i . As Appendix A

shows, this result is valid for the more general case where
the spring constants, ki are not all equal:

∆Mi = Mi/S
2
i = kiMi/Li. (7)

This is the central equation on which our subsequent
analysis is based.

III. NETWORKS CREATED FROM JAMMED
CONFIGURATIONS

Our numerical results are based on networks derived
from jammed packings of particles – a ubiquitous model
for amorphous materials [19]. Configurations are pre-
pared by standard methods[20, 21]; soft frictionless re-
pulsive spheres are distributed randomly in space and
the system’s energy is minimized to produce a jammed
configuration in which the coordination number, Z, ex-
ceeds the minimum required for stability, Ziso [22].

The system is then converted into a spring network by
replacing the spheres with springs connecting the centers
of interacting particles. We remove any stresses by set-
ting the equilibrium spring length to the inter-particle
distance. Such networks capture many of the key prop-
erties of jammed packings [23], such as the scalings of
the bulk and shear moduli [24]. We characterize these
networks by their excess coordination, ∆Z ≡ (Z −Ziso).
Since networks derived from packings do not have any
zero modes (except for the trivial global translations and

rotations), the Maxwell-Caladine counting theorem pre-
dicts that at a constant ∆Z there are an extensive num-
ber of states of self stress, Ns = N∆Z/2. In this paper
we focus on the case where Ns � 1.

IV. RELATION OF Mi TO S2
i

In d-dimensions, there are d(d + 1)/2 − 1 indepen-
dent shear moduli G, which, if the system is isotropic,
all have the same value, G. In this paper, we focus on
two different global moduliM : the compression modulus
B and the shear modulus corresponding to simple shear
in the xy-direction, Gss ≡ Cxyxy. Our results hold as
well for the other shear elastic constants, such as pure
shear Gps ≡ 1

4 (Cxxxx + Cyyyy−2Cxxyy).
Equation 7, together with the condition that the gen-

eralized modulus is non-negative after bond removal, im-
plies Mi/M < S2

i . Both Bi and Gssi are strongly corre-
lated with S2

i . Figures 1a and 1b plot the conditional
average of Bi and Gssi for a given value of S2

i , denoted as〈
Bi
(
S2
i

)〉
and

〈
Gssi

(
S2
i

)〉
. Excluding the largest values

of S2
i , both

〈
Bi
(
S2
i

)〉
and

〈
Gssi

(
S2
i

)〉
are proportional

to S2
i . A plateau in

〈
Bi
(
S2
i

)〉
exists at large S2

i that
is more prominent in d = 2 (see Appendix B) The in-
sets to Fig. 1a and 1b show that both

〈
∆Bi

(
S2
i

)〉
and〈

∆Gssi
(
S2
i

)〉
are nearly completely uncorrelated with S2

i .
Varying ∆Z does not change

〈
Gssi

(
S2
i

)〉
, but does

change the overall magnitude of
〈
Bi
(
S2
i

)〉
, which scales

as ∆Z−λ. In d = 2, λ2D ≈ 1.4 while in d = 3, λ3D ≈ 1.0.
The average values of the modulus can be related to the
conditional average. In d = 3:

〈Bi〉 =

ˆ
dSi

〈
Bi
(
S2
i

)〉
P
(
S2
i

)
∝ ∆Z−λ3D

〈
S2
i

〉
, (8)

〈Gssi 〉 =

ˆ
dSi

〈
Gssi

(
S2
i

)〉
P
(
S2
i

)
∝
〈
S2
i

〉
(9)

(where we substituted in the linear dependence of〈
Bi
(
S2
i

)〉
and

〈
Gssi

(
S2
i

)〉
). Since as ∆Z → 0, 〈Bi〉 →

const and 〈Gssi 〉 ∝ ∆Z, then
〈
S2
i

〉
∝ ∆Zλ3D ∝ ∆Z, as

also argued in Ref. [15] for any dimension. Therefore
λ3D ≈ 1. This analysis fails in d = 2 for the bulk modu-
lus because of the plateau at high S2

i in
〈
Bi
(
S2
i

)〉
.

The relation
〈
Gssi

(
S2
i

)〉
∝ S2

i can be understood as fol-

lows. Note that Gssi = 1
2V k

(
tG

ss

i

)2
, where tG

ss

i is the ten-
sion in a bond for a simple-shear deformation and V is the
volume. Using Eq. 2: tG

ss

i = k
∑
j e
Gss

j Si,j . For a simple-
shear deformation eG

ss

i = 2
|δri|δri,xδri,y = ε |δri| sin (2θi)

where ε is the magnitude of the deformation, |δri| is the
length of the bond and θi is the bond angle with re-
spect to the y-axis. If θi have only delta-function spa-
tial correlations then eG

ss

i can be considered uncorre-
lated random variables, with zero mean due to isotropy.
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Figure 1. a) The conditional average
〈
Bi
(
S2
i

)〉
and b)〈

Gi
(
S2
i

)〉
are proportional to S2

i over a broad range of S2
i .

In the inset the corresponding
〈
∆Bi

(
S2
i

)〉
and

〈
∆Gi

(
S2
i

)〉
are shown and to good approximation are independent of S2

i .
Data from 3d system with N = 4096 particles. See Appendix
B for the 2d figure.

The inset to Fig. 2(b) shows that this is a good as-
sumption. Lastly, we assume Si,j is not coupled to
the value of a single eG

ss

i , and depends on the overall
structure of the system so that the average is computed
only over eG

ss

i and Si,j is considered constant. Hence,〈
Gssi

(
S2
i

)〉
= 1

2V k

〈
(eG

ss

i )2
〉∑

j S
2
i,j , leading to

〈
Gssi

(
S2
i

)〉
≈ k

2V

〈
(eG

ss

i )2
〉
S2
i . (10)

This approximation not only captures the dependence
on S2

i but also predicts no additional dependence on ∆Z
as found for ∆Bi. The derivation of Eq. 10 was based
on the properties of Si,j , the short-ranged bond angle
correlations and isotropy. As a result, we expect this
relation to hold quite generally for disordered networks.
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Figure 2. a) P (Bi) for different ranges of Gssi and b)
P (∆Bi) for different range of ∆Gssi at ∆Z = 0.127. The
collapse indicates almost vanishing correlations. c) The
universal distribution of P (∆Gssi ) for the pruned and un-
pruned case and the distribution of P (∆Bi) for the pruned
case. The cyan dashed line is the theoretical prediction
P (y) = 1√

2π
y−

1
2 e−

y
2 . The distribution of P (∆Gssi ) in the

unpruned jammed network × blue 2d, × green 3d. The
following pruning protocols lead to the same distribution
where P (∆Bi) is denoted by • and P (∆Gssi ) is denoted by
H. The the number of removed bonds and dimensionality
is also stated: red max∆Bi, 2d, 50, black max∆Bi, 3D 30,
purple random, 40, 2d , orange min∆Gssi , 40, 2d and yellow
max∆Gssi , 60 2d. d) P

(
S2
i

)
for different values of ∆Z. Data

from 3d system with N = 4096 particles. See Appendix B for
the 2D figure.

V. CORRELATIONS BETWEEN Bi AND Gi

In Ref. [7] it was argued that precise control over
the ratio Gss/B required independence of bond-level re-
sponse. We have already shown in Fig. 1 that Gssi and
Bi are both strongly correlated with S2

i and are therefore
correlated with each other. However, our analysis shows
that precise control over Gss/B depends not on Bi and
Gssi , but on ∆Bi = Bi/S

2
i and ∆Gssi = Gssi /S2

i . Indeed,
we find that the values of ∆Bi and ∆Gssi are virtually
uncorrelated with one another. We demonstrate this in
Figs. 3(a) and (b). Fig. 3(a) shows that P (Bi) depends
on the range of Gssi being considered, in agreement with
Ref. [7]. By contrast, the distribution, P (∆Bi), is inde-
pendent of the range of ∆Gssi , within numerical uncer-
tainty. This implies very small correlations between ∆Bi
and ∆Gssi .

In order to quantify the correlation between Bi and
Gssi , Ref. [7] used the Pearson correlation function, r =
〈BiGss

i 〉−〈Bi〉〈Gss
i 〉

σBi
σGss

i

(where σ denotes the standard deviation

and 〈...〉 denotes the average) and found r ≈ 0.171 in
d = 2 and r ≈ 0.325 in d = 3. In comparison, we find that
for ∆Bi and ∆Gssi , the corresponding Pearson correlation
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is r < 0.05 in d = 2 and r < 0.01 in d = 3. There
is much less correlation than for Bi and Gssi [25]. The
significant correlation between Gssi and Bi exists because
both quantities are correlated with S2

i .
Unlike perfect lattices, jammed systems are heteroge-

neous such that different bonds contribute differently to
rigidity as characterized by S2

i . This produces correla-
tions between shear and compression since rigid regions,
with a large average S2

i , typically carry more stresses
regardless of the type of deformation. Our results sug-
gest that the correlation between Bi and Gssi can be es-
timated by assuming that Bi = bi∆Z

−λS2
i and Gssi =

giS
2
i , where bi and gi are uncorrelated random vari-

ables. This assumption leads to 〈BiGssi 〉 − 〈Bi〉 〈Gssi 〉 ∝
∆Z−λ

[〈(
S2
i

)2〉− 〈S2
i

〉2] and gives the correct order of
magnitude. There is also an additional small ∆Z depen-
dence, such that the ratio of the left- and right-hand side
varies by a factor of two over two orders of magnitude
change in ∆Z. Presumably, this results from the plateau
in Bi

(
S2
i

)
at large S2

i in Fig. 1.

VI. DISTRIBUTIONS FOR ∆Mi AND S2
i

The distribution P (Bi), shown in Fig. 2(a), is also
shown along with P (Gssi ) in Fig. 1 of Ref. [7]. The dis-
tribution P (∆Bi) is shown in Fig. 2(b), and P (∆Gssi )
is shown in Fig. 2(c). Compared to P (Bi) and P (Gssi ),
P (∆Bi) and P (∆Gssi ) have a more robust power-law
scaling at small values: P (∆Mi) ∝ (∆Mi)

−κ with a
common value of the exponent: κ ∼ 0.5 ± 0.03. At
large values the distributions decrease with roughly ex-
ponential tails. The most significant difference between
P (∆Bi) and P (∆Gssi ) is evident at large values, where
P (∆Bi) develops a peak at large pressure while P (∆Gssi )
continues to decay monotonically. The distributions of
P (∆Gssi ) are the same in d = 2 and d = 3.

Note that as bonds are pruned, the distributions
P (∆Bi) and P (∆Gssi ) can evolve. We have therefore
studied the robustness of these distributions to the re-
moval of a small percentage of the bonds according to a
variety of protocols. We can prune bonds at random
or we can prune according to the maximum or mini-
mum value of ∆Mi. In all cases there is little change
in the functional form of the distribution P (∆Gssi ). Re-
markably, however, P (∆Bi), which initially differs from
P (∆Gssi ), evolves to the same distribution as P (∆Gssi )
in all but the case where we took away bonds with the
smallest values of ∆Bi. We only need to remove approx-
imately 0.5% of the bonds to achieve the collapse shown
in Fig. 2(c). To a good approximation, this distribution
is given by P (∆M) = 1√

2π
y−0.5e−

y
2 (see Fig. 2(c)).

To understand this universal distribution, we note
that the bond angles have only short-ranged correla-

tions, the system is isotropic and Gssi = 1
2V k

(
tG

ss

i

)2
,

where tG
ss

i = k
∑
j e
Gss

j Si,j is the tension in a bond
for a shear deformation. With these assumptions, tG

ss

i

can be regarded as a sum of independent random vari-
ables with zero mean. Since S2

i,j decays as function of
distance[26, 27], tG

ss

i is dominated by the bonds that
lie within this correlation length. According to the cen-
tral limit theorem, bonds with a given value of S2

i are
Gaussian distributed with zero average and a variance〈(

tG
ss

i

)2〉
∝
〈
Gssi

(
S2
i

)〉
∝ S2

i , as shown in Fig 1. To

place all bonds on the same scale we divide the tension
by
√
S2
i , such that the overall distribution of tG

ss

i /
√
S2
i

is Gaussian. The distribution of ∆Gssi ∝ (tG
ss

i )2/S2
i can

be then obtained through a change of variables. This ar-
gument is valid for all the independent shear moduli, G.
This leads to

P

(
∆Gi
〈∆Gi〉

= y

)
=

1√
2π
y−

1
2 e−

y
2 , (11)

consistent with our numerical results in Fig. 2(c).
Why does pruning bonds in many cases drive ∆Bi to-

wards the universal distribution of Eq. 11? In contrast
to a shear deformation, the affine extension in compres-
sion eBi = ε |δri| is non-negative. As a result, we cannot
assume that tBi averages to zero. Furthermore, at long
distances 〈[Si]j〉 ∝ 1

N ; this is a consequence of the spe-
cial state of self stress that arises just above the onset
of jamming and accounts for the nonzero value of the
bulk modulus there. We suspect that pruning bonds de-
stroys this state of self stress so that once again, tBi can
be considered the sum of uncorrelated random variables
with zero average. In the same manner, if 〈Bi〉 ∝ S2

i ,
then tBi /

√
S2
i have a zero average and are Gaussian dis-

tributed. This leads directly to the universal distribution
for P (∆Bi).

We also show the distribution P (S2
i ) in the solid curves

of Fig. 2(d). At low S2
i : P (S2

i ) ∼
(
S2
i

)−θs=−0.42±0.02.
This power law is robust to changes of ∆Z. To under-
stand this, we argue that P (S2

i ) is directly related to
the distribution of interparticle forces, P (F ), in the orig-
inal jammed system from which the spring network was
derived. Suppose the system has one bond above the
minimum needed for isostaticity, where there is only one
state of self stress. In this limit, force balance specifies
a unique set of forces on the bonds so that the state of
self stress is uniquely defined: si ∝ Fi [28] and S2

i = s2i .
The distribution of forces, P (F ), has a power-law tail at
small forces in this limit, such that P (F ) ∼ F θ, where
the mean-field value of θ = 0.17462 [29] is consistent with
numerical results in dimensions down to d = 2 [8, 30]. Us-
ing a transformation of variables between Fi and S2

i to
obtain P (S2

i ) from P (Fi), we find P
(
S2
i

)
∝
(
S2
i

)
(θ−1)/2.

Thus, we predict θs = (1 − θ)/2 = 0.41269... , in good
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agreement with the solid curves in Fig. 2(d). Note that
the result remains robust even as ∆Z increases well above
the minimum needed for rigidity. In Appendix C we trace
this power law to particles with the d+ 1 contacts – the
minimum number of contacts needed for local stability.

VII. DISCUSSION

At large length scales, periodic and disordered net-
works are both governed by elastic theory and their
macroscopic mechanical response is captured by global
elastic constants. At the bond level, however, periodic
and disordered networks exhibit different behavior. For
periodic networks, in which a unit cell of a few nodes
is repeated throughout, each bond i has a similar local
modulus, S2

i . In addition each bond plays a similar role
in resisting global deformations, so that Mi is similar for
different global moduli M , and has a similar effect on
those moduli if it is removed. Thus ∆Mi is similar for
different M . Disordered networks are completely differ-
ent –the distributions of S2

i , Mi and ∆Mi are broad and
stretch continuously down to zero. Variations in single-
bond responses are important not only for tuning global
moduli, but also for controlling the response of the sys-
tem to stresses that are high enough to break bonds, and
ultimately to fracture the material.

We have shown that theoretical insight can be gained
by studying a new local modulus that describes the re-
sponse of a network to the change of the equilibrium
length of bond i. This relates the contribution Mi of
bond i to a global modulusM , to the change of the mod-
ulus ∆Mi when bond i is removed, and explains why Gi
and Bi have significant correlations while ∆Gi and ∆Bi
do not. We have further shown that the distribution of
∆Mi is universal (at least after sufficient pruning) with
a form that can be understood.

With these results, we can now understand why the ra-
tio of G/B is so tunable in disordered networks in terms
of the local modulus of a bond Li. Tunability requires
independence of bond-level response, which relies on two
properties: (1) that the distributions of ∆Gi and ∆Bi are
broad, continuous and extend continuously to ∆Gi = 0
and ∆Bi = 0, and (2) that ∆Gi and ∆Bi are uncor-
related. The local modulus provides significant under-
standing of both of these properties.

VIII. APPENDIX

A. Bond removal formula for non-identical spring
constants

In the main text, we derived the equation ∆Mi =
Mi/S

2
i relating ∆Mi, the change of the modulusM when

bond i is removed, to Mi, the contribution of bond i

to M , and S2
i , the local modulus, for the special case

in which all the bonds in the networks have the same
spring constant. Here we show that the same equation
holds more generally, for arbitrary spring constants on
the bonds.

We follow the framework of Ref. [14], where the energy,
is given by :

E =
1

2
eTs
((
k−1

)
ss

)−1
es (12)

where es is the projection of the affine bond extensions on
to the space of states of self stress (T denotes transpose);
kij = δijki is the matrix of the spring constants and the
subscript ss the projection on to the space of state of self
stress. We begin our analysis by selecting an arbitrary
basis of states of self stress sα and rewrite Eq. 1 in this
basis.

E =
1

2

∑
αβ

eαp
−1
αβeβ (13)

where eα =
∑
i eisα,i. For convenience we introduce

pαβ =
(
k−1ss

)
αβ

=
∑
ij sα,i

(
k−1ss

)
ij
sβ,j which, by con-

struction, is projected onto the space of states of self
stress.

Varying the spring constant of bond i , modifies only a
single component in the spring constant matrix, k′−1ii =

k−1ii +
(

1
k′i
− 1

ki

)
. The resulting change in p is given by

p′αβ = pαβ +

(
1

k′i
− 1

ki

)
sα,isβ,i (14)

To compute the resulting energy using Eq. 1 we require
(p′)
−1 which can conveniently be computed using the

Sherman–Morrison formula[31],

p′−1αβ = p−1αβ −

(
1
k′i
− 1

ki

)∑
γδ p
−1
αγsγ,isδ,ip

−1
δβ

1 +
(

1
k′i
− 1

ki

)∑
γδ sγ,ip

−1
γδ sδ,i

. (15)

Removing a bond corresponds to taking the limit k′i → 0,
which leads to

p′−1αβ = p−1αβ −
∑
γδ p
−1
αγsγ,isδ,ip

−1
δβ∑

γδ sγ,ip
−1
γδ sδ,i

. (16)

Thus the change in energy is give by,

∆E =
1

2

∑
αβγδ eαp

−1
αγsγ,isδ,ip

−1
δβ eβ∑

γδ sγ,ip
−1
γδ sδ,i

, (17)

and all that remains is to recast this expression in terms
of Mi and S2

i .
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We begin with the denominator and show that it corre-
sponds to a localized deformation. To this end, we select
ej = e0δij in Eq. 12 and find that S2

i , defined as the local
modulus per-unit spring constant, is indeed given by the
denominator.

S2
i =

2E

kie20
=

1

ki

∑
γδ

sγ,ip
−1
γδ sδ,i. (18)

We now turn to show that the numerator in Eq. 17 is
Mi. Following the derivation of Eq. 1, in Ref. [14] it
is straightforward to show that the tension in a bond is
given by

t =
((
k−1

)
ss

)−1
es. (19)

In our choice of basis,

ti =
∑
αβ

sα,ip
−1
αβeβ (20)

and therefore the numerator in Eq. 17 is equal to
t2i .Recalling that the modulus M = 2E/e20, we find that

∆Mi =
Mi

S2
i

. (21)

B. Two-dimensional data

In this section we test the robustness of the three di-
mensional results presented in the paper, by comparing
them to their two dimensional counterparts. Fig. 3a and
3b shows

〈
Bi
(
S2
i

)〉
and

〈
Gi
(
S2
i

)〉
for different values of

∆Z. Similarly to the three dimensional case, over a broad
range these are proportional of S2

i with
〈
Gi
(
S2
i

)〉
virtu-

ally independent of ∆Z, while
〈
Bi
(
S2
i

)〉
has a multiplica-

tive dependence ∆Z≈−1.4. Three dimensions has a little
different dependence on ∆Z,

〈
Bi
(
S2
i

)〉
∝ ∆Z≈−1S2

i . A
possible source of this variation is that in two dimen-
sions

〈
Bi
(
S2
i

)〉
has a more pronounced plateau at large

S2
i values.
Fig. 4 considers correlations between Bi and Gi, and

the correlations between ∆Bi and ∆Gi. Fig. 4a shows
that distribution of Bi depends on the range Gi values
implying that these are correlated. On the other hand
the distribution of ∆Bi, shown in Fig. 4b, appears to
be independent of ∆Gi suggesting tiny amount of corre-
lations. The behavior in two dimensions appear identical
to the behavior in three dimensions. We also find little
difference in the distributions of Bi, Gi, ∆Bi and ∆Gi
between two and three dimensions and in fact, Fig. 2c in
main text shows cases where they are identical.

Fig. 5 shows the distribution of S2
i as a function of

∆Z . Also here, there is no apparent difference from the
three dimensional case and the exponent characterizing

the power-law scaling at small S2
i agrees with the predic-

tion P
(
S2
i

)
∝
(
S2
i

)−0.41269.

10-6 10-4 10-2 100

S 2
i

10-12

10-10

10-8

10-6

10-4

<
B
i(
S

2 i
)
>

(a)∆Z= 0. 53
∆Z= 0. 16
∆Z= 0. 047
∆Z= 0. 014

10-6 10-4 10-2 100

S 2
i

10-12

10-10

10-8

10-6

10-4

<
G i

(S
2 i
)
>

(b)

10-6 10-4 10-2 100
10-5

10-4

10-3

10-2

10-1

<
∆
B
i(
S

2 i
)
>

10-6 10-4 10-2 100
10-6

10-5

10-4

10-3

<
∆
G i

(S
2 i
)
>

Figure 3. a) The conditional average
〈
Bi
(
S2
i

)〉
and b)〈

Gi
(
S2
i

)〉
are proportional to S2

i over a broad range of S2
i .

In the inset the corresponding
〈
∆Bi

(
S2
i

)〉
and

〈
∆Gi

(
S2
i

)〉
are shown. To good approximation these are independent of
S2
i except at high S2

i . Data is from 2d systems with N = 8192
particles.

10-4 10-2 100 102

Bi/
〈
Bi
〉

10-6

10-4

10-2

100

102

P
(B

i/
〈 B i

〉 )

(a)

0<Gi/
〈Gi〉< 0. 01

0. 01<Gi/
〈Gi〉< 0. 1

0. 1<Gi/
〈Gi〉< 1. 0

1. 0<Gi/
〈Gi〉

10-4 10-2 100 102

∆Bi/
〈
∆Bi

〉
10-6

10-4

10-2

100

102

P
(∆
B
i/
〈 ∆
B
i〉 )

(b)

0<∆Gi/
〈
∆Gi

〉
< 0. 01

0. 01<∆Gi/
〈
∆Gi

〉
< 0. 1

0. 1<∆Gi/
〈
∆Gi

〉
< 1. 0

1. 0<∆Gi/
〈
∆Gi

〉

Figure 4. a) P (Bi) for different ranges of Gi and b) P (∆Bi)
for different range of ∆Gi in two dimensions. The collapse
indicates almost vanishing correlations. Here ∆Z = 0.047
and the number of particles N = 8192.
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10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103

S 2
i /
〈
S 2
i

〉10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101
P
( S2 i

/
〈 S2 i

〉)
x−0.41269

∆Z=0.16

∆Z=0.047

∆Z=0.0137

∆Z=0.0038

Figure 5. P
(
S2
i

)
at different values of ∆Z in two dimensions

with N = 8192 particles. The exponent 0.41269... is the pre-
diction based on the contribution from bucklers[8, 30]. Note
that as ∆Z is increased a peak in P

(
S2
i

)
develops.

C. Effect of “bucklers" on P
(
S2
i

)
In this section we show that the scaling of P

(
S2
i

)
∝(

S2
i

)−θS≈−0.42 at small S2
i results from particular parti-

cles with d + 1 neighbors called “bucklers”. To this end
we consider the distribution of S2

i when these particles
are not included. The scaling argument in the main text
is based on the behavior at isostaticity where the distri-
bution of forces, P (F ) ∝ F θ at small F . As we argued
in the main text

θs = 1/2− θ/2. (22)

The exponent θ has two contributions [30] – (1) The
mean-field exponent [29, 32] θ(∞) = 0.42311... and (2)
The exponent due to “buckler” particles θ = 0.17462...,
which overshadows the first contribution. Buckler parti-
cles are those with d + 1 interacting neighbors in d di-
mensions, for which d forces are nearly balanced across
the particle in what is nearly a line in d = 2 or a plane
in d = 3, while the remaining force is very small. In the
main text, we showed that Eq. 22 holds if all particles and
forces are included. If bucklers are removed, the force
distribution scales as P (F ) ∼ F θ(∞)

at small F [30]. We
would therefore expect the exponent in P (S2

i ) to change
when bucklers are removed. Indeed, the prediction of
Eq. 22 that θ(∞)

S = 0.28845... is in good agreement with
our numerical results at the lowest value of ∆Z shown in
Fig. 4. Note that once bucklers are removed, however,
the exponent θS is not robust to changes in ∆Z; Fig. 4
shows that P

(
S2
i

)
approaches a constant at small S2

i as
∆Z increases. Comparing Fig. 5 to Fig. 2d of the main
text we deduce that bucklers are the origin of the small

P
(
S2
i

)
scaling seen in Fig. 2d of the main text, which,

interestingly, depends only weakly on ∆Z.

10-4 10-2 100 102

S 2
i /
〈
S 2
i

〉
10-8

10-6

10-4

10-2

100

P
( S2 i/

〈 S2 i〉)

x−0. 28845 2D

∆Z= 0. 047

∆Z= 0. 0137

∆Z= 0. 0038

∆Z= 0. 001

∆Z= 0. 0003

10-4 10-2 100 102

S 2
i /
〈
S 2
i

〉
10-8

10-6

10-4

10-2

100

P
( S2 i/

〈 S2 i〉)

x−0. 28845 3D

∆Z= 0. 127

∆Z= 0. 0389

∆Z= 0. 0114

∆Z= 0. 00323

∆Z= 0. 00093

Figure 6. P
(
S2
i

)
in two dimensions (left) and three dimen-

sions (right) when buckler particles are removed. The expo-
nent 0.28845 is the prediction based on the the mean-field
scaling of P (F ) at isostaticity . Note that the smallest ∆Z
curve is different from the remaining curves with larger ∆Z,
suggesting that the exponent is not robust to the increase of
∆Z unlike the buckler contribution.
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