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We show that the yielding transition in granular media displays second-order critical-point scaling
behavior. We carry out discrete element simulations in the low inertial number limit for frictionless,
purely repulsive spherical grains undergoing simple shear at fixed nondimensional shear stress Σ in
two and three spatial dimensions. To find a mechanically stable (MS) packing that can support
the applied Σ, isotropically prepared states with size L must undergo a total strain γms(Σ, L). The
number density of MS packings (∝ γ−1

ms ) vanishes for Σ > Σc ≈ 0.11 according to a critical scaling
form with a length scale ξ ∝ |Σ− Σc|−ν , where ν ≈ 1.7− 1.8. Above the yield stress (Σ > Σc), no
MS packings that can support Σ exist in the large system limit, L/ξ � 1. MS packings generated
via shear possess anisotropic force and contact networks, suggesting that Σc is associated with an
upper limit in the degree to which these networks can be deformed away from those for isotropic
packings.

I. INTRODUCTION

Granular materials consist of macroscopic grains that
interact via dissipative contact forces. Their response to
external forcing depends on the ratio Σ = τ/p of the
applied shear stress τ to the normal stress p, where p is
small compared to the stiffness of the grains [1, 2]. Gran-
ular media, like other amorphous materials [3–6], possess
a yield stress Σc. Generally, grains will always rearrange
when the applied forces are changed. However, when
Σ < Σc, grains move temporarily until finding a solid-like
mechanically stable (MS) packing that can support the
applied Σ [7–9]. When Σ = Σc, the strain γms required to
find MS packings diverges. When Σ > Σc, grains cannot
find MS packings, and fluid-like flow persists indefinitely.

In the jamming paradigm [10–16], which is commonly
used to understand fluid-solid transitions in granular ma-
terials, the packing fraction φ is the controlling variable.
Fluid- and solid-like states occur for φ < φJ and φ > φJ ,
respectively. A diverging length scale ξJ ∝ |φ − φJ |−νJ
controls the mechanical response near φJ [12, 14–16].
However, MS packings of frictionless grains at fixed p
and varied Σ all have a packing fraction φms(Σ) ≈ φJ [9].
Thus, Σ ≈ Σc may represent a fluid-solid transition dis-
tinct from jamming, where the structure of the force and
contact networks, not φ, plays a dominant role.

In this paper, we show evidence that the number den-
sity of MS packings vanishes at Σ = Σc in the large-
system limit, with second-order critical scaling that is
not related to φ but instead to the structure of the force
and contact networks. We measure γms in systems of fric-
tionless grains subjected to simple shear as a function of
Σ and system size L. We postulate a second-order crit-

ical point scaling form for γms with a diverging length
scale ξ ∝ |Σ−Σc|−ν . The data for γms collapse onto two
branches: Σ > Σc and Σ < Σc. For simple shear in two
(2D) and three dimensions (3D), we find Σc ≈ 0.11, in
agreement with previous studies [1, 9, 17]. MS packings
exist for Σ > Σc in small systems, but the number van-
ishes as L/ξ increases. For Σ < Σc, MS packings exist for
all L, and large systems (L > ξ) are equivalent to compo-
sitions of uncorrelated smaller systems. Our results are
insensitive to changes in the boundary conditions and
driving method, which we explicitly show by performing
additional simulations in a riverbed-like geometry in the
viscous or slow-flow limit [18, 19].

We find that the packing fraction φms(Σ, L) of MS
packings is nearly independent of Σ. However, the
anisotropy in both the stress and contact fabric tensors of
MS packings increases with Σ, suggesting that Σc is as-
sociated with an upper limit to the structural anisotropy
that can be realized in the large-system limit [9]. These
results may help explain recent studies [20–24] showing
that accurately modeling granular flows requires a coop-
erative length scale that grows as a power law in Σ−Σc.
Our results may also be relevant to other amorphous
solids that show similar spatial cooperativity near yield-
ing [5, 25–27].

The remainder of the manuscript is organized as fol-
lows. In Sec. II, we describe our simulation methods. In
Sec. III we present our results, including the critical scal-
ing of γms in Sec. III A and the microstructural properties
of MS packings in Sec. III B. Section IV contains a sum-
mary and conclusions. We include additional details in
Appendix A on the equations of motion and dimensional
analysis. Appendix B demonstrates our methods for de-
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termining the critical exponents and Σc. Appendix C
gives further discussion on the scaling collapse of 〈γms〉−1

versus Σ.

II. METHODS

As depicted in Fig. 1, we perform discrete element
method simulations of simple shear in 3D and 2D, as
well as in a 2D riverbed-like geometry subjected to a lin-
ear flow profile in the viscous limit. For the simple shear
simulations, we study systems of bidisperse frictionless
spheres in 3D and disks in 2D. Two-thirds of the grains
are small and one-third are large, with diameter ratio 1.2
in 3D and 1.4 in 2D. The lateral directions x (in 2D and
3D) and z (in 3D only) are periodic with length L, where
L is the length of the box edge in units of the small grain
diameter D. The fixed lower y boundary consists of a no-
slip wall. The system is driven by the upper boundary,
which is a plate consisting of rigidly connected small par-
ticles, with gaps that are large enough to prevent slip and
small enough to stop bulk grains from passing through
the plate. We have checked that our results are insensi-
tive to the details of the top plate, provided no slip occurs
between the plate and grains. We apply downward force
per area −pŷ and horizontal force per area τ x̂ to the up-
per plate and solve Newton’s equations of motion for the
wall as well as N grains using a modified velocity Verlet
integration scheme. In 3D, we vary N = L3 from L = 3,
N = 27 to L = 16, N = 4096. In 2D, we vary N = L2

from L = 7, N = 49 to L = 40, N = 1600. Grains inter-
act via purely repulsive, linear springs with force constant
K. For the systems driven by simple shear, we include a
viscous damping force −Bv in the equations of motion
for the top plate and N grains, where v is the absolute
velocity and B is the damping coefficient.

The equations of motion for simple shear, described in
detail in Appendix A, are governed by three nondimen-
sional parameters:

Γ =
B√

mpDd−2
, (1)

κ =
K

pDd−1
, (2)

Σ =
τ

p
, (3)

where d is the spatial dimension. Γ is the dimensionless
damping parameter, which we set equal to 5, and κ is a
dimensionless grain stiffness. We set κ = 103, meaning
that φ ≈ φJ(L) + 0.001, where φJ(L) is the jamming
packing fraction at a given L. Our results are insensitive
to κ in this limit, which we verify for several values of
κ > 200. We set Γ = 5, which maintains an inertial
number I = γ̇

√
m/p < 10−4 (where γ̇ is the strain rate)

in the slow- or creep-flow limit, I < 10−3[1, 20]. We
control force and not γ̇, so there are fluctuations in I,
but Γ = 5 keeps I < 10−4 even for Σ > Σc. We have

explicitly checked that our results are independent of Γ
for several values of Γ ≥ 3.

For the simple shear simulations, initial states (Σ = 0)
are prepared via uniaxial compression. Specifically, we
begin with the top plate at very large y � L, and we
place the grains sparsely throughout the domain between
the top plate and the lower boundary. We then apply fi-
nite p to the top plate and allow it to move freely until
an MS packing is found. We then apply finite Σ to the
top plate, which can move in all directions. The simu-
lation ends when the upward and horizontal forces from
the grains acting on the top plate exactly balance the
applied Σ. We find similar results when Σ is increased
incrementally in small steps, and the total strain is in-
tegrated. Average grain displacement profiles are linear
for both Σ < Σc and Σ > Σc [8, 28], as expected for this
system.

In addition to simple shear, we study 2D systems of
bidisperse frictionless grains in a riverbed-like geometry,
depicted in Fig. 1(c), which is similar to the system stud-
ied in Ref. [18]. The domain has a no-slip lower boundary
at y = 0, a free upper boundary, and periodic horizontal
boundaries in the x−direction with length L (in units of
the small grain diameter D). We use N = 5L such that
the system has height H ≈ 5D. We vary L and N be-
tween L = 3, N = 15 and L = 320, N = 1600. Grains
interact via purely repulsive, linear springs with force
constant K. We apply a buoyancy-reduced gravitational
force −mg′ŷ and a horizontal fluid force B(v0yi/Hx̂−vi)
to each grain i, where B is a drag coefficient, yi is the
height above the lower boundary, v0 is the characteristic
velocity at the bed surface, and vi is the grain velocity.
We find similar results for several different fluid flow pro-
files. The equations of motion, shown in Appendix A,
are again governed by three dimensionless parameters

Γ′ =
B/m√
g′/D

, (4)

κ′ =
K

mg′
, (5)

Σ′ =
Bv0

mg′
. (6)

We again set Γ′ = B/m√
g′/D

= 5 and κ′ = K
mg′ = 1000

and vary the dimensionless shear stress Σ′ = Bv0
mg′ . Our

results are again independent of κ′ and Γ′ in this regime.
We prepare beds via sedimentation with Σ′ = 0 and then
apply finite Σ′ and allow the system to evolve until the
system stops at an MS packing.

III. RESULTS

A. Critical scaling of γms

We begin with results for simple shear in 3D. We de-
fine the shear strain γms as the total distance the top
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(a) (b) (c)

FIG. 1. Schematics of the simulation procedure for (a) 3D simple shear and (b) 2D simple shear. In (a) and (b), MS packings
are first created under only a fixed normal force per area −pŷ. We then apply a shear force per area τ x̂ and search for an MS
packing at a given Σ = τ/p and length L in units of the small grain diameter D. (c) A schematic of the simulation procedure
for the riverbed-like geometry. MS packings are first created via sedimentation under gravity −gŷ, then driven by a fluid-like
drag force in the x−direction.

plate moves in the x-direction divided by the average
of the initial and final y-positions of the top plate. In
Fig. 2(a) and (b), we show the distribution P (γms) for
two illustrative values of Σ over a range of system sizes
L, obtained using 200 simulations for each L. For small
L above and below Σc, the distributions are roughly
exponential, P (γms) ≈ 〈γms〉−1 exp(−γms/〈γms〉). This
form indicates an underlying physical process resembling
absorption [29], where objects propagate through space
and each stops whenever it encounters an absorber. For
absorption processes, the propagation distance distribu-
tions are exponential, as in Fig. 2, and the mean “travel
distance” is inversely proportional to the density of ab-
sorbers. For sheared packings, the mean travel distance
is 〈γms(Σ, L)〉. Thus, we use 〈γms(Σ, L)〉−1 as a measure
of the number density of MS packings.

In Fig. 2 (c), we plot 〈γms〉 versus L over a range
of Σ. Figure 2 (d) shows that these data can be col-
lapsed by plotting the scaled variables L−1/|Σ − Σc|ν
and 〈γms〉−1/|Σ− Σc|β . This collapse implies that finite
size effects for 〈γms(Σ, L)〉−1 depend on a diverging cor-
relation length ξ ∝ |Σ− Σc|−ν ,

〈γms(Σ, L)〉−1 = |Σ− Σc|βf±
(

L−1

|Σ− Σc|ν

)
. (7)

Here, f± are the critical scaling functions for Σ > Σc
and Σ < Σc, respectively, which capture the finite-size
effects. Note that all quantities in Eq. (7) are dimension-
less. As shown in Appendix B, we determine the critical
values by fitting the data to this functional form, where
the critical values are fit parameters. We systematically
exclude small system sizes and large deviations |Σ−Σc|.
We quantify the quality of the fits using the reduced chi-
squared metric, χ2 =

∑
i(∆i)

2/e2
i , where the sum is over

all data points i used in the fit, ∆i is the difference be-
tween the data and the fit, and ei is the standard error in

the mean (i.e., the standard deviation within that sample
divided by the square root of the number of trials), repre-
sented as error bars in Fig. 2(c). We search for fits where
χ2/n ≈ 1 [16], where n is the number of data points mi-
nus the number of fit parameters, and the critical values
are independent of the range of |Σ−Σc|. From this anal-
ysis, shown in Appendix B, we estimate ν = 1.7 ± 0.5,
Σc = 0.109 ± 0.005 and β/ν = 0.57 ± 0.07. The uncer-
tainty ranges represent the scatter in the fit results plus
one standard deviation. Despite the uncertainty, ν ≈ 1.7
for yielding appears distinct from νJ ≈ 0.6 − 1 for jam-
ming [10, 12, 16], suggesting that these are two separate,
though possibly related, zero-temperature transitions.

The inset in Fig. 2(d) shows 〈γms〉−1 plotted versus Σ
for different L, as well as the large-system limit (dashed,
black line) implied by the scaling in the main panel of
Fig. 2(d). For Σ < Σc, f− becomes constant at small
L−1/|Σ − Σc|ν (i.e., L > ξ). This means that, in the
large-system limit, 〈γms〉−1 vanishes nonanalytically at
Σ = Σc according to 〈γms〉−1 ∝ |Σ− Σc|β . Also at small
L−1/|Σ − Σc|ν for Σ < Σc, a peak develops in P (γms)
at γms > 0, as shown in Fig. 2(a). We interpret this be-
havior as spatial decorrelation, where large systems be-
have like compositions of uncorrelated exponentially dis-
tributed random variables, yielding a distribution that
is peaked at γms > 0 with a mean that is independent
of L/ξ. For Σ > Σc, f+ is finite but tends to zero for
small L−1/|Σ − Σc|ν . This means that the number of
MS packings vanishes for Σ > Σc as L/ξ increases. If
f+ approaches a vertical asymptote, MS packings do not
exist for Σ > Σc and finite L/ξ. Otherwise, MS packings
only vanish for infinite L/ξ. Further studies with larger
system sizes are required to address this specific point.

Note that the data we present in the inset to Fig. 2(d)
approach the L/ξ → ∞ limiting form (dashed curve)
only for Σ < Σc and for Σ > Σc, but not near Σc. The
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(a) (b)

(c)

(d)

FIG. 2. (a-b) Distributions P (γms) of the strain γms in 3D
simple shear between the initial and final MS packings for (a)
Σ < Σc, (b) Σ > Σc, and several L. (c) The mean strain 〈γms〉
in 3D simple shear between initial and final MS packings plot-
ted versus system size N = L3 for several values of applied
stress Σ. Solid (dashed) lines correspond to |Σ− Σc|/Σc less
(greater) than 0.5. Error bars are the standard error of the
mean, given by the standard deviation within the sample di-
vided by the square root of the number of trials. (d) The
data from panel (c), plus additional data for more Σ, col-
lapses when using the scaled variables 〈γms〉−1/|Σ−Σc|β and
L−1/|Σ − Σc|ν , where β/ν = 0.56, ν = 1.7, and Σc = 0.109.
The inset shows 〈γms(Σ, L)〉−1 versus Σ for different L. The
dashed line gives the large-system limit implied by Eq. (7)
and the main plot in (d). The data in the inset is at constant
L, not constant L−1/|Σ− Σc|ν ; see text and Appendix C for
further discussion.

data does not collapse near Σc because the scaled system
size L−1/|Σ−Σc|ν changes significantly as Σ is varied at
fixed L. We show the data in the inset to Fig. 2(d) at
constant L−1/|Σ− Σc|ν in Appendix C.

Figure 3 shows that the results for 2D systems with
boundary driven simple shear are similar to those in
3D. Distributions for P (γms) (not shown) are similar to
the 3D case, which are shown in Fig. 2(a) and (b). In
Fig. 3(a), we plot 〈γms〉 versus N = L2 for selected val-
ues of Σ. Figure 3(b) shows that these data (plus ad-
ditional data) collapse by plotting the scaled variables
L−1/|Σ − Σc|ν and 〈γms〉−1/|Σ − Σc|β . Using a simi-
lar fitting analysis to that described above for 3D sys-
tems undergoing simple shear, we obtain ν = 1.84± 0.3,
Σc = 0.11± 0.01, and β/ν ≈ 0.57± 0.06.

In Fig. 4, we display the results for the 2D riverbed-
like geometry, which verifies that the scaling behavior is
universal with respect to changes in the boundary con-
ditions and driving method. Instead of shear strain, for
each simulation we measure the average horizontal dis-
tance δms traveled by a grain between initial (Σ′ = 0)
and final (Σ′ > 0) MS packings. Figure 4(a) shows
the ensemble-averaged values 〈δms〉 as a function of Σ′

and L. As before, these data collapse when plotted as
a function of the scaled variables L−1/|Σ′ − Σ′c|ν and
〈δms〉−1/|Σ′ − Σ′c|β . Using a fitting analysis similar to
the one discussed above for 3D boundary-driven simple
shear, we identify Σ′c = 0.41 ± 0.015, β′/ν = 1.7 ± 0.2,
and ν = 1.75± 0.1, suggesting that the scaling behavior
and the value of ν ≈ 1.7 − 1.8 are generic with respect
to changes in the spatial dimension, geometry, boundary
conditions, and driving method. We discuss the fitting
analysis for this geometry in Appendix B.

B. Microstructure of MS packings at varying Σ

To understand why the number density of MS pack-
ings vanishes at Σc, we quantify their structure using the
packing fraction φms as well as the stress and contact fab-
ric tensors. Figure 5(a) shows a plot of packing fraction
φms of MS packings generated in 3D via simple shear as
a function of Σ for varying L. Each data point represents
the ensemble average of 200 systems. φms shows weak,
nonmonotonic dependence on Σ, consistent with Fig. 10
in Ref. [9]. Specifically, φms rises slightly (by about 0.1%)
from Σ = 0 to Σ = Σc and then decreases slightly for
Σ > Σc. Figure 5(b) shows the same data plotted as a
function of system size L. The different symbols repre-
sent different values of Σ, but these curves all lie on top of
one another. As L increases, φms approaches φJ ≈ 0.643,
which is indicated by a dashed black line.

The data presented in Fig. 5(b) also allows us to es-
timate the critical length scale exponent νJ for jam-
ming. If we assume that there is a diverging length scale
ξJ ∼ |φJ − φms|−νJ related to jamming that controls the
system-size dependence in Fig. 5, we expect that L/ξJ
should be a constant and the packing fraction deviation
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(a)

(b)

FIG. 3. (a) The mean strain 〈γms〉 in 2D simple shear between
initial and final MS packings plotted versus system size N =
L2 for several values of applied stress Σ. Solid (dashed) lines
correspond to |Σ−Σc|/Σc less (greater) than 0.5. Error bars
are the standard error of the mean, given by the standard
deviation within the sample divided by the square root of the
number of trials. (b) The data from panel (a), plus additional
data for more Σ, collapses when using the scaled variables
〈γms(Σ, L)〉−1/|Σ − Σc|β and L−1/|Σ − Σc|ν . The collapse
shown uses β/ν = 0.57, ν = 1.8, and Σc = 0.111.

scales as (φJ − φms) ∼ L−1/νJ . The inset to Fig. 5(a)
shows that νJ ≈ 1/1.2 ≈ 0.8. This result is in agreement
with previous studies [10, 12, 16], which have estimated
νJ to be between 0.6 and 1. We again note that this value
for νJ is distinct from ν ≈ 1.7− 1.8 that we estimate for
yielding.

The stress and contact fabric tensors [30, 31] are given

(a)

(b)

FIG. 4. The mean grain displacement 〈δms〉 in the 2D
riverbed-like geometry between initial and final MS packings
plotted versus system size N = 5L for several values of ap-
plied stress Σ′. Solid (dashed) lines correspond to |Σ′−Σ′c|/Σc
less (greater) than 0.5. Error bars are the standard error of
the mean, given by the standard deviation within the sample
divided by the square root of the number of trials. (b) The
data from panel (a) collapses when using the scaled variables

〈δms(Σ
′, L)〉−1/|Σ′ −Σ′c|β

′
and L−1/|Σ′ −Σ′c|ν . The collapse

shown uses β′/ν = 1.7, ν = 1.75, and Σ′c = 0.41.

by

σαλ =
1

V

∑
i6=j

rijα F
ij
λ (8)

Rαλ =
1

N

∑
i 6=j

rijα r
ij
λ

||rij ||2
. (9)

Here, α and λ are Cartesian coordinates, V is the system
volume, rijα is the α-component of the center-to-center

separation vector between grains i and j, and F ijλ is the λ-
component of the intergrain contact force. The sum over
i and j includes all pairs of contacting grains (excluding
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(a)

(b)

FIG. 5. (a) The packing fraction φms of MS packings at jam-
ming onset as a function of applied shear stress Σ. Different
colors represent different system sizes. φms is independent of
Σ, and approaches φJ ≈ 0.643 for large system sizes. (b) The
same data from panel (a) plotted instead as a function of sys-
tem size L. The different symbols represent different values
of Σ, but the curves lie one top of one another. The inset to
panel (b) shows φJ − φms versus L plotted on a double log-
arithmic scale. The solid black line has slope -1.2, implying
that νJ ≈ 0.8 if (φJ − φms) ∼ L−1/ν .

grain-wall contacts).

Force balance requires σxy = σyx = −τ , σyy = p,
and σyz = σzy = 0. In Fig. 6(b), we show ensemble
averages of σxy/σyy as a function of Σ = τ/p. The
data follows a linear relation with a slope of negative
one, confirming that force balance is satisfied. We also
find that σyz = σzy = 0 and σxz = σzx = 0 (not
shown). Figure 6(f) shows that the force balance crite-

rion σxy/σyy = −Σ requires a proportional change in the
corresponding fabric tensor component, Rxy/Ryy = −aΣ
with a ≈ 0.4. Results for 2D simple shear (not shown) are
identical: we find σxy/σyy = −Σ and Rxy/Ryy = −aΣ,
but with a ≈ 0.33. Thus, since MS packings at increasing
Σ require grain-grain contacts to be increasingly oriented
along the compressive direction, the vanishing density of
MS packings likely results from an upper limit of the
stress and corresponding fabric anisotropies that can be
realized in a large system.

Finally, we show in Fig. 6 (c), (d), (g), and (h) the ex-
cess normal stresses σxx/σyy−1 ≡ λx and σzz/σyy−1 ≡
λz as well as the corresponding quantites from the fabric
tensor Rxx/Ryy − 1 ≡ ρx and Rzz/Ryy − 1 ≡ ρz. These
quantities represent excess compressive stresses and con-
tacts that exist in the periodic x− and z−directions. For
Σ < Σc, λx,z and ρx,z begin at some finite value and tend
to zero at large L. For Σ > Σc, λx,z and ρx,z increase
with Σ. We find similar results for 2D simple shear (not
shown).

To understand why the normal stress and fabric
anisotropies increase with Σ, we consider the ensemble-
averaged stress tensor 〈σ〉 of MS packings in 3D at a
given Σ, which can be written as

〈σ〉 = p

1 + λx −Σ 0
−Σ 1 0
0 0 1 + λz

 . (10)

We consider only the stress components in the x-y
plane, which are decoupled from z in Eq. (10), and
its eigenvalue-eigenvector pairs {σ1,σ1} and {σ2,σ2}.
The internal stress anisotropy is Σi = τi/pi, where
pi = (σ1 + σ2)/2 and τi = (σ1 − σ2)/2 are the internal
pressure and shear stress, respectively. From Eq. (10),

Σi =

√
4Σ2+λ2

x

2+λx
, and σ1 is oriented at an angle that de-

viates from the compression direction by an angle θ′, as
shown in Fig. 6(a). An expansion of Σi for small λx gives

θ′ = λx

4Σ +O
[(
λx

Σ

)3]
.

Thus, when λx = 0, Σi = Σ and σ1 and σ2 are aligned
with the compression and dilation directions, respec-
tively. However, Σi is minimized by a positive, nonzero
value of λx = 2Σ2 with Σmin

i = Σ/
√

1 + Σ2. This can
give Σi < Σ, but this rotates the larger eigenvector σ1

away from the compression direction.

Near Σc for finite systems, MS packings are scarce, and
Σi < Σ with θ′ > 0 may be preferable, despite the bro-
ken symmetry. However, the broken symmetry becomes
more difficult to achieve for larger systems. We note that
the dependence of λx, λz, ρx, and ρz on L in Fig. 6(c,d)
and (g,h) is suggestive of critical scaling (which we expect
if ξ dominates the behavior near Σc) similar to Eq. (7).
The scaling results for these quantities are not as conclu-
sive, and we leave a more extensive study of the possible
scaling of these quantities for future work.



7

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 6. (a,e) Close-up of MS packings in 2D illustrating features of the (a) stress and (e) fabric tensors for the central grain.
σ1,2 and R1,2 denote the eigenvalue-eigenvector pairs from the sum over the contacts (blue and green arrows) for the center
grain i (Eqs. (8) and (9)). The magnitudes of the arrows are proportional to the eigenvalues and the directions are along the
eigenvectors. θ′ is the angle between the larger eigenvector and the compressive direction. (b,f) Ensemble averages of σxy/σyy
and Rxy/Ryy for MS packings are plotted versus Σ for varying L, showing σxy/σyy = −Σ and Rxy/Ryy ≈ −0.4Σ for all L.
(c,g) Ensemble averages of the normal anisotropies in the x−direction in the (c) stress tensor, σxx/σyy − 1 ≡ λx, and (g)
fabric tensor, Rxx/Ryy − 1 ≡ ρx, are plotted versus Σ for varying L. (d,h) Ensemble averages of the normal anisotropies in
the z−direction in the (d) stress tensor, σzz/σyy − 1 ≡ λz, and (h) fabric tensor, Rzz/Ryy − 1 ≡ ρz, are plotted versus Σ for
varying L.

IV. CONCLUSION

In conclusion, for frictionless spherical grains under
shear, we find that the number of MS packings vanishes
near Σ = Σc ≈ 0.11. Finite-size effects depend on a
diverging length scale ξ ∝ |Σ − Σc|−ν . We find sim-
ilar results for the cases of 3D simple shear, shown in
Fig. 2, for 2D simple shear, shown in Fig. 3, and in a 2D
riverbed-like geometry, shown in Fig. 4. Thus, the criti-
cal scaling behavior, including the value of the exponent
ν ≈ 1.7−1.8, is generic with respect to changes in spatial
dimension, system geometry, and boundary conditions.

We find that the packing fraction of MS packings at
varying Σ shows weak, nonmonotonic dependence on
Σ, in agreement with previous work [9]. This suggests
that the critical scaling we observe is distinct from that
associated with jamming. The force balance criterion,
Fig. 6(b), is accompanied by a proportional change in
the fabric tensor, Fig. 6(e). Thus, we argue that Σc cor-
responds to the maximum anisotropy that can be realized
in the large-system limit. This hypothesis is consistent
with our finding that finite-sized MS packings with Σ
near or above Σc tend to be rotated relative to the axes
of the applied deformation, which can reduce the inter-
nal force anisotropy of MS packings. However, this effect

appears to vanish in the large-system limit, where sym-
metry dictates that compressive direction be aligned with
the largest eigenvalues of the stress and fabric tensors for
MS packings.

Finally, we note recent work on jamming by shear [29–
32], where MS packings obtained via simple or pure shear
at constant volume also display anisotropic stress and
contact fabric tensors. These results are distinct from
those presented here, since we control normal stress and
allow volume to fluctuate. However, we expect future
work to unify these two approaches, providing a complete
theory of the density of MS packings as a function of
volume, stress state, preparation history, and friction.

Appendix A: Equations of motion

1. Boundary-driven simple shear in 2D and 3D

For the simple shear simulations in d = 2 (2D) and d =
3 (3D) spatial dimensions, we solve Newton’s equations
of motion for all bulk grains as well as the top plate. The
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equation of motion for the top plate is

Maplate =
∑
i,j

Fcij + Fext −Bplatevplate, (A1)

whereM is the plate mass, aplate is the plate acceleration,
Fcij is the contact force on plate particle i due to bulk
grain j, Fext is the external force exerted on the top
wall, Bplate is a viscous drag coefficient, and vplate is the
top plate velocity. Similarly, the equation of motion for
each bulk grain i is given by

miai =
∑
j

Fcij −Bivi, (A2)

where mi ∝ (Di)
d is the mass of grain i (Di is the diame-

ter of grain i), ai is the acceleration of bulk grain i, Fcij is
the contact force on bulk grain i due to bulk grain j, Bi
is the drag coefficient, and vi is the velocity of bulk grain
i. For pairwise contact forces between two bulk grains or
between a bulk grain and a plate particle, we use

Fcij = K

(
Dij

rij
− 1

)
Θ

(
1− rij

Dij

)
r̂ij , (A3)

where K is a force scale, rij is the center-to-center dis-
tance between grains i and j, Dij is the average diameter
of grains i and j, Θ is the Heaviside step function, and
r̂ij is the unit vector from the center of grain i to the
center of grain j.

The external force on the wall is given by

Fext = (τ x̂− pŷ)(LD)d−1, (A4)

where τ and p are the shear stress and normal stress,
respectively. Each plate particle has the same mass m
and drag coefficient B as the small bulk grains, and thus
M = mLd−1 and Bwall = BLd−1. Since the number of
contacts also scales as Ld−1, all quantities in Eq. (A1)
scale as Ld−1. Equations (A1) and (A2) are then gov-
erned by the nondimensional parameters given in Eq. (3).

2. Riverbed model in 2D

The riverbed-like geometry that we study consists of
a 2D domain of width L, with periodic boundary condi-
tions horizontally, containing N/2 large and N/2 small
disk-shaped grains with diameter ratio r = 1.4. We use
N = 5L grains, so the beds have a height H ≈ 5D, where
D is the diameter of a small grain. There is no upper
boundary, and the lower boundary is rigid with a no-slip
condition for any grain contacting it. The net force on
each grain is given by the sum of contact forces from all
other grains, a gravitational force, and a Stokes-drag-like
force from a fluid flow that increases linearly with height
and moves purely horizontally:

miai =
∑
j

Fcij −mig
′ŷ +Bi

(
v0
yi
H
x̂− vi

)
. (A5)

(a) (b)

FIG. 7. Data for the scaled 〈γms〉−1 versus scaled (Σ − Σc)
using the scaling function in Eq. (B1) for (a) 3D simple shear
and (b) 2D riverbed geometries.

Here, mi ∝ D2
i is the grain mass, vi and ai are the veloc-

ity and acceleration, respectively, of each grain i, mig
′ is

the buoyancy-corrected grain weight, Bi is the drag co-
efficient on grain i, v0 is a characteristic fluid velocity at
the top of the bed (y = H), and yi is the height above the
lower boundary of the center of grain i. The contact force

Fcij = K
(

1− rij
Dij

)
θ
(

1− rij
Dij

)
r̂ij is identical to the one

discussed above for simple shear. Equation (A5) is gov-
erned by the three nondimensional parameters given in
Eq. (6).

Appendix B: Determining critical values

As discussed above, we determine the critical expo-
nents ν and β as well as the value of the yield stress Σc
by fitting scaled data to a scaling function with the val-
ues of ν, β, and Σc treated as fit parameters. We first
estimate ν, β, and Σc by collapsing the data according
to

〈γms〉−1 = L−β/νg
(

(Σ− Σc)L
−1/ν

)
, (B1)

as shown in Fig. 7. This form is equivalent to Eq.
(1) in the main text, but it is more convenient to use
since the scaling function g has only one branch. We
fit log(〈γms〉−1Lβ/ν) and (Σ−Σc)L

−1/ν to a third-order
polynomial. The polynomial coefficients returned from
this fit are then used as the initial values in a Levenberg-
Marquardt fit to the scaling form in Eq. (1) in the main
text, where the critical values Σc, ν, and β are then used
as fit parameters.

From Fig. 7, it is obvious that the data for large
deviations |Σ − Σc| does not collapse as well as the
data for small deviations. In addition, we expect that
data for small system sizes does not obey the scal-
ing collapse. Thus, we systematically vary the range
X ≡ |Σ− Σc|/Σc < Xmax and the minimum system size
Lmin that we include in our fits, although we are some-
what limited in the maximum Lmin we can use before
we no longer have enough data for a meaningful fit. We
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(a) (b)

(c) (d)

FIG. 8. The critical values (a) ν, (b) Σc, (c) β/ν from the
Levenberg-Marquardt method for 3D simple shear are plotted
versus the minimum system length for various intervals about
Σc. Error bars represent one standard deviation. The χ2/n
values for each fit are plotted in panel (d).

quantify the fits using the reduced chi-squared metric,
χ2 =

∑
i(∆i)

2/e2
i , where the sum is over all data points

i used in the fit (a subset of those shown in Fig. 7), ∆i

is the difference between the data and the fit, and ei is
the standard error of the mean, which we estimate by
the standard deviation within that sample divided by
the square root of the number of trials. We then mea-
sure χ2/n, where n is the number of data points minus
the number of fit parameters in the model. A good fit is
characterized by a value of χ2/n ≈ 1.

Figure 8 shows the critical values that yield the best
fits for 3D simple shear as a function of Lmin for several
Xmax. For Xmax = 0.3, we find χ2/n > 2.5, signifying
a poor fit. For 0.1 ≤ Xmax ≤ 0.2, we find χ2/n ≈ 1.5,
nearly independent of Lmin. We estimate ν = 1.7 ± 0.5,
Σc = 0.109± 0.005 and β/ν = 0.57± 0.07 by the scatter
in results for 0.1 ≤ Xmax ≤ 0.2, plus the typical width
of the error bars, which represent one standard devia-
tion in the Levenberg-Marquardt fit. We note significant
uncertainty in the value of ν, which agrees with our ob-
servation that good scaling collapses are possible with ν
from 1.2 to 2.2 for the 3D simple shear data.

Figure 9 shows the critical values that yield the best fits
for the riverbed-like geometry as a function of Lmin for
several values ofXmax. As we reduceXmax, χ2/n steadily
decreases to ≈ 1. However, the critical values are almost
independent of Xmax We estimate Σ′c = 0.41 ± 0.015,
β′/ν = 1.7 ± 0.2, and ν = 1.75 ± 0.1. A similar analysis
with 2D simple shear (not shown) yields ν = 1.84± 0.3,
Σc = 0.11 ± 0.01, and β/ν ≈ 0.57 ± 0.06. The method
we describe for obtaining the critical values gives similar

(a) (b)

(c) (d)

FIG. 9. The critical values (a) ν, (b) Σc, (c) β/ν from the
Levenberg-Marquardt method for the 2D riverbed-like geom-
etry are plotted versus the minimum system length for various
intervals about Σc. Error bars represent one standard devia-
tion. The χ2/n values for each fit are plotted in panel (d).

results to a brute force search through the parameter
space, where we seek a global minimum in χ2/n.

Appendix C: Scaling collapse of 〈γms〉−1 versus Σ

In Fig. 2(d), we showed that the data for 〈γms(Σ, L)〉−1

collapsed onto two branches when plotted as a function
of the scaled system size L̃−1 ≡ L−1/|Σ−Σc|ν . The inset
to Fig. 2(d) showed a plot of 〈γms(Σ, L)〉−1 versus Σ for
various values of L. We also included a curve showing the
infinite-system limit for 〈γms(Σ, L)〉−1 versus Σ, which is
implied by the scaling in Eq. (7).

In Fig. 10, we show a similar plot, but with data plot-
ted at constant L̃−1 ≡ L−1/|Σ − Σc|ν . If L̃−1 is held
fixed, Eq. (7) reduces to 〈γms〉−1 = A|Σ−Σc|β , where A

is a constant, A = f±(L̃−1). The solid curves shown in
Fig. 10 are 〈γms(Σ, L)〉−1 = A|Σ − Σc|β , where the par-

ticular value of A for each value of L̃−1 at Σ > Σc and
Σ < Σc is determined from the scaling plot in Fig. 2(d).
The solid curves pass through the data, reaffirming the
scaling behavior in Eq. (7). As L̃−1 approaches zero,
these curves approach the infinite-system limit shown by
the dashed line.
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