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Abstract
The rheology of homogeneous cohesive granular assemblies under shear at moderate volume

fractions is investigated using the Discrete Element Method for both frictionless and frictional

granules. A transition in rheology from inertial to quasistatic scaling is observed at volume fractions

below the jamming point of non-cohesive systems, which is a function of the granular temperature,

energy dissipation, and cohesive potential. The transition is found to be the result of growing

clusters, which eventually percolate the domain, and change the mode of momentum transport

in the system. Differences in the behavior of the shear stress normalized by the pressure are

observed, when frictionless and frictional cases are compared. These differences are explained

through contact anisotropy after percolation occurs. Both frictionless and frictional systems are

found to be vulnerable to instabilities after full system percolation has occurred, where the former

becomes thermodynamically unstable and the latter may form shear bands. Finally, implications

for constitutive modeling are discussed.
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I. INTRODUCTION

As the size of particles in a granular flow are decreased, reaching the micron size range, a

number of phenomena appear that are otherwise unimportant to larger particles, e.g. mil-

limeter sized. Cohesion in the form of van der Waals forces, liquid bridging, and long-ranged

electrostatics become important. Repulsive electrostatics may also be present. The cohesive

mechanisms cause a number of interesting differences in the characteristic flow behavior

when compared to non-cohesive systems. For example, a marked increase in yield stresses

are observed in the presence of cohesion [1–5]. Additionally, in numerical experiments a

quasistatic stress scaling, where shear stress does not depend on shear rate [6], is observed

at volume fractions well below volume fractions characteristic of jamming for non-cohesive

systems [1, 3]. Both of these effects have been observed to cause plug flows in gravity driven

chute flows of granular media, where the size of the plug grows with cohesion strength [7]. On

the other hand, in split cell rheometers, cohesion is observed to increase the size of the shear

band, decreasing the size of the static areas of the flow [8]. In this manuscript we attempt to

explore some of the origins of these behaviors from a physics-based microscopic viewpoint,

and elucidate some of the challenges in constitutive modeling of cohesive materials.

We focus primarily on dry cohesive systems with van der Waals cohesion. Systems where

the effect of short-ranged cohesion is important are widespread, though the focus in this

study is drawn to rheology of moderately dense systems, φs = 0.55. On the industrial side,

accurate models for micron-sized powder rheology are vital for the simulation and modeling

of Geldart C powders in fluidized bed processes [9–13]. In processes that depend intimately

on the resultant flow field kinematics, such as in powder mixing [14] and materials process-

ing [15], rheological models of dry cohesive powders must predict the correct yield stress

behavior in order to achieve success. In extra-terrestrial settings, rheology is of importance

for understanding the transport of and contamination by Martian and lunar regolith [16] as

well as for asteroid mining [17, 18]. The discrete element method (DEM) will be used to

extract rheological scalings that are relevant to constitutive modeling in these many different

contexts.

The most unique phenomenon brought on by cohesion is a transition from fluid-like be-

havior to solid-like behavior, that directly depends on both shear-rate and cohesive strength

[1, 3, 19]. This transition is observed to occur both in the presence [1, 3] and absence of
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friction [19, 20]. Several generic characteristic features also accompany this transition, which

are observed in different combinations of frictional and frictionless systems, two and three

dimensions, and at constant volume or constant pressure. An increase in particle contacts

is observed as the shear rate is decreased or cohesion is increased near the transition for

frictional systems [3], reminiscent of the transition with volume fraction in non-cohesive

systems. Shear banding [3–5, 8, 21] and more elaborate instabilities [20] have also been

observed as cohesion is increased in very large systems. However, as cohesion is increased

beyond some critical value shear banding may disappear [3]. An increase in a correlation

length-scale for correlated non-affine particle velocities is also observed [22].

Some noteworthy differences from non-cohesive systems have also been reported in the

study of cohesive granular systems. For frictionless systems below a certain shear rate or

strength of cohesion, homogeneous macroscopic systems become thermodynamically unsta-

ble [20] and can exhibit negative pressures [5]. Most puzzling is that the transition in

frictionless systems is considered energetic in nature, depending only on collisional energy

dissipation, van der Waals potential, and shear-rates. The rheological behavior of frictional

systems, on the other hand, has often been collapsed by a dynamic scaling, i.e., using the

cohesive force at contact [1, 3, 22]. Whether both scalings are correct and how the transition

between scalings happens for vanishing interparticle friction remain unanswered.

Moreover, a clear microscopic and mechanistic picture of why this transition occurs, and

an explanation for the differences between frictional and non-frictional cases, is lacking. It is

known from the standpoint of the kinetic theory of frictionless cohesive spheres that aggre-

gation of particles is sensitive to granular temperature, which scales with the macroscopic

shear rate squared [10, 19, 23, 24]. How this aggregation mechanism fully connects to the

observed rheological transition remains an unanswered question.

In our DEM studies, we find an important connection for both frictional and frictionless

systems between the fluid to solid-like transition and the ratio of the cohesion energy to

the granular temperature and explore this connection in detail. For frictionless systems the

scaling is robust for all coefficients of restitution. Microstructural measures are introduced,

such as a cluster length-scale, which clearly shows that the mechanism behind the rheological

transition in frictionless systems is percolation of the domain by particle contact networks.

Additionally, non-trivial trends in the shear stress ratio with varying friction are explored

and connected to contact anisotropy.
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The results obtained herein hint at some difficulties in the constitutive modeling of cohe-

sive granular flows. It is now understood that in ordinary granular flows, non-local rheolog-

ical behavior is tied to the granular temperature both through interaction with boundaries

[25, 26] and increase in local non-affine velocity correlations that determine collisional en-

ergy dissipation [27, 28]. The temperature in these cases is not slaved to the local shear

rate and pressure, as is the case in the so-called µ (I) rheology [29]. We expect that the

sensitive dependence of the rheology on granular temperature will also mean that additional

transport models for variables, namely temperature, will need to be considered in addition

to flow kinematics. Lastly, the emergence of new diverging cluster length-scales must also

be accounted for in any proposed rheological model.

II. METHODS

In this paper we aim to examine the physical basis for the transition in rheological scaling

in simple shear, from inertial to quasistatic scaling, for moderately dense assemblies of

cohesive granules. To accomplish this analysis we have performed DEM simulations of simple

shear using the molecular dynamics code LAMMPS [30]. Particles in this methodology

interact not only due to the ordinary elastic and dissipative models that are active when

particles are in contact, but also due to an attractive potential well, which extends beyond

contact [19, 23]. A generic form of the normal component of the combined contact force law

and cohesive force law are given by

F(ij)
n =



















(Reff |δ|)p
(

−bnv
(ij)
n − knδn̂

(ij)
)

+ Fc,vdW

− AReff

6 (δ + d0)
2n̂

(ij)

: δ ≤ 0

: δ > 0
, (1)

where bn and kn are the normal damping and spring constants of the force law. These

forces depend on n(ij), the normal separation vector from particle i to particle j, the surface

separation or overlap δ = |n(ij)| −
(

R(i) +R(j)
)

, and pair normal velocity v
(ij)
n . Lastly, a

caret indicates a unit vector. The van der Waals force is the source of cohesion in this

model and is determined by the Hamaker constant A, effective radius at contact Reff =

R(i)R(j)/
(

R(i) +R(j)
)

, which may differ from the radius of the particle, and the interatomic

separation distance d0, typically taken to be anywhere from 0.167 − 0.4 nm [1, 12, 19, 31].
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In this model, the van der Waals force saturates at contact and hence the cohesive force

between a pair of particles in contact is given by Fc,vdW = −n̂(ij)AReff/ (6d
2
0). This model is

consistent with approaches for nearly rigid particles where the Tabor parameter is sufficiently

small µT < 0.1 [32] and radius of contact is sufficiently large Reff ≫ d0 [31]. Finally, the

exponent p is used to select between contact force models such as the linear spring dash-pot

[33], p = 0, and the Kuwabara-Kono model p = 1/2 [34, 35].

The tangential forces are governed by similar models given by

F
(ij)
t =























(Reff |δ|)p
(

−btvt − ktu
(ij)
)

−µf |Fn|û(ij)

0

: δ < 0, |Ft| ≤ |µfFn|

: δ < 0, |Ft| ≥ |µfFn|

: δ > 0

. (2)

where a subscript t is used to indicate the tangential counterpart of the normal definitions.

Additionally, ut is the elastic surface displacement. The tangential force saturates as well,

when a yield criterion is met, see Eq. 2. Thereafter, a Coulumb friction law is used, where

µf is the coefficient of friction. The tangential spring stiffness is taken to be kt = 2kn/7 [36],

when friction is present. The tangential damping is set to zero and not considered in our

treatment.

The parameter space of interest for these systems is best discussed in non-dimensional

terms. The normal force law given in Eq. 1 produces 4 independent non-dimensional groups

[19]. The groups for the linear spring dash-pot variant that we will choose to use are the ratio

of the attractive potential at contact to the kinetic energy in the normal relative direction

Hap = 2AReff/
(

6meffv
2
refd0

)

, the modified Bond number [1] Bo⋆ = AReff/ (6d
2
0kD), the

coefficient of restitution ε, and the scaled particle stiffness k⋆ = k/
(

ρDv2ref
)

. Note that the

coefficient of restitution is given by ε = exp

(

−π/

√

4knmeff

b2
− 1

)

. The tangential force

law also produces the important non-dimensional group already introduced µf . Here the

effective mass is given by meff = m(i)m(j)/
(

m(i) +m(j)
)

and ρ is the particle density. Since

we are considering simple shear flows of granular particles the reference velocity vref can be

chosen to be one of two macroscopic velocity scales: the granular temperature vref =
√

Tg =
√

〈

v
′(i)
k v

′(i)
k

〉

/3 or the velocity scale defined by the shear rate vref = γ̇D. Both of these

reference velocity scales will be used to define a macroscopic Haα parameter, where α is a

placeholder for the shear rate γ̇ or temperature T . Additional macroscopic non-dimensional
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groups are then T/ (γ̇D)2, the solid volume fraction φ, inertial scaling of pressure related to

the so-called inertial number [29, 37] by P/
(

ρ (γ̇D)2
)

= I(−2), and of course any number of

ratios between combinations of entries in the stress tensor, e.g. shear stress ratio µ = σxy/P .

Aarons and Sundaresan [1] and Gu et al. [3] investigated a transition in stress behavior

in sheared cohesive assemblies that occurs at volume fractions below the jamming transition

for non-cohesive particles. In this paper we are interested in the physical underpinnings of

the transition of assemblies of cohesive particles with and without friction. Towards this end

we have chosen to simulate a solid volume fraction of φ = 0.55, while varying other relevant

parameters such as ε, Haγ̇, Bo⋆, and µf .

Previous studies on head-on collisions of cohesive particles have revealed that for particles

that are sufficiently hard-enough, e.g. with stiffnesses satisfying Bo⋆ < 10−5 for ε = 0.9 and

D/d0 = 104, the restitution behavior is purely a function of the parameter Hap and ε

[12, 19]. Here the reference velocity is the initial relative velocity between a pair of particles

separated beyond the strong cohesive part of the well, at least 10d0. The equation for the

effective coefficient of restitution εeff is then given by

εeff =











(ε2 − (1− ε2)Hap)
1/2

0

: vref ∈ (−∞, vcrit)

: vref ∈ [vcrit, 0]
. (3)

where the critical initial velocity is vcrit = −
√

2AReff (1− ε2) / (6d0meffε2) and the cor-

responding Hacrit = ε2/ (1− ε2). The plot of this restitution behavior can be found in Fig.

1. This equation first appeared in a treatment by Dahneke [38], who was investigating the

restitution behavior of micron-sized latex spheres impacting a wall. Fig. 1 shows two impor-

tant behaviors: 1) near the critical velocity an increase in cohesion or decrease in velocity

increases dissipation in a particle collision 2) particles with lower restitution coefficient stick

together more easily. We expect this change in restitution and sticking behavior brought

on by cohesion to play a significant role in the formation of structure during the regime

transitions observed in simple shear, especially for frictionless particles.

DEM simulations of simple shear are carried out using a triclinic deforming domain,

equivalent to the Lees-Edwards boundary conditions [39] at constant volume. In this set-up

energy is added to the kinetic energy of the domain through the usual mechanism of viscous

heating Ėkin = σxyγ̇. This heating generates fluctuations in the particle velocities, which
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FIG. 1. The behavior of εeff the effective coefficient of restitution is plotted for several values of ε.

Systems with higher intrinsic inelasticity require weaker potential wells to lead to sticking.

are eventually dissipated by collisional and frictional dissipation mechanisms. We expect

that for frictionless systems if the characteristic velocity set by the granular temperature is

much greater than the critical velocity, cohesion will play little to no role.

As the temperature approaches the critical velocity, the formation of larger clusters is to

be expected (see Fig. 2.) Eventually, we expect that clusters must become large enough

to span the computational domain. The percolation of clusters changes the mechanism

of momentum transfer from collisional to yielding. The shear stress should then become

quasistatic in nature, i.e. σxy ∼ γ̇0, consistent with dense flows near the jamming transition

for non-cohesive particles [3, 40]. How exactly this transition occurs and how it affects the

formation and break-up of aggregate structure remains a mystery.

In the following results section we first explore the behavior of macroscopic quantities,

such as shear stress, temperature, and shear stress ratio, near the inertial to quasistatic

transition. The relevant non-dimensional parameters used in the following studies is given

in Table I. We then look at microscopic and cluster measures as a means to explain the

emergence of different scaling behaviors in the macroscopic variables. Finally, we look at

the contact anisotropy to explain differences in shear stress ratios with and without friction.
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FIG. 2. The appearance of clusters in a snapshot where Haγ̇ = 0.72, Bo⋆ = 4.2 × 10−10 and

D/d0 = 104.

Parameter Values

φ 0.55

ε 0.7; 0.8; 0.9; 0.95; 0.99

Haγ̇ 7.2× 10−5 − 7.2× 102

Bo⋆ 4.2× 10−14 − 4.2× 10−5

k⋆ 2× 108 − 1013

D/d0 104 − 105

µf 0; 10−5; 10−4; 10−3; 10−2; 10−1; 5× 10−1;

TABLE I. Parameters used in simple shear simulations of cohesive granules.

III. RESULTS

The results section is broken up into four subsections. The first section explores the

behavior of macroscopic observables, such as shear stress, shear stress ratio, and granular

temperature, both at shear rates above and below the transition. Differences that arise

between frictionless and frictional systems are also discussed. The second section focuses

on microscopic quantities such as the local average potential and average cluster length-

scales. Scaling of all these quantities is also discussed. In the third section, a connection

between contact anisotropy and shear stress ratio behavior is discussed. Finally, challenges

in constitutive modeling are discussed.
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A. Energetic Collapse of Stress

The shear studies presented here are all performed at a volume fraction, φs = 0.55, be-

low the jamming transition as defined by Chialvo et al. [40]. For non-cohesive particles,

momentum transport still occurs primarily due to collisional transport, and Bagnold [41] or

inertial scaling of the stress is observed. Previous studies in the moderately dense regime, i.e.

φs = 0.45−0.6 at constant volume for cohesive frictional particles have shown an additional

transition in the rheology due to the sticking/clumping of particles [1, 3, 42]. This transition

was shown to depend on the cohesive force scaled by inertial terms, i.e. the product Bo⋆k⋆.

Recent simulations [20] and theory [43] for sheared systems of cohesive frictionless particles,

modeled through a Lennard-Jones potential, also reveal a transition in the rheological be-

havior. When cohesion is below some threshold value, dispersed particle assemblies were

obtained [20]. However, when the shear rate became small enough or cohesion large enough,

particle assemblies became thermodynamically unstable [43] and formed various patterns.

The location of the thermodynamic instability was shown to scale with both the inelasticity

α = 1 − ε2 and a term s analogous to Ha−1
γ̇ , in agreement with Eq. 3. We now explore

how this transition occurs using our force model in Eq. 1, and how the introduction and

variation of friction changes this transition.

Figure 3(a) displays the results of shear simulations for frictionless particles at different

values of inelasticity, Haγ̇, Bo⋆, and D/d0, i.e., varying the Hamaker constant, shear rate,

and particle size relative to the interatomic distance. There is indeed a transition in the

shear stress from inertial to quasistatic scaling for all cases. The location of the transition

appears to depend only on the inelasticity of the equivalent non-cohesive model, with the

more elastic systems requiring lower shear rates to become fluidized and achieve inertial

scaling, as compared to less elastic granules. This is consistent with expectations from the

equation for the critical velocity εeff in Eq. 3. We note that the critical value of Haγ̇

is not identical to Hacrit. For example, for ε = 0.99 the critical value of Hacrit ≈ 50

while Haγ̇,crit ≈ 10. Further, the scaled shear stress in the quasistatic regime is practically

identical for all cases. The most important take-away from this plot is that the two values

of D/d0, as used in the ε = 0.9 cases, yield the same qualitative behavior (location of the

transition) and quantitative behavior (magnitude of the shear stress). In the model used,

two different values of D/d0 allows us to determine, whether a scaling is truly dynamic or
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FIG. 3. (a) The collapse of shear stress for frictionless spheres with squared inverse shear rate,

i.e. Haγ̇ ∼ γ̇−2. The collapse is also energetic depending only on the coefficient of restitution. (b)

The same collapse is given for spheres with varying strengths of friction and same coefficient of

restitution. The collapse remains energetic.

energetic. A dynamic scaling [1, 3] is scaled by a characteristic cohesive force proportional

here to d20, while an energetic scaling [19, 23, 43] utilizes a cohesive potential ΦvdW at contact,

proportional to d0. When two different values of D/d0 are compared, a collapse of the stress

can be only energetic or dynamic, but not both. The collapse here is clearly energetic. We
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may infer that it is the granular temperature, i.e. velocity fluctuations, that is important

in determining transition behavior here, rather than a coherent forcing imposing the shear

profile in the mean velocity.

Cases with varying strengths of friction from quite small µf = 10−5 to rather large

µf = 0.5 are also shown in Fig. 3(b), all for a coefficient of restitution of ε = 0.9. A

similar story is shown here in regards to the effect of friction. The critical value of Haγ̇

decreases with increasing friction, meaning that as friction is increased a higher shear rate is

necessary to achieve fluidization. We notice that for small enough friction, e.g. µf ≤ 10−4,

there is practically no difference between stress scaling between frictionless and frictional

systems. The two most important observations are 1) the location of the transition in stress

scaling remains energetic in the presence of friction for µf = 0.5 and differing D/d0 and 2)

the scaled stress in all regimes scales energetically. The origin of this transition with and

without friction appears to be brought about primarily by energy loss in collisions leading

to sticking, which is only affected by the coefficients of restitution and friction.

Finally, we note that the frictional cases saw many instabilities emerge in the quasistatic

regime, e.g. shear banding [3, 43], so-called flying ice cubes, and crystallization. Because

those instabilities are of little interest in the present study, data points exhibiting the in-

stabilities have been removed from the data presented here. Nonetheless, all data in the

inertial regime were stable, and the critical value of Haγ̇ remained solely determined by ε

and µf .

Now we explore some details of the transition in more detail, namely a collapse using

the granular temperature rather than shear rate as a characteristic velocity scale. Figure

4 displays the shear stress and temperature scaling for frictionless systems as a function of

HaT . The location of the transition in stress for frictionless systems occurs at a unique

HaT for all values of ε, with HaT,crit = 1. Minor differences in stress magnitudes occur in

the inertial regime among different ε due to differences in dash-pot strength. Lastly, the

frictional cases do not all transition at HaT = 1. A more detailed characterization of the

behavior of the temperature, and an explanation as to why collapse occurs at HaT = 1 can

be found in Appendix A.

The often used µ (I) rheology [29] focuses on the behavior of the shear stress ratio µ =

σxy/p or apparent friction coefficient of the granular assembly. Cohesion is observed to

increase the apparent friction, allowing for different values of µ to be observed at the same
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FIG. 4. An improved collapse of shear stress, with the characteristic velocity scale being temper-

ature rather than shear-rate.

volume fraction, as was previously observed [3, 21, 22]. Here we are interested in how

the pressure might scale differently from the shear stress. Figures. 5(a) and 5(b) display

the apparent friction for frictionless and frictional systems, respectively. In the absence of

friction, we see that all cases more or less scale the same in both the inertial and quasistatic

regimes. The cases in the quasistatic regime show much larger values for the apparent

friction as compared to that in the inertial regime, i.e., low HaT . Small differences are

also observed in µ due to the coefficient of restitution as well. Most interestingly here, we

observe values of µ that exceed unity, consistent with previous studies in the moderately

dense regime [19, 22]. The reason for this is that the frictionless systems are observed to be

metastable for HaT > 10, with negative pressures developing. Negative pressures have also

been observed in frictionless studies of 2D attractive systems [5]. As the pressure approaches

zero, the apparent friction may become large. In a large enough domain these systems should

phase separate into dense and dilute phases, consistent with prior studies [4, 20]. This phase

separation is beyond the scope of this work.

In frictional cases, it is seen that if the friction is small enough, e.g., µf < 0.1, similar

behavior in the apparent friction is observed. With higher particle friction, the apparent

friction begins at µ ≈ 0.35 and saturates at a value of µ ≈ 0.5 in the quasistatic regime.

For very low friction, µf < 10−4, some values of µ are still greater than unity. Here again,
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FIG. 5. (a) The behavior of the apparent friction is compared among frictionless assemblies with

differing coefficients of restitution. (b) The apparent friction for cases with varying friction and

ε = 0.9.

negative pressures are observed. The microstructural origin for the differing behaviors in µ

for large and infinitesimal friction will be explored in Section IIIC.
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B. A signature of transition in rheology

The physical underpinnings of the inertial to quasistatic regime transition in granular

flows is now explored. A strong correlation has been observed between particle sticking

brought on by enhanced collisional dissipation due to cohesion and the location of the regime

transition. This leads us to believe that it is the formation of clusters that is ultimately

responsible for the regime transition. An average length-scale 〈ξi〉 is now introduced in order

to observe this transition

ξli = max
njk
i

2
∀ j, k ∈ Cl

〈ξi〉 =
1

Np

∑Nc

l=1Np,lξ
l
i.

(4)

Here Cl is the set of particle indexes in cluster l, and Nc and Np,l denote the number of

clusters and number of particles in a cluster, respectively. Note that we consider particles

to be clustered with one another if they are in physical contact, i.e. δ ≤ 0. It has also been

shown that the length-scale is not significantly affected by the stiffness of particles without

once clusters begin to develop and if particles are hard enough [19], i.e. Bo⋆ < 10−5.

The clustered contacts endure on much longer time scales than collisional time-scales. The

coordinate system that ξi is based on is aligned with the original box dimensions. Note

that this quantity is not a true vector because it does not transform as one. This length

scale represents the furthest that a disturbance to a particle can travel on average through

an aggregate, or half the length of an aggregate in the i-th direction. If this length-scale

reaches half the size of the box then the box is percolated in the i-th direction, and a

disturbance can reach any location in that dimension. The dimension of interest here is the

shear dimension, since shear is maintained through momentum being imparted on particles

crossing the boundary in this direction. There are other measures of the length-scale of

particle clusters that do not depend on the coordinate system, such as the radius of gyration

tensor. However, this measure is also sensitive to the packing of particles(i.e. dimension

of the aggregates). While they behave similarly to the length-scale introduced here, they

do not clearly demonstrate the physics of the diverging length-scale. Finally, we note that

monomers do not contribute to the length scale ξli, but they do contribute to the average

length scale 〈ξi〉 due to the normalization.
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We now look to the average cluster length-scales in figs. 6(a) and 6(b). The reported

length scale 〈ξ⋆3〉 = 2 (〈ξ3〉 − 〈ξ3,0〉) /L scale subtracts off the value observed for an equivalent

case without cohesion and is normalized by the height of the cubic domain. Note that the

non-constant values 〈ξ⋆3〉 at low HaT and Haγ̇ are merely due to very small uncertainty in

the average length-scale for non-cohesive systems. Impressively, if we compare the average

length-scale for friction-less particles in Fig. 6(a), we find that the length scale grows exactly

as Ha2T , which is predicted from scaling arguments for population balances in Appendix B.

For the case of ε = 0.7 this occurs not only for HaT ≪ 1 but also until the length scale

saturates at the size of the box. Percolation of the contact network is the result of the average

length-scale reaching the size of the box, and coincides well with the inertial to quasistatic

regime transition at HaT = 1. Animations to demonstrate the percolation for a few cases

with varying Haγ̇ are contained in supplemental materials [44–46]. There we observe that

when Haγ̇ is small few aggregates are observed and are mostly dimers. As Haγ̇ is increased

large fluctuations in aggregate size are observed, which is consistent with phase transition

phenomenology. At the largest values of Haγ̇ only a single aggregate is observed with small

transient aggregates occasionally breaking off and being reabsorbed. The variance in the

cluster size distribution peaks during the stress transition, not shown for brevity.

For frictional cases, we observe that percolation does not always coincide with the rheo-

logical transition. For cases where µf = 0.5 and D/d0 = 104 with the same values of Haγ̇

but different shear rates, differing values of 〈ξ⋆3〉 are observed. All three contain an inflection

point at the same Haγ̇, but percolation, as defined by this quantity, is observed at different

points. Note that all cases yield shear stresses that are practically identical. The differences

in length-scales are likely due to differences in the stiffness and thus contact duration.

For frictional cases, a better structural indicator of the stress transition is a jump in the

average local cohesive potential, 〈Φloc〉 / 〈Φvdw〉. This is the average total local potential

of a particle and all of its neighbors normalized by the potential between two particles in

contact, which has been used previously to characterize aggregates in shear flow of nanoscale

particles [47]. Due to the extremely short-ranged nature of these potentials, this is a good

surrogate for the coordination number in these stiff systems. Figures 7(a) and 7(b) give

the scaled potential for both frictionless and frictional cases. For strongly frictional cases

µf ≥ 0.1, the location of the transition coincides with a marked rise in 〈Φloc〉 / 〈Φvdw〉 to

〈Φloc〉 / 〈Φvdw〉 ≈ 2 in agreement with Gu et al. [3]. For cases with smaller friction, the
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FIG. 6. (a) The scaling of the average cluster length-scale in the shear direction is given for

frictionless spheres, which scales as Ha2T . Percolation is observed for HaT > 1. (b) The cluster

length-scale is given for varying coefficient of friction. Percolation does not correlate with the

transition for all cases.

jump is more extreme, to 〈Φloc〉 / 〈Φvdw〉 ≈ 4. Increasing Haγ̇ at larger µf generally leads

to smaller 〈Φloc〉 / 〈Φvdw〉. This seems to be in agreement with the notion that chains of

particles are more stable against buckling as friction is increased, so that fewer redundant

contacts are needed to stabilize the local particle arrangement. Finally, we note that all
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FIG. 7. (a) The scaled average local cohesive potential is given for frictionless cases. A jump in

the potential is shown for all cases at HaT = 1. (b) The scaled average local cohesive potential for

frictional cases shows a marked increase that correlates well with the stress transition.

cases have 〈Φloc〉 / 〈Φvdw〉 < 6, the coordination number for isostatic jamming of frictionless

spheres [48].

17



C. Contact Anisotropy

Lastly, we examine the microscopic ordering that gives rise to the observation that in the

the quasistatic regime including friction leads to an increase in shear stress but a decrease in

shear stress ratio. Evidence has already been shown in Fig. 7(b) that lower friction leads to

more compact aggregates. The virial components of the stress tensor σij = Σk 6=ln
(kl)
i F

(kl)
j /V

show us that the alignment between forces and lines of center for particles in contact is

important for determining how the shear stress and shear stress ratio should scale. Here

V is the volume of the simulation domain. To that end we extract the radial distribution

function at contact in spherical coordinates g (r = D, θ, φ) and decompose this function into

tesseral spherical harmonics. Here θ is the polar angle at which particles are separated in

relation to the axis of shear in the counter-clockwise direction, while φ = 0 is aligned with

the negative streaming direction. Spherical harmonics are an extension of Fourier series with

spherical periodicity rather than circular periodicity. In this sense, spherical harmonics are

a natural extension to the Fourier decomposition used to represent contact anisotropy in

two-dimensions [21].

The first spherical harmonic mode is isotropic, and contains information about the

isotropic radial distribution function at contact, i.e., gc = g (r = D). The next spherical

harmonic mode that we consider has both the reflective symmetry required in g (r = D, θ, φ)

and also aligns with the eigenvectors (compression and extension) of the imposed shear flow,

while ignoring additional structure in the transverse direction. Lower order modes were also

computed as discussed below but yielded amplitudes close to zero. The decomposition in

orthonormalized tesseral spherical harmonics is as follows

g (r = D, θ′, φ′) = u0
0Y

0
0 + u1

2Y
1
2 + ...

=
1

2
√
π

(

u0
0 +

√
15u1

2 cosφ
′ cos θ′ sin θ′ + ...

)

. (5)

The new coordinates {φ′, θ′} are the result performing a rotation on the coordinate system

{φ, θ} by −θshift about the transverse axis. The angle −θshift is chosen such that the

magnitude of the first shear anisotropic mode is maximized. This is consistent with a phase

shift in Fourier analysis of two-dimensional flows [21]. The mode coefficients are given by
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(φ = 0, θ = 3pi/4).

um
l , while the mode is given by Y m

l . The subscript l and the superscript m are indexes for

the series terms which go from (0,∞) and (0, l), respectively. The magnitude of the mode

is then found via the orthogonality condition as δljδmk =

∫ π

0

∫ 2π

0

Y m
l Y k

j sinθ
′dφ′dθ′. For

reference, the anisotropic mode of interest is shown in Fig. 8 for θshift = 0, where it is clear

that a peak occurs in the direction of maximal compression and a valley in the direction

of maximal expansion. In order to reduce the error in integration in the orthogonality

condition due to non-uniform bin areas, the sphere is binned in recursively triangulated

bins from an initial octahedron with vertices aligned in the {x, y, z}−directions, rather than

evenly distributed bins in φ′ and θ′. This method eliminates any sampling bias due to

unequal areas, proportional to sin θ′, in the uniform φ′ and θ′ sampling. The inclusion of the

phase shift in the polar angle θshift is intended to capture the principal anisotropic mode

in the case that the principle directions of the fabric and shear flow are not aligned, which

has been observed in split bottom annular shear cell simulations [8]. However, no significant

phase-shifting was observed.

Figures 9(a) and 9(b) display the interplay of shear, temperature, cohesion and friction

on the contact anisotropy through the inertial to quasistatic transition. If we focus on the

frictionless systems, we see that for all cases, the contact anisotropy collapses aboveHaT > 1.

ForHaT > 1 the contact anisotropy quickly plummets until above HaT > 10, where contacts

in the system can be considered to be essentially isotropic. There contacts do not prefer
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any direction. The isotropic behavior in the quasistatic regime is likely due to unstable

particle arrangements in the compression direction, which quickly buckle and rearrange. At

values of HaT < 1, there are differences in contact anisotropy u1
2 due to the coefficient of

restitution resulting in different temperatures. Each of these different ε have differing scaled

temperatures T/γ̇2. An increase in scaled temperature, which serves to randomize local

velocities, is responsible for the decrease in contact anisotropy brought on by imposed shear.

Overall, in the case of frictionless spheres the competition in contact anistropy appears to

be between shear, which enhances anistropy, and cohesion and temperature, which decrease

contact anistropy.

For frictional cases, we see that friction tends to increase the contact anisotropy in the

quasistatic regime (c.f. Fig. 9(b)). Note that these cases are on a log-log plot. For cases

where µf < 0.1, friction increases the contact anisotropy from what is observed in frictionless

cases, though not substantially. For µf ≥ 0.1, we see that although the contact anistropy

is reduced in the quasistatic regime compared to the inertial, consistent with Berger et al.

[21], the contact anisotropy remains in the same order of magnitude. We attribute the

enhancing effect of friction on the contact anisotropy to the increased stability to buckling

and rearrangement due to compression. A reduction in the number of sliding contacts was

previously observed in two-dimensional studies with cohesion and friction [22].

The origins of the phenomenology observed in the stress and pressure become more

obvious when accounting for contact anisotropy. For example, the pressure for frictionless

cases with HaT > 10 is negative. The contacts in those cases are isotropic. This means that

there will be a larger population of particles aligned in the extension direction of the flow,

leading to large cohesive tension forces. These forces eventually become larger in magnitude

on average than the compressive forces in the spring-damper components. This reduction

in pressure due to isotropization of contacts is also responsible for the greater-than-unity

shear stress ratios for cases of HaT ≈ 10, and the meta-stability for HaT > 10.

For frictional cases, the contact anisotropy is less affected by cohesion in the quasistatic

regime. There contacts remain anisotropic, and are primarily aligned in the compression

direction. This in turn leads to larger pressures, as can be seen in the definition of the

pressure due to contacts via the virial expression P = Σk 6=ln
(kl)
i F

(kl)
i / (dfV ). There df are

the degrees of freedom. The only components of forces that contribute to the pressure

are those aligned with the lines of center between the contacting particles. Here a greater
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FIG. 9. (a) The first anisotropic mode for the frictionless cases show a clearly the effects of

temperature, shear rate, and cohesion on the contact anisotropy as represented by u12. (b) The

frictional cases show that friction tends to enhance anisotropy in the presence of cohesion.

population of particles aligned in the compression direction implies a larger pressure. By

contributing to the contact anisotropy, friction indirectly contributes to the smaller values

of scaled stress µ in the quasistatic regime. Undoubtedly, the above reasoning also lends

to arguments about anisotropy in normal stresses. Though normal stress differences are of
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interest, they are beyond the scope of the current study.

D. Implications for Constitutive Modeling

In this work so far the effect of shear and particle properties, such as the coefficients of

restitution, friction, and strength of cohesion, on rheology in a moderately dense system has

been considered. Although the effect of volume fraction is known to have a substantial effect

on the rheology of granular systems, even without considering volume fraction, rich behavior

is observed that must be considered in continuum modeling of cohesive granular materials.

The rheological transition between quasistatic and inertial scaling was found to be energetic

in nature regardless of the strength or presence of friction at moderate volume fractions.

Moreover, the response of the shear stress ratio intimately depends on the friction and

volume fraction of the material, through its affect on the fabric. It is thus worth considering

what general set of variables stress must depend on for future work.

Many state-of-the-art cohesive rheological models that are valid for all volume fractions

make corrections to the µ (I) rheology [3, 21, 22], which considers the stress to be slaved

to the local shear rate. Variables such as temperature and local fabric, which transparently

affect the stress through the virial equation, must also be slaved. Moreover, these models

have chosen to use a dynamic rather than energetic scaling, which has been shown here to

be incorrect at moderate densities. Recent work has also shown that there are a number of

reasons, such a rheology may be insufficient for describing granular flows in general.

Several works have found that the temperature dynamics are important in many flow

set-ups using non-cohesive granules, and thus cannot be described by an unaltered µ (I)

rheology [25, 26, 28]. There temperature may be supplied to the system from interactions

with the boundaries and be eventually dissipated elsewhere in the flow at large distances

from the boundaries. Moderately dense cohesive systems intimately depend on the granular

temperature, and hence, we expect that the temperature dynamics will also be important

for cohesive granular systems. Additionally, we expect that the cluster length scale should

be intimately connected to the correlation length affecting temperature dissipation due to

correlated collisions in the extended kinetic theory [27].

In fact, the study of the inertial-elastic transition in non-cohesive flows [27] gives tremen-

dous insight as to how one might begin to model cohesive systems, accounting for ”non-local”
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effects. In non-cohesive systems there are at least three regimes, which are determined by the

volume fraction: inertial, correlated collisional, and qausi-static. The inertial and quasistatic

regimes exhibit stress scalings with the shear rate that are identical to those observed at low

and high Haγ̇, respectively. The nice aspect of the extended kinetic theory approach is the

direct connection to kinetic theory, which allows one to pose dependencies on temperature

in addition to the shear rate, and also includes a direct connection to enduring contacts

allowing for the treatment of soft-spheres. The former aspect enables the extended kinetic

theory to treat inhomogeneous problems, where temperature is not fully determined by the

local shear rate. An additional similarity is that in both the non-cohesive and cohesive tran-

sitions viscosity would be seen to increase with temperature as in a gas in the inertial regime

and decrease with temperature in the quasistatic regime as in a liquid. However, there are

a few notable differences introduced by cohesion. A new variable becomes important in

determining regime boundaries, HaT . This ratio of cohesion energy to fluctuation energy

controls the transition from inertial to rate-independent quasistatic at moderate densities,

and makes the regime boundaries explicitly dependent on temperature, which is not the case

for non-cohesive systems. The effects of enduring contacts on the rheology is also evidently

necessary once percolation of the contact network has occurred.

Still, other w orks have found that during certain flow protocols, such as shear reversal,

that the microstructural/fabric evolution must also be accounted for, and require their

own evolution equations [49, 50]. We too found that the orientation of contacts is vital

for the correct prediction of shear stress ratios in cohesive flows. How cohesion and its

interaction with friction affects the fabric dynamics at these more moderate volume fractions

is of interest. Lastly, how the essential underlying non-local aspects of the rheology, i.e.,

percolation, should be accounted for remains a topic of interest.

IV. CONCLUSIONS

A regime transition in simple shear simulations of cohesive granules from inertial to qua-

sistatic scaling of the stress is studied. This transition occurs at volume fractions much

lower than those where jamming occurs in repulsive systems. The effects of both restitution

and friction on the transition are studied. For frictionless systems, the transition occurs at

a ratio of cohesive potential energy to fluctuating kinetic energy HaT of unity, for any coef-
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ficient of restitution less than unity. A unique yield stress is also observed for all frictionless

systems. Friction, on the other hand, is observed to increase both energy dissipation and

yield stress and yields non-unique locations for the transition and yield stress. Nonetheless,

the transition in the stress only collapses with an energetic scaling of the stress and shear

rate, rather than a force or dynamic scaling. The scaled shear stress behavior for all systems

is also discussed.

The microscopic origin of the transition is further investigated. For systems without

friction, percolation is solely responsible for the transition in stress, correlating well with

the location of the stress transition at HaT = 1. Frictional systems do not necessarily need

to percolate at any time step, but correlate well with a large increase in the local cohesive

potential energy. The average cluster length scale is also observed to grow as T−2, near

the transition in frictionless systems. The scaling is accounted for by population balance

arguments for systems with large granular temperatures.

The microstructural origin of non-trivial variation in shear stress ratio with shear rate

and cohesive strength is explored. In the quasistatic regime, friction tends to increase the

yield stress but decrease the shear stress ratio over a range of coefficients of friction. Contact

anisotropy is responsible for this scaling, where friction may prevent the buckling of contact

chains in the direction of maximal compression. Without friction, aggregates are easily

compressed and contacts quickly isotropize, leading to more contacts in tension and thereby

decreasing the pressure.

Lastly, some of the repercussions of the sensitivity of the stress to fluctuating kinetic

energy are discussed in light of recent works in non-cohesive systems. It is unlikely that the

temperature dynamics can be ignored in constitutive modeling and continuum simulation of

cohesive systems. Additionally, differences in behavior between different sources of cohesion

such as liquid bridging and electrostatics also remain unclear and merit further study.
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Appendix A: Temperature Scaling in Homogeneous Shear of Cohesive Granular

Particles

To understand the stress vs. temperature scaling in Fig. 4 a little better we look at the

temperature response given in Fig. 10. The trends for the temperature in the quasistatic and

inertial regimes here can easily be explained by an energy balance. For small Haγ̇, T/ (γ̇D)2

is constant, meaning that T ∝ (γ̇D)2, which one finds from simple dimensional analysis.

However, for large Haγ̇D, T/ (γ̇D)2 ∝ Ha
1/2
γ̇ which translates to T ∝ γ̇D. Note also that

the transition between these two scalings does not appear to be smooth and monotonic in

the chosen units shown.

The energy balance at steady state for these systems can be seen as a competition be-

tween energy input from macroscopic deformations and dissipation by the viscous dash-pot

interaction. The energy input into the temperature equation is equal to viscous heating, i.e.,

Ėin = σxyγ̇, while the dissipation of energy is proportional to the energy dissipated by parti-

cles and number of interations. In the collisional or inertial regime the rate of dissipation of

granular temperature Ėdiss is proportional to (1− ε2) T 3/2 [51]. The extra T 1/2 arises from

the collisional frequency, which determines how often particles are in contact within a given

time period. The shear stress σxy is proportional to (γ̇D)2, and viscous heating Ėin is then

proportional to (γ̇D)3. The end result yields the result that T ∝ (γ̇D)2. The dependence

of T/ (γ̇D)2 on the coefficient of restitution in the inertial regime is also explained by these

arguments.

For quasistatic flows, particles are always interacting or in contact and the stress does not

depend on the shear rate. In that case, one finds that the dissipation is directly proportional

to the temperature Ėdiss ∝ bT . The energy input also becomes Ėin ∝ γ̇, since stress does not

depend on the shear rate. Hence, one finds that T ∝ γ̇D for quasistatic cases. This makes

sense from the standpoint of physical intuition as well; in a well connected assemblage of

spheres, fluctuating or non-affine velocities depend only on rearrangements that are caused

by the imposed deformation. Dissipation happens on a much faster time scale (on the order

of the collision duration) than particles rearrangements caused by shear. This view is backed

up by a unique scaled temperature among differing ε in the quasistatic regime. In a sense,

each case with differing ε are kinematically identical if particles are completely clustered.

Finally, in between these two scaling regimes we see a dramatic drop in the scaled tem-
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FIG. 10. The scaling of temperature by shear rate for frictionless particles.

perature, which is likely caused by the sticking of particles and an essential loss of modes

that large fluctuating velocities can occupy [23]. This large drop in T/ (γ̇D)2 is ultimately

responsible for the collapse of the stress transition at HaT = 1 for frictionless particle sys-

tems. We note that frictional cases exhibit the same temperature scaling in the inertial and

quasistatic regimes, but as with the scaled shear stress they do not transition at the same

HaT irrespective of µf .

Appendix B: Scaling of the Cluster Length-Scale in Homogeneous Shear of Mod-

erately Dense Cohesive Systems

Here we explore how the cluster length-scale should grow and eventually cause a regime

transition in the rheological scaling. The length-scale 〈ξi〉 introduced in Section IIIB is nor-

malized by the number of particles in the system. This view essentially considers monomers

as clusters of zero length. Incidentally, when only dimers and monomers are present, as is

the case for Haγ̇ ≪ Haγ̇,crit, the average coordination number 〈Z〉 will scale exactly the

same with Haγ̇ as 〈ξi〉. This is because the length scale for a dimer is essentially constant.

In this regime, where 〈ξi〉 ∝ 〈Z〉, we can predict how the cluster length scale might scale

with shear rate through the use of population balance equations. The source of dimers due

to monomer collisions has been previously derived [23]. A similar integration can be made
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to estimate the sink of dimers due to collisions that result in break-up. Here we assume

that the critical velocity that leads to break-up is slightly larger than the critical velocity

under which monomers stick and we assume that this critical velocity is constant. Here

vcrit,b = αvcrit,a, where α > 1. It is also assumed that the sink of dimers must be propor-

tional to the number of dimers present, such that the rate of loss vanishes when dimers are

not present. Sources and sinks to larger aggregates are ignored. The resulting rate equation

for the number of dimers N (2) is given by

dN (2)

dt
= C1

√

Tg

(

1− exp

(

−
v2crit,a
4Tg

))

− C2N
(2)
√

Tg exp

(

−
v2crit,b
4Tg

)

. (B1)

Hereafter we drop the constants C1 and C2, since they do not affect the steady-state

scaling. To find the leading order power law scaling these terms are expanded in Taylor

series. Terms in the power series in the temperature range of interest must be less than unity

to ensure that higher order terms are of decreasing importance. Due to the exponential term,

neither term can be expanded about Tg = 0. The rate of dimer break-up term grows with the

temperature, while the rate of monomer aggregation decreases with increasing temperature.

We will expand each term around different points, but with overlapping areas where terms

up to first-order are dominant. The aggregation rate being expanded around 1/Tg = 0 and

the break-up rate around Tg = v2crit,a. See Fig. 11(a) for a depiction of the areas, where

the first order linear terms are the leading order terms in the expansion. The steady state

number of dimers is then given to first order as

N
(2)
SS ∝

v2crit,a

4Tg


1−
α2

4
+

α2Tg

4v2crit,a



 exp



−
α2

4





. (B2)

The scaling of the steady-state dimer population is plot in Fig. 11(b). There the raw

scaling using eq. B1, expansion to first-order in eq. B2, and the power law v4crit,a/T
2
g term,

without the additive constants in the denominator, are compared for the case of α = 1.5

[52]. We see that the slope is quite accurate, going as T−2. A power-law curve fit of Eq. B1
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FIG. 11. (a) The temperature regions where the first order terms in the Taylor Series expansions

of eq. B1 are dominant. The orange indicates the region for the break-up term, while the blue

indicates the region for the aggregation term. (b) The scalings of the steady state dimer population

are compared showing that the population scales as v4crit,a/T
2
g in the area near the stress transition,

using Eqs. B1, B2, and a simple T−2.

also produces an exponent of 2.03. Comparison of this scaling law is shown in Section IIIB.
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