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When chiral liquid crystals or magnets are subjected to applied fields or other anisotropic envi-
ronments, the competition between favored twist and anisotropy leads to the formation of complex
defect structures. In some cases, the defects are skyrmions, which have 180◦ double twist going out-
ward from the center, and hence can pack together without singularities in the orientational order.
In other cases, the defects are merons, which have 90◦ double twist going outward from the center;
packing such merons requires singularities in the orientational order. In the liquid crystal context,
a lattice of merons is equivalent to a blue phase. Here, we perform theoretical and computational
studies of skyrmions and merons in chiral liquid crystals and magnets. Through these studies, we
calculate the phase diagrams for liquid crystals and magnets in terms of dimensionless ratios of
energetic parameters. We also predict the range of metastability for liquid crystal skyrmions, and
show that these skyrmions can move and interact as effective particles. The results show how the
properties of skyrmions and merons depend on the vector or tensor nature of the order parameter.

I. INTRODUCTION

When chiral liquid crystals are in an anisotropic en-
vironment (under an applied electric field or between
aligning surfaces), they experience geometric frustration:
The chirality favors a twist in the director field, but the
anisotropy favors a director orientation that is incompati-
ble with twist [1, 2]. Because of this frustration, these liq-
uid crystals form complex topological defect structures,
with regions of twist separating regions of the favored
orientation. In some cases, these defects are walls with a
one-dimensional (1D) twist of the director field n(x) [3].
In other cases the defects are skyrmions, which have a 2D
variation of the director field n(x, y) with double twist
going outward from the center, covering all possible ori-
entations on the unit sphere [4–10]. In even more com-
plex cases, the defects are hopfions, with a 3D variation of
the director field n(x, y, z) in a knotted texture [11, 12].

An important feature of all three cases—walls,
skyrmions, and hopfions—is that the orientation varies in
a topological configuration that cannot anneal away, but
the magnitude of the order parameter remains constant.
Unlike typical topological vortices, there is no singularity
where the magnitude goes to zero (or otherwise changes
away from its bulk value [13]). These nonsingular defects
were originally proposed in nuclear physics [14], and they
are now studied extensively in condensed matter, espe-
cially in chiral magnets [15–21], where they have poten-
tial applications in magnetic memory, logic, low power
information technology devices, microwave detectors and
oscillators [22] as well as topological spintronics [23].

The nonsingular defect structure of skyrmions can
be compared with the singular defect structure of half-
skyrmions [24, 25], which are called merons [26]. A meron
has a double twist of the director field going outward
from the center, similar to a skyrmion, except that it
covers only half of the unit sphere. There is one crucial

difference between merons and skyrmions: Neighboring
merons are separated by disclinations (singularities in
the director field, where the magnitude of nematic or-
der changes away from its bulk value), while neighboring
skyrmions are separated by uniform defect-free regions.
In that sense, a lattice of merons is equivalent to a blue
phase of chiral liquid crystals, with a periodic array of
double-twist tubes separated by singularities. (In the
absence of an applied electric field, a bulk blue phase
has a 3D cubic structure [27, 28]; under a strong applied
field, it evolves toward a 2D lattice [29–32].) Hence, an
important issue in chiral liquid crystals is how to under-
stand the crossover between skyrmions and merons (or
blue phases). Why would a chiral liquid crystal form
singular or nonsingular defect structures?

A further theoretical issue is how to compare
skyrmions and merons in liquid crystals with analogous
structures in chiral magnets. Both liquid crystals and
magnets have orientational order parameters with magni-
tudes and directions. They can both exhibit nonsingular
defects (with constant magnitude of the order parame-
ter), as well as singular defects (with the magnitude van-
ishing or otherwise changing away from its bulk value).
The main difference between these materials is the sym-
metry of the orientational order parameter: liquid crys-
tals have a tensor order parameter, while magnets have
a vector order parameter. How does this difference of
symmetry affect the skyrmions or merons that form in
the material?

The purpose of this paper is to address these issues
through theoretical studies of chiral liquid crystals and
magnets. In Sec. II, we consider a simple analytic model
for chiral liquid crystals, and show that there are four
characteristic energy scales: the energy associated with
the magnitude of nematic order, the chiral interaction,
the anisotropy, and the temperature. We derive a phase
diagram in terms of three dimensionless ratios of these
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energies. This phase diagram includes classical results for
blue phases with no anisotropy, and extends the analysis
to include anisotropy. It shows that meron lattices are
stable when the energy associated with the magnitude
of nematic order is relatively low. Skyrmions are not
stable structures in this phase diagram, but they can be
metastable when that energy scale is high.

In Sec. III, we present Monte Carlo and relaxational
dynamic simulations of the model for chiral liquid crys-
tals. These numerical simulations confirm the phase di-
agram derived through simple analytic approximations.
They also show the formation of skyrmions as metastable
defects, with length scales that can be understood ana-
lytically.

In Sec. IV, we extend the simple analytic model to
describe chiral magnets, which have a Dzyaloshinskii-
Moriya (DM) interaction term in the free energy, arising
from Dresselhaus spin-orbit coupling. In this case, there
are four characteristic energies: the energy associated
with the magnitude of magnetic order, the chiral DM in-
teraction, the anisotropy, and the applied magnetic field,
while the temperature scales out of the problem. We
derive a phase diagram in terms of three dimensionless
ratios of these energies, and show that this phase diagram
is quite similar to previous results from more detailed nu-
merical calculations. The results are generally similar to
the liquid-crystal case, but with one important difference:
in magnets, skyrmions can be stabilized by the competi-
tion between anisotropy and applied magnetic field. This
competition is not available in liquid crystals because of
the tensor nature of the order parameter.

In this article, we only consider the formation of
skyrmions or meron lattices driven by bulk chirality,
known as Dresselhaus spin-orbit coupling in the magnetic
case. We should note briefly that modulated structures
can also be driven by another mechanism for broken in-
version symmetry. In liquid crystals, that mechanism
is called polarity. Polarity is often induced by surfaces,
and the phenomenon of surface-induced modulations has
been studied for many years [33, 34]. More recently, spon-
taneous bulk polarity has also been found in the twist-
bend nematic phase of certain liquid crystals [35], and
theoretical research has predicted that bulk polarity can
induce blue phases [36, 37]. In magnets, the analogous
mechanism for broken inversion symmetry at surfaces is
called Rashba spin-orbit coupling, and it has also been
shown to favor the formation of skyrmions [38]. Although
we have only investigated the comparison between chiral
(Dresselhaus) defects in liquid crystals and magnets, we
expect that the same considerations will apply to polar
(Rashba) defect structures.

II. THEORY OF CHIRAL LIQUID CRYSTALS

A. Model

We begin with the theory of chiral liquid crystals, as
usually studied in the context of blue phases. A liquid
crystal is represented by a tensor order parameter Q(r),
which is related to the scalar order S(r) and the direc-
tor field n(r) by Qαβ = S( 3

2nαnβ −
1
2δαβ). Because we

wish to describe meron lattices with disclinations, we use
Landau-de Gennes theory (in terms of the full Q tensor
with variable eigenvalues) rather than Oseen-Frank the-
ory (in terms of the director n with unit magnitude). In
Landau-de Gennes theory, the free energy density can be
expressed as

F =
1

2
aTrQ2 +

1

3
bTrQ3 +

1

4
c
(
TrQ2

)2
(1)

+
1

2
L(∂γQαβ)(∂γQαβ)− 2Lq0εαβγQαδ∂γQβδ.

Here, the first three terms represent the free energy of a
uniform system, expanded in powers of the tensor or-
der parameter. These terms favor certain eigenvalues
of Q (corresponding to a certain magnitude of uniax-
ial nematic order), which will occur everywhere except
in the disclinations. The quadratic coefficient a is as-
sumed to vary linearly with temperature, while b and c
are assumed constant with respect to temperature. The
fourth and fifth terms represent the elastic free energy
associated with variations of Q as a function of position.
The fourth term penalizes splay, twist, and bend defor-
mations equally, with an elastic coefficient L. The fifth
term favors a chiral twist of the nematic order, with a
characteristic inverse length q0 arising from the molecu-
lar chirality (analogous to the Dzyaloshinskii-Moriya in-
teraction in magnets). We neglect other possible elastic
terms that give different energy costs for splay, twist, and
bend, such as 1

2L2(∂αQαγ)(∂βQβγ).
In the context of blue phases, following the work of

Grebel et al. [28], researchers normally rescale parame-
ters to simplify the theory. To motivate this rescaling,
it is convenient to consider the specific temperature at
which a = 0. This temperature is below the first-order
isotropic-nematic transition, which occurs at a positive
value of a. At this temperature, the first four terms in the
free energy favor a nematic phase with order parameter
S ∼ |b|/c, the free energy density of the nematic relative
to isotropic phase is F ∼ b4/c3, and the core radius of a
disclination in nematic order is ξ ∼ (Lc/b2)1/2. Hence,
at general temperature, we rescale the Q tensor, the free
energy density, and all lengths by those characteristic
values. In particular, we define the scaled free energy
density as F̃ = Fc3/b4. The theory then depends only
on two dimensionless ratios, which are normally written
as

t =
27ac

b2
, κ =

√
108cLq20

b2
. (2)
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The parameter t is a dimensionless temperature, which
represents the temperature-dependent quadratic coeffi-
cient a relative to b and c. The parameter κ is a di-
mensionless chirality, which represents the natural twist
q0 relative to the disclination core radius ξ. We can ex-
press the same comparison in terms of energies. The free
energy density associated with the favored chiral twist
is LS2q20 , while the free energy density of a disclination
core is LS2ξ−2. Hence, κ2 can be interpreted as the en-
ergy scale of the favored chiral twist relative to the energy
scale associated with changing the eigenvalues ofQ inside
a disclination core. A liquid crystal material with low κ
is usually called “low chirality,” but it could equally well
be called “stiff nematic order.” Likewise, a material with
high κ is usually called “high chirality,” but it could be
called “soft nematic order.”

In many experiments, a liquid crystal is placed in an
anisotropic environment, which favors some alignment of
nematic order with respect to a certain axis, which we
can call the z axis. If the anisotropy favors alignment
along the axis, it is called “easy axis”; if it favors align-
ment perpendicular to the axis, it is called “easy plane.”
There are two common mechanisms for anisotropy. First,
an electric field can be applied along the z axis, leading
to a dielectric anisotropy. This field alignment can be
represented by an additional term in the free energy of

∆F = −∆εE2Qzz, (3)

with Ftotal = F + ∆F . This term gives easy axis
anisotropy if ∆ε > 0 and easy plane anisotropy if ∆ε < 0.
Following the same argument as above, we can rescale
this term as ∆F̃ = ∆Fc3/b4 to obtain the dimensionless
anisotropy

α =
∆εE2c2

|b|3
. (4)

A second mechanism for anisotropy is to put a liq-
uid crystal in a narrow cell, of thickness d, between two
surfaces with strong anchoring. Homeotropic anchor-
ing gives easy-axis anisotropy on the bulk liquid crys-
tal, while planar anchoring gives easy-plane anisotropy.
To see the analogy between field-induced and surface-
induced anisotropy, suppose the nematic order at the
midplane is tilted at a small angle θ with respect to the
z axis. For field-induced anisotropy, the extra free en-
ergy density (relative to an untilted state) is ∆εE2Sθ2.
For surface-induced anisotropy, the extra free energy den-
sity is LS2θ2/d2. Hence, the effect of surface-induced
anisotropy is similar to field-induced anisotropy with an
effective ∆εE2 ∼ LS/d2, and effective α ∼ (Lc)/(d2b2).
Of course, this analogy is an approximation for small tilt,
and may break down when the tilt becomes larger.

Our goal is now to determine what modulated struc-
tures of the Q tensor minimize the free energy. In par-
ticular, does the system form nonsingular defects, such
as walls, skyrmions, and hopfions, with approximately
constant eigenvalues of Q? Or does it form blue phases,

with double-twist tubes (or merons) separated by discli-
nations in which the eigenvalues change away from their
bulk values? The results must be controlled by the three
dimensionless parameters t, κ, and α.

As a minimal model to address this question, we con-
sider a 3D nematic order tensor that depends only on
two spatial coordinates, Q(x, y), with no dependence
on the third spatial coordinate z, under field-induced
anisotropy. This model can describe walls and skyrmions,
although not hopfions. Furthermore, it can describe a
simple version of blue phases as vertical double-twist
tubes (merons) separated by vertical disclinations, al-
though it cannot describe the cubic structure of real 3D
blue phases.

B. Simple analytic calculations

As a first step in analyzing this model, we make as-
sumptions about Q(x, y) in each of the possible struc-
tures and calculate the free energies. By comparing the
free energies, we determine a phase diagram in terms of t,
κ, and α. Of course, we recognize that these assumptions
are very simple. For that reason, in the following section
we verify the results through Monte Carlo simulations of
the model.

1. Isotropic phase

In the isotropic phase, the system is disordered with
Q = 0 everywhere. The scaled free energy density is
F̃iso = 0, and the anisotropy contributes ∆F̃iso = 0. (In
this analysis, we neglect any slight paranematic order
that might be induced by the anisotropy.)

2. Vertical nematic phase

In the vertically aligned nematic phase, the director is
n̂ = ẑ, and the order tensor is Qαβ = S( 3

2nαnβ −
1
2δαβ).

From Eq. (1), the free energy becomes F = 3
4aS

2+ 1
4bS

3+
9
16cS

4. Minimizing with respect to the order parameter

S gives Svnem = (−b +
√
b2 − 24ac)/(6c), and hence the

scaled free energy density is

F̃vnem = −
(
3 +
√

9− 8t
)2 (

3 +
√

9− 8t− 4t
)

93312
. (5)

The anisotropy makes an additional contribution of
∆F̃ = −αQzz = −αS, which implies

∆F̃vnem = −
α
(
3 +
√

9− 8t
)

18
. (6)

In this and the following sections, we neglect the slight
change in S induced by the anisotropy. This assump-
tion allows us to obtain algebraic expressions for the free
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(lattice of walls)
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(meron lattice)

Skyrmion 
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FIG. 1. (Color online) Structure of the modulated liquid-
crystal phases studied in this paper: blue phase (meron lat-
tice), cholesteric phase (lattice of walls), and skyrmion lattice.
The top row shows schematic views of the director field, and
the bottom row shows Monte Carlo simulation results (with
the color scale indicating |nz|).

energy, which can be compared to find the phase dia-
gram. We will check the results by comparison with
Monte Carlo simulations, which do not rely on this as-
sumption.

3. Planar nematic phase

In the horizontally aligned nematic phase, the director
is n̂ = x̂. Most of the analysis is the same as for the
vertically aligned nematic phase, with the same order
parameter Spnem and the same scaled free energy density

F̃pnem. However, the anisotropy now contributes ∆F̃ =
−αQzz = + 1

2αS, and hence

∆F̃pnem =
α
(
3 +
√

9− 8t
)

36
. (7)

4. Cholesteric phase (lattice of walls)

A cholesteric phase has the twisted structure shown
in Fig. 1 (middle column). It can be regarded as a peri-
odic lattice of twist walls, separating regions in which the
director field is aligned with the anisotropy. To a first ap-
proximation, we assume that the director field is unper-
turbed by the anisotropy, so that n̂(x) = −ŷ sin(πx/d)+
ẑ cos(πx/d), where d is the pitch. The free energy is then
F = 3

4aS
2 + 1

4bS
3 + 9

16cS
4 + 9

4π
2LS2d−2− 9

2πLq0S
2d−1.

By minimizing with respect to d and S, we obtain dchol =
π/q0 and Schol = (−b+

√
b2 − 24ac+ 72cLq20)/(6c), and

the scaled free energy density becomes

F̃chol = − 1

93312

(
3 +

√
9− 8t+ 6κ2

)2
(8)

×
(

3− 4t+ 3κ2 +
√

9− 8t+ 6κ2
)
.

The scaled free energy density associated with the
anisotropy now depends on x, and it averages to ∆F̃ =
−α〈Qzz〉 = − 1

4αS, giving

∆F̃chol = −
α
(
3 +
√

9− 8t+ 6κ2
)

72
. (9)

5. Blue phase (meron lattice)

In 2D, a blue phase has the structure shown in Fig. 1
(left column). It consists of a hexagonal lattice of
double-twist tubes, which can be regarded as merons
or half-skyrmions [24]. In each meron, the director
twists through an angle of π/2, from a vertical orien-
tation at the center to a horizontal orientation at the
edge of the tube. A simple assumption for this variation
can be expressed in cylindrical coordinates as n̂(r) =

−φ̂ sin(πr/d) + ẑ cos(πr/d), for 0 ≤ r ≤ d/2, where d is
the diameter of the tube. In each region between three
tubes, the director field is in the (x, y) plane, and it has a
disclination with topological charge of −1/2. The argu-
ment of Ref. [13] shows that theQ tensor becomes biaxial
in the disclination core, but to a first approximation we
will simply consider the core as an isotropic region.

To estimate the average free energy density of the blue
phase, we represent each unit cell of the lattice (with area

A =
√

3d2/2) as one meron (with A = πd2/4) and two
disclinations (with the remaining area), and obtain

〈F 〉 =
FmeronAmeron + 2FdefectAdefect√

3d2/2
(10)

=
π
√

3aS2

8
+
πbS3

8
√

3
+

3π
√

3cS4

32

+
33.5LS2

d2
− 3
√

3Lq0S
2(4 + π2)

4d
.

We then minimize over d to find dmeron = 3.7/q0, and we
use the same value of S as in the cholesteric calculation.
The average scaled free energy density then becomes

〈Fmeron〉 =− (9.7× 10−6)
(

3 +
√

9− 8t+ 6κ2
)2
×

×
(

3− 4t+ 4.1κ2 +
√

9− 8t+ 6κ2
)
. (11)

Similarly, the scaled free energy density associated with
the anisotropy averages to

〈∆Fmeron〉 = 0.0027α
(

3 +
√

9− 8t+ 6κ2
)
. (12)
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6. Skyrmion lattice

A hexagonal lattice of skyrmions is shown in Fig. 1
(right column). In each skyrmion, the director twists
through an angle of π, from vertical at the center to
horizontal and back to vertical at the edge. A sim-
ple assumption for this variation can be expressed as

n̂(r) = −φ̂ sin(2πr/d) + ẑ cos(2πr/d), for 0 ≤ r ≤ d/2.
In each region between three tubes, the director field is
vertical, and hence there are no disclinations.

As in the previous case, we represent each unit cell of
the lattice (with A =

√
3d2/2) as one skyrmion (with

A = πd2/4) and two vertical nematic regions (with the
remaining area), so that the average free energy density
becomes

〈F 〉 =
FskyrmionAskyrmion + 2FvnemAvnem√

3d2/2
(13)

=
3aS2

4
+
bS3

4
+

9cS4

16
+

100.4LS2

d2
− 3
√

3π2Lq0S
2

2d
.

After the same minimization as in the previous case, we
obtain dskyrmion = 7.8/q0 and

F̃skyrmion = − 1

93312

(
3 +

√
9− 8t+ 6κ2

)2
× (14)

×
(

3− 4t+ 1.37κ2 +
√

9− 8t+ 6κ2
)
.

The anisotropy further contributes

∆F̃skyrmion = −
α(8− π

√
3)
(
3 +
√

9− 8t+ 6κ2
)

144
. (15)

Phase diagram

We now have approximate algebraic expressions for the
free energy Ftotal = F +∆F for each of the six structures
considered above, as functions of the three dimensionless
variables: temperature t, chirality κ, and anisotropy α.
For each set of (t, κ, α), we determine which structure
has the lowest free energy, and hence construct a phase
diagram for the system.

First, consider the case of no anisotropy, α = 0. The
phase diagram in the (t, κ) plane is shown in Fig. 2.
At high temperature, the system is in the disordered
isotropic phase. At lower temperature, for high chiral-
ity, the system forms a blue phase (meron lattice). In
this structure, there are favorable contributions to the
free energy from the optimal magnitude of nematic or-
der and from the optimal double twist of the director
field within the merons. There is an unfavorable contri-
bution to the free energy from the disclinations between
the merons, but these disclinations do not cost too much
free energy because the nematic order is fairly soft in this
case of high chirality. By contrast, at low temperature
and low chirality, the system forms a cholesteric phase.
In this structure, there are favorable contributions to the

Te
m

pe
ra

tu
re

Chirality

Isotropic

Cholesteric

Blue phase
(merons)

FIG. 2. (Color online) Phase diagram for chiral liquid crystals
in the temperature-chirality plane, with no anisotropy. The
insets show structures calculated by the Monte Carlo simula-
tions. In those structures, the colors represent |nz|, with the
same color scale as in Fig. 1.

free energy from the optimal magnitude of nematic order
and from the single twist of the director field (which is
not as favorable as double twist). There are no disclina-
tions, which is reasonable because disclinations cost too
much free energy when nematic order is stiff in this case
of low chirality.

This phase diagram in the (t, κ) plane is equivalent to
the classic phase diagram for blue phases, which has been
studied for many years, and the competition between the
energy gain of double twist and the energy cost of discli-
nations has been discussed in Ref. [27]. In previous stud-
ies such as Ref. [28], the phase diagram has been derived
by methods that are much more rigorous than those in
this section. Here, we see that it is so robust that it
occurs even with our very rough approximations.

Now suppose that there is some anisotropy, which may
be either easy-axis (α > 0) or easy-plane (α < 0). We
then obtain a 3D phase diagram in the (t, κ, α) space,
which is shown using two different 3D visualizations in
Fig. 3. (Note that the scales on the axes are different
in these two views.) This phase diagram still shows the
isotropic, cholesteric, and blue phases. In addition, the
vertical nematic phase is stable for large α > 0, and the
planar nematic phase is stable for large α < 0. The tran-
sitions between uniform nematic phases and modulated
phases (cholesteric or blue) depend mainly on the balance
between anisotropy (which favors nematic) and chirality
(which favors modulation).

The 3D phase diagram does not show any region in
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FIG. 3. (Color online) Two views of the phase diagram for chiral liquid crystals in the temperature-chirality-anisotropy space.
(Note that the scales on the axes are different in these two visualizations.) The thick horizontal and vertical arrows show the
Monte Carlo simulation paths discussed in Sec. III, and the insets show structures calculated by the simulations. In the right
column, middle image, the isolated merons resemble the structures studied in Ref. [25]. In all the images of merons, twist walls
occur at the dark blue lines where nz = 0, and disclinations occur wherever three dark blue lines intersect.

which the skyrmion lattice is stable. At least with this set
of rough approximations, the skyrmion lattice never pro-
vides the optimum balance among the different contribu-
tions to the free energy. Even so, we can still ask: Where
in the phase diagram is the skyrmion lattice close to the
optimum state? That consideration will at least tell us
when skyrmions are likely to be observed as metastable
defects, and when they may even be stable if our approx-
imations are not exactly correct (as with surface-induced
anisotropy). The answer is that the skyrmion lattice is
almost the optimum state for very low chirality κ, near
the transition between vertical nematic and cholesteric,
which occurs for easy-axis anisotropy α > 0. Hence, we
can see that the skyrmion lattice and the meron lattice
are actually very different types of structures, in spite
of the fact that they look somewhat similar. The meron
lattice requires high κ, so that the necessary disclinations
will not cost too much free energy. The skyrmion lattice
requires low κ, so that the nematic order parameter will
be stiff against variations.

This analysis can be compared with a recent paper
from our group [9], which modeled skyrmions using a
very different theoretical formalism. That paper used a
director field (with constant order parameter S), together
with an extra phenomenological parameter representing

the free energy cost of melting the nematic order at the
core of a defect. It applied the director formalism to a
3D cell with strong homeotropic anchoring. That paper
found a phase diagram with three structures: vertical ne-
matic, cholesteric, and skyrmion lattice. Although that
phase diagram was expressed in terms of different vari-
ables, it can be translated into our current variables. The
nematic-cholesteric-skyrmion triple point in that phase
diagram occurs at (d/ξ)2 ∼ 103 and q0d ∼ 101/2, which
implies α ∼ (ξ/d)2 ∼ 10−3 and κ ∼ ξq0 ∼ 10−1. For
α <∼ 10−3, the skyrmion lattice occurs between the ver-
tical nematic phase and the cholesteric phase, around
κ ∼ 10−1. For α >∼ 10−3, there is a direct transition
from vertical nematic to cholesteric around κ ∼ 10−1.
Comparing Ref. [9] and the current article, we see that
the two different theories both show that skyrmions are
stable or metastable at low κ, not at high κ.

III. NUMERICAL SIMULATIONS

A. Equilibrium phases

As an alternative method to minimize the free energy
Ftotal = F + ∆F , we run Monte Carlo (MC) simulations
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using the Metropolis algorithm. In these simulations, the
liquid crystal order is represented by a 3 × 3 traceless,
symmetric tensor Q at each site of a 2D square lattice
in the (x, y) plane. In the free energy, all derivatives are
approximated by finite differences. We relax the five in-
dependent components ofQ by simulated annealing from
a disordered state for each set of temperature t, chiral-
ity κ, and anisotropy α. The states found through this
numerical method can then be compared with the states
found by the simple analytic assumptions of Sec. II(B).

As a first study, we vary the parameters t and κ, for
zero anisotropy α = 0, to explore the phase diagram of
Fig. 2. At high t, the system is in the isotropic phase,
with a highly disordered Q tensor field. At low t and
low κ, the simulations show a cholesteric phase, with a
lattice of twist walls separating vertically aligned stripes.
Because of fluctuations in the Monte Carlo simulation,
the cholesteric order is not perfect, but rather exhibits
hairpin defects. At high κ, we find a blue phase, which
consists of double-twist tubes or merons, separated by
twist walls. At each point where three walls intersect,
there is a disclination of topological charge −1/2 in the
orientational order. These disclinations are points where
the eigenvalue associated with the ẑ axis becomes dom-
inant and negative in sign, surrounded by biaxial cores,
as predicted in Ref. [13].

For a second comparison, we vary κ from 0.09 to 1.9,
with the other two parameters fixed at t = −0.9 and α =
0.001. This series of simulations moves along the thick
arrow in Fig. 3 (left side). A series of simulated structures
is shown by the insets around the phase diagram.

At low chirality, the system is in the vertically aligned
nematic phase. The director is everywhere parallel to the
anisotropy axis, n̂ = ẑ, as indicated by the uniform red
color in the figure. When the chirality increases, there is
a transition into the cholesteric phase. Because of fluc-
tuations in the simulation, the cholesteric phase shows
several dislocations in the stripe pattern, which corre-
spond to disclinations in the orientational order. As the
chirality increases further, the density of dislocations in-
creases, and the long stripes of vertical alignment evolve
into shorter segments. Eventually the segments shorten
into hexagonal cells, which can be regarded as double-
twist tubes or merons, separated by twist walls. The
transitions among these structures occur quite close to
the phase boundaries predicted by the simple analytic
assumptions.

For a third comparison, we vary α from −0.2 (easy
plane anisotropy) to +0.1 (easy axis anisotropy), with
the other parameters fixed at κ = 0.9 and t = −0.9.
This series moves along the thick arrow in Fig. 3 (right
side), with simulated structures shown by insets around
the phase diagram.

For high easy plane anisotropy, the system is in a hori-
zontally aligned nematic phase, with n̂ in the (x, y) plane.
The orientation within the plane is random, and it is
uniform across the system. When the anisotropy is re-
duced toward zero, the system begins to show isolated

merons, with vertical alignment in the center and dou-
ble twist of the director going outward. These merons
are separated by large regions of n̂ in the (x, y) plane,
which must include disclinations in the planar director
field. As the anisotropy decreases further, the density of
merons increases, and they eventually form a hexagonal
lattice, which can be regarded as a blue phase. After
the anisotropy changes sign, and becomes larger in the
easy axis direction, there is a transition into a cholesteric
phase, with walls separating vertically aligned stripes.
For even larger easy axis anisotropy, the system forms a
vertically aligned nematic phase, with a uniform director
field. Again, the transitions are generally consistent with
the phase boundaries derived from the approximations of
Sec. II(B).

B. Metastable skyrmions

We do not see stable skyrmions in the Monte Carlo sim-
ulations for any set of parameters in this model. In that
respect, the Monte Carlo simulations are once again con-
sistent with the simple analytic calculations of Sec. II(B):
One of the other phases is always lower in free energy
than the skyrmion lattice.

Although skyrmions are not stable minimum energy
states, they can still exist as metastable states. To inves-
tigate the possibility of metastable skyrmions, we run
dynamic simulations of the same model with free en-
ergy Ftotal = F + ∆F , with the code running on a
graphical processing unit (GPU). In these dynamic sim-
ulations, we integrate the Q tensor forward in time,
following the relaxational equation ∂Qαβ(r, t)/∂t =
−ΓδFtotal/δQαβ(r, t), where Γ is a mobility coefficient.
This equation is not required to conserve skyrmion
charge, because the eigenvalues of Q can change in time.
However, it normally conserves skyrmion charge, unless
the system goes over a significant energy barrier to chang-
ing the eigenvalues.

We begin the dynamic simulations with an initial con-
dition corresponding to a circular skyrmion, in which the
director is vertical at the center, and it twists by 180◦ go-
ing outward to the perimeter. Depending on the param-
eters relevant to energetics, we see three types of shape
evolution: (a) If the anisotropy is too large, the skyrmion
shrinks and disappears; the final state is a vertical ne-
matic. (b) If the anisotropy is too small, the skyrmion ex-
pands and evolves into one of the variations of cholesteric
stripe patterns that was seen in the Monte Carlo simula-
tions. (c) If the anisotropy is within the right range, the
initial state relaxes into a metastable skyrmion.

The metastable skyrmion has the structure shown in
Fig. 4. The director twists by 180◦ from the center to
the perimeter, but this twist is not uniform. Rather, the
director is almost vertical over some distance from the
center and the twist occurs over a short range. Hence,
the skyrmion can be regarded as a π-wall that is curved
into a ring, with a vertically aligned nematic phase in the
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FIG. 4. (Color online) Simulation of a metastable skyrmion.
The director field covers all possible orientations on the unit
sphere exactly once, giving a skyrmion topological charge of
1. The out-of-plane component |nz| is indicated by the color
scale, while the in-plane component points circumferentially
around the center. The yellow line on the bottom shows nz

from −1 to 1, as a function of x, for fixed y in the center.
This structure can be regarded as a π-wall that is curved into
a ring, with vertical nematic in the interior and the exterior.

FIG. 5. (Color online) Static skyrmions as particles: (a) An
initially distorted shape quickly evolves into a circular ring.
(b) Skyrmions repel each other. (c) A system of many
skyrmions forms a lattice.

interior and the exterior.

The size and shape of a skyrmion are very robust and
long-lived. For example, in Fig. 5, if the initial state is a
distorted elliptical loop rather than a circle, the skyrmion
quickly evolves into a final static circular shape which
never breaks down. If two skyrmions are in close prox-

imity, they repel each other until they reach a separation
comparable to the skyrmion diameter. Because of this
robustness and interaction, a system of many skyrmions
forms a lattice, analogous to the crystallization of parti-
cles with repulsive interactions. This behavior is similar
to formation of a triangular or square lattice in simula-
tions of magnetic skyrmions [19, 26].

To understand the metastable skyrmion structure, we
represent the director field in cylindrical coordinates as

n̂(r) = −φ̂ sin(θ(r)) + ẑ cos(θ(r)), and make the linear
Ansatz for the polar angle

θ(r) =


0, for r ≤ rin,
(r − rin)π/δr, for rin ≤ r ≤ rout,
π, for r ≥ rout,

(16)

where rin is the inner radius of the ring, rout is the outer
radius, and δr = rout−rin is the thickness of the wall. As
in the calculations of Sec. II(B), we calculate the free en-
ergy for this configuration using Qij = S( 3

2ninj −
1
2δij),

and we subtract the background energy of the vertical ne-
matic phase. We then make the substitution g = rin/δr,
to obtain a skyrmion free energy as a function of g and
δr. Minimization with respect to δr yields

δr =
3πLq0S

∆εE2
, (17)

showing that the wall thickness is determined by the com-
petition between elastic constant (which favors a thicker
wall) and anisotropy (which favors a thinner wall). The
skyrmion free energy, relative to the vertical nematic,
then becomes

F =
9πLS2

4

[
π2

(
1− 3Lq20S

∆εE2

)
(1 + 2g) + log

(
1 +

1

g

)
+ cos(2πg) [Ci(2πg)− Ci(2π(g + 1))]

+ sin(2πg) [Si(2πg)− Si(2π(g + 1))]

]
, (18)

where Ci and Si are the cosine integral and sine integral
functions, respectively.

To minimize the skyrmion free energy over g, we
rewrite the equation ∂F/∂g = 0 as

3Lq20S

∆εE2
= 1− 1

π
sin(2πg) [Ci(2πg)− Ci(2π(g + 1))]

+
1

π
cos(2πg) [Si(2πg)− Si(2π(g + 1))] . (19)

This equation has a solution provided that the ratio on
the left side is between the minimum value

lim
g→0

3Lq20S

∆εE2
= 1− Si(2π)

π
≈ 0.55 (20)

and the maximum value

lim
g→∞

3Lq20S

∆εE2
= 1. (21)
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FIG. 6. Skyrmion wall thickness δr and average radius rav =
1
2
(rin + rout), as functions of the anisotropy ∆εE2, in units

of π/q0. The points represent simulation results, and the
solid lines are the calculation in Sec. III(B). Parameters are
L = 0.001, q0 = π, and S = 0.405.

Equivalently, the range of anisotropy must be

3Lq20S ≤ ∆εE2 ≤ 5.5Lq20S. (22)

Within that range, skyrmions are metastable with a char-
acteristic radius given by rin = gδr. For anisotropy below
the lower limit of that range, the skyrmion radius will
grow to infinity. For anisotropy above the upper limit, a
skyrmion will shrink and disappear.

This model for metastable skyrmions is qualitatively
consistent with the simulations, which also find that
metastable skyrmions can exist over a certain range of
anisotropy. As a further quantitative comparison, we de-
termine the skyrmion wall thickness δr and average ra-
dius rav = 1

2 (rin + rout) from the simulation results for
n̂(r) across the wall. We then plot these simulated quan-
tities in comparison with the model calculations as func-
tions of the anisotropy ∆εE2 in Fig. 6. The wall thickness
calculations are in good agreement with simulation re-
sults over the full range of anisotropy that was simulated.

10-6 10-5 10-4 0.001 0.010
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10-4

10-3

L

F
sk
yr
m
io
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Skyrmion free energy

FIG. 7. Skyrmion free energy relative to the vertical nematic
state, in arbitrary units. The elastic constant L is varied
for fixed a = −0.1, b = −3, and c = 3, with the anisotropy
∆εE2 adjusted to maintain the skyrmion size (g and δr). The
points represent simulation results, and the solid line is the
calculation of Sec. III(B) for the same L and ∆εE2.

The average radius calculations are close to the simula-
tion results for high anisotropy and small radius, where
the simulated skyrmion is circular in shape. However, for
low anisotropy and large radius, there is a significant dis-
crepancy; the model underestimates the minimum value
of ∆εE2 for skyrmion stability. This discrepancy seems
to be caused by the shape of the skyrmions; the sim-
ulated skyrmion develops a four-fold anisotropy in this
limit, perhaps because of the finite-difference approxi-
mation for derivatives in the underlying lattice model.
Despite the latter discrepancy, the model generally pro-
vides a good estimate for the skyrmion size and the range
of anisotropy needed for skyrmion stability.

For another comparison, we consider the free energy
of a skyrmion, relative to the vertical nematic state.
This free energy difference is positive, indicating that
skyrmions are metastable in this model. To determine
the magnitude of this difference in the simulation, we
vary the elastic constant L along the border of the verti-
cal nematic and cholesteric phases. For each L, we adjust
the anisotropy ∆εE2 so that the size of the skyrmion is
roughly the same. In other words, the g and δr values
are the same across simulations of different L values. The
simulation results for free energy, relative to the vertical
nematic, are shown by the points in Fig. 7. By compari-
son, the calculation of Eq. (18) for the same L and ∆εE2

is shown by the solid line in the same figure. These results
are consistent up to a factor of 2, which is reasonable for
such an approximate model.

As noted in the Introduction, many experiments have
studied skyrmions in confined cholesteric liquid crys-
tals [4–10, 24]. These experiments generally cannot de-
termine whether skyrmions are metastable, as predicted
by the calculations in this section, or whether they are
actually stable structures. Indeed, that issue may de-
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pend on the exact form of the anisotropy, which can
arise from an applied electric field or from homeotropic
anchoring on surfaces. Regardless of whether skyrmions
are metastable or stable, they are separated from the uni-
form vertical state by a large energy barrier, and hence
require significant disturbances in order to form or de-
cay. These skyrmions occur in liquid crystals with stiff
nematic order, in contrast with blue phases (meron lat-
tices), which occur in liquid crystals with soft nematic
order or high chirality.

IV. THEORY OF CHIRAL MAGNETS

In recent years, many investigators have carried out
substantial theoretical research on modulated structures
in chiral magnets, as in Refs. [15–21]. In this section,
we briefly review that work in a notation similar to the
notation for chiral liquid crystals. We then use this the-
ory to compare magnetic skyrmions and merons with the
analogous structures in liquid crystals.

A fundamental difference between liquid crystals and
magnets is that liquid crystals have a tensor order pa-
rameter Q(r), while magnets have vector order parame-
ter M(r), which is the magnetization. Because we wish
to describe meron lattices with disclinations, we treat M
as a vector of variable magnitude, just as we treat Q as
a tensor of variable eigenvalues. In Landau theory, the
bulk free energy density of a chiral magnet can be written
as

F =
1

2
a|M |2 +

1

4
c|M |4 +

1

2
k(∂iMj)(∂iMj)

+kq0εlikMl∂iMk −HMz −AM2
z . (23)

Here, the first two terms represent the free energy of a
uniform system, expanded in powers of the vector or-
der parameter. These terms favor a certain magnitude
|M |, which will occur everywhere except in the discli-
nations. The quadratic coefficient a is assumed to vary
linearly with temperature, while c is assumed constant
with respect to temperature. The third and fourth terms
represent the elastic free energy cost associated with vari-
ations of M as a function of position. The third term
penalizes all variations in M , while the fourth term is
a Dzyaloshinskii-Moriya interaction that favors certain
twist deformations because of the Dresselhaus spin-orbit
coupling. The last two terms involve two distinct types
of symmetry-breaking fields acting on the magnetic or-
der. The H term is a standard magnetic field in the
z direction, which couples linearly to M , while the A
term is a magnetocrystalline anisotropy, which couples
quadratically to M . The anisotropy may be easy-axis
with A > 0, or easy-plane with A < 0.

Equation (23) for the magnetic free energy is quite
analogous to Eq. (1) for the liquid crystal free energy,
but there are two important distinctions. First, the bulk
free energy for the liquid crystal has quadratic, cubic, and
quartic terms, while the bulk free energy of the magnet

has only quadratic and quartic terms. Second, the liquid
crystal has only a quadratic anisotropy acting on the or-
der parameter, while the magnet has both a linear field
and a quadratic anisotropy. Both of these distinctions
arise from the tensor vs. vector nature of the order pa-
rameter.

By analogy with the liquid crystal theory, we can sim-
plify the magnetic theory by rescaling parameters. Here,
the characteristic value of the magnetic order parameter
isM ∼ (|a|/c)1/2, the free energy density of the ferromag-
netic relative to disordered phase is F ∼ a2/c, and the
core radius of a vortex in magnetic order is ξ ∼ (k/|a|)1/2.
Hence, we rescale M , F , and all lengths by those char-
acteristic values. The theory then depends on three di-
mensionless ratios, which we write as

κ = q0

√
k

|a|
, h = H

√
c

a3
, α =

A

|a|
. (24)

The chirality parameter κ is a dimensionless version of
the Dzyaloshinskii-Moriya interaction. As in the liquid
crystal case, it represents the natural twist q0 relative to
the disclination core radius ξ. Equivalently, κ2 can be
interpreted as the energy scale of the favored chiral twist
relative to the energy scale associated with changing the
magnitude ofM inside a defect core. Low κ can be called
“low chirality” or “stiff magnetic order,” while high κ
can be called “high chirality” or “soft magnetic order.”
The parameters h and α are dimensionless versions of
the field and anisotropy. The anisotropy α is analogous
to the anisotropy in the liquid crystal case, while the field
h does not exist in the liquid crystal.

The magnetic system does not have a temperature pa-
rameter t analogous to the liquid crystal case. Because
the magnetic free energy density includes the quadratic
and quartic but not the cubic terms in M , the temper-
ature scales out of the magnetic case, leaving a prob-
lem with no explicit dependence on the temperature-
dependent coefficient a (assuming that a < 0 so that
the system is in an ordered phase).

Many investigators have already studied the phases of
this model through detailed numerical simulations. We
suggest that key features of the phase diagram can be un-
derstood through simple analytic calculations, analogous
to the liquid crystal calculations in Sec. II(B). Hence,
we repeat those calculations for the magnetic case, and
compare the results with simulations from the literature.

For these simple analytic calculations, we consider the
following phases:

a. Vertical ferromagnetic phase The system has
uniform magnetic order in the z direction, with M =
M ẑ. After minimizing over M , the scaled free energy
density is F̃vert = − 1

4 − h− α.

b. Tilted ferromagnetic phase The magnetic order
is given by M = M [x̂ sin θ + ẑ cos θ], and the scaled free

energy density is F̃tilt = − 1
4 − h cos θ− α cos2 θ. The tilt

θ is determined by the competition between h and α.
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(b) Skyrmion lattice

(d) Square meron lattice
(permitted)

(a) Spiral phase

(c) Hexagonal meron lattice
(forbidden)

FIG. 8. Structure of the different modulated magnetic phases
studied here.

c. Spiral phase The spiral phase of magnetic sys-
tems has the structure shown in Fig. 8(a), analo-
gous to the cholesteric phase of liquid crystals. If h
and α are zero, the modulated structure is M(x) =
M [−x̂ sin(πx/d) + ẑ cos(πx/d)]. If h and α are small
but nonzero, the structure is only slightly distorted, so
that the expression can still be used as a first approxima-
tion. After minimizing over M and d, the average scaled
free energy density is F̃spiral = − 1

4 (1 +κ2)2− 1
2α(1 +κ2).

d. Skyrmion lattice Skyrmions are modeled by disks
arranged in a hexagonal lattice, as in Fig. 8(b). Within
each disk, the magnetic order twists through an angle
of π, from downward at the center to upward at the
edge. Our linear assumption for this variation is M(r) =

M [−φ̂ sin(2πr/d) + ẑ cos(2πr/d)], for 0 ≤ r ≤ d/2. Be-
tween the disks, the magnetic order is uniform and up-
ward. After minimizing over M and d, the average scaled
free energy density is F̃skyrm = − 1

4 − 0.36κ2 − 0.15κ4 −
0.093h− 0.37h(1 + 0.80κ2)1/2 − 0.55α− 0.36ακ2.

e. Meron lattice Merons are modeled by disks with
a twist of π/2 from the center to the edge. As Ref. [24]
pointed out, the difference between the vector order pa-
rameter for a magnet and the tensor order parameter
for a liquid crystal implies an important difference in
the arrangement of the merons. In a magnet, merons
cannot be arranged in a hexagonal lattice, as shown in
Fig. 8(c), because the magnetic order parameter would
be incompatible at each point where two disks meet. As
an alternative, merons can be arranged in a square lat-
tice, shown in Fig. 8(d), as discussed in Ref. [15]. In
this structure, there is a regular alternation of merons
with the central M pointing upward or downward. Our
linear assumption for the variation within each disk is

M(r) = M [−φ̂ sin(πr/d)+ẑ cos(πr/d)], for 0 ≤ r ≤ d/2.
In each region between four disks, the magnetic or-
der has a vortex of topological charge −1, which we
model as a disordered, isotropic region. After minimizing
over M and d, the average scaled free energy density is
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FIG. 9. (Color online) Visualization of the phase diagram for
chiral magnets in the chirality-field-anisotropy space.

F̃meron = − 1
4 − 0.36κ2 − 0.11κ4 − 0.23α− 0.28ακ2.

By comparing the free energies of these structures,
we construct a 3D phase diagram in the chirality-field-
anisotropy space, as shown in Fig. 9. In the limit of low
chirality, the system forms a ferromagnetic phase, which
is vertical for large easy-axis anisotropy and tilted for
large easy-plane anisotropy. In the limit of high chiral-
ity, the system forms a spiral phase. The more complex
skyrmion and meron lattices occur for intermediate chi-
rality. In this intermediate regime, easy-plane anisotropy
favors the meron lattice, because this lattice has large
planar regions. A field favors the skyrmion lattice, be-
cause it has a predominant vector orientation which can
align with the field.

Instead of performing our own simulations, we can
compare the results of these approximate analytic ar-
guments with previously published simulations by other
investigators. As examples, Refs. [26] and [38] both
present phase diagrams for magnetic structures in the
field-anisotropy plane, which can be compared with a
cross section of our phase diagram for fixed chirality
κ = 0.5, as shown in Fig. 10. We can see the same general
arrangement of the phases in Fig. 7 of Ref. [26], and in
Fig. 1 (left) of Ref. [38], as in our Fig. 10. (As a matter of
terminology, the polarized ferromagnetic phase is equiv-
alent to what we have called vertical ferromagnetic, and
canted ferromagnetic is equivalent to what we have called
tilted.) Hence, we can observe that the approximate an-
alytic arguments of this section capture key features of
the free energy balance among the phases, even without
the need to do detailed numerical simulations.
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FIG. 10. (Color online) Cross section of the phase diagram for
chiral magnets in the field-anisotropy plane for fixed chirality
κ = 0.5.

V. DISCUSSION

The work presented in this article attempts to put the
topological phases in liquid crystals and chiral magnets
on the same footing. It enables us to compare skyrmions
with merons, and also to compare various orientational
phases of chiral liquid crystals with chiral magnets.

To compare skyrmions with merons, we see that these
structures are similar from the perspective of local ge-
ometry near the defect core: They both have the same
double-twist structure in the orientational order. How-
ever, they are quite different from the perspective of
global topology: Around a skyrmion, the orientational
order goes to the same vertical orientation everywhere.
Hence, it is possible to pack many skyrmions together
with uniform regions in between. The whole lattice of
skyrmions is nonsingular, with approximately uniform
magnitude of orientational order (uniform eigenvalues of
Q for a liquid crystal, uniform |M | for a magnet). By
contrast, around a meron, the orientational order goes to
a horizontal orientation, and it covers the full range of all
possible horizontal orientations. Hence, it is not possi-
ble to pack many merons together with uniform regions
in between. Rather, there must be singularities in the
orientational order between the merons. Hence, a lattice
of merons can only form if the energetic cost of forming
these singularities is not too great.

Because skyrmions are surrounded by uniform vertical
orientational order, they can be regarded as local exci-
tations. Hence, skyrmions move and interact as effec-
tive particles, with only a short-range potential between

them [19]. Conversely, because merons are surrounded
by the full range of nonuniform horizontal orientational
order, they are more complex nonlocal excitations, which
have long-range logarithmic interactions, and which must
be accompanied by other defects, This distinction in lo-
cality has been pointed out in the magnetic context [20],
and it applies also in the liquid crystal context.

To compare chiral liquid crystals with chiral magnets,
we note that these materials are similar from the per-
spective of topology: They both can form skyrmions
and merons. However, chiral liquid crystals and chiral
magnets are quite different from the perspective of ener-
getics: In chiral magnets, it is straightforward to stabi-
lize skyrmions by applying a magnetic field, which cou-
ples linearly to M and stabilizes the orientation outside
the skyrmions, in contrast with the orientation inside
the skyrmions. Hence, a lattice of skyrmions becomes
the ground state for an appropriate choice of field and
anisotropy. By contrast, in chiral liquid crystals we have
a tensor order parameter Q, so there is no field that can
distinguish between orientational order upward or down-
ward; there is only a quadratic easy-axis or easy-plane
anisotropy. As a result, the specific model studied here
does not have skyrmions as a ground state; it only has
skyrmions as metastable defects. To be sure, variations
on this liquid-crystal model (perhaps with anisotropy
arising from surface anchoring) might have skyrmions as
a ground state, as in Ref. [9]. Even so, they are stabi-
lized by a fairly delicate balance of free energies, not by
the simple field as in the magnetic case. Thus, we would
state that the vector order parameter of magnets tends
to favor skyrmions, while the tensor order parameter of
liquid crystals tends to disfavor skyrmions.

In chiral liquid crystals, the formation of merons in
a hexagonal lattice requires singularities of topological
charge −1/2 between the merons. In “high-chirality” liq-
uid crystal materials, the energetic cost of these singular-
ities is not too large compared with the energetic benefit
of the double-twist regions. Hence, it is straightforward
to stabilize meron lattices in liquid crystals. Such lat-
tices are called blue phases, and they have been studied
extensively for many years. In 3D liquid crystals, blue
phases normally have a more complex cubic structure
rather than the 2D lattice considered here, but still the
same principles apply. By contrast, in chiral magnets,
the formation of merons in a square lattice requires sin-
gularities of the larger topological charge −1 between the
merons. It is theoretically possible for this structure to
be the ground state, but it is difficult to find parameters
where the energetic cost of the singularities is less than
the energetic benefit of the double-twist regions. Thus,
we would state that the tensor order parameter of liquid
crystals tends to favor merons, while the vector order
parameter of magnets tends to disfavor merons.
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