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Ciudad de México, 09340, México
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Abstract

We modeled the experimentally-observed self-assembly of nanoparticles (NPs) into shells with

diameters up to 10 microns, via segregation from growing nematic domains. Using field-based

Monte Carlo simulations, we found the equilibrium configurations of the system by minimizing a

free-energy functional that includes effects of excluded-volume interactions among NPs, orienta-

tional elasticity and the isotropic-nematic phase-transition energy. We developed a Gaussian-profile

approximation for the LC order-parameter field that provides accurate analytical values for the

free energy of LC droplets and the associated microshells. This analytical model reveals a first-

order transition between equilibrium states with and without microshells, governed mainly by the

competition of excluded-volume and phase-transition energies. By contrast, the LC elasticity ef-

fects are much smaller and mostly confined to setting the size of the activation barrier for the

transition. In conclusion, field-based thermodynamic methods provide a theoretical framework for

the self-assembly of NP shells in liquid crystal hosts and suggest that field-based kinetic methods

could be useful to simulate and model the time evolution of NP self-assembly coupled to phase

separation.
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I. INTRODUCTION

Nanoparticles (NPs) exhibit unique electronic, magnetic and optical properties arising

from quantum confinement that (coupled with a large diversity in composition and morphol-

ogy) find wide application in optoelectronics, biomedicine, food processing, and renewable

energy [1–3].

A relatively new development is to use NPs as “building blocks” to assemble new struc-

tures with functionalities significantly modified from those of individual constituents[4]. The

most common approaches include bottom-up assembly of NPs, which has successfully cre-

ated two- and three-dimensional superlattices with up to three different types of particles

and the synthesis of hybrid core-shell composite nanostructures [5–8]. An alternative route

is to use soft materials (such as polymers, liquid crystals, or biomolecules) as templates for

NP assembly [9–15]. A soft host can remove constraints in the way the individual compo-

nents can be combined and make novel architectures possible, such as non-planar structures.

Additionally, it allows in-situ modulation of the NP assembly via external controls (e.g. tem-

perature, mechanical strain and electromagnetic fields)[16–19].

a) b) c)

10 μm

FIG. 1. The spatial organization of quantum-dot nanoparticles sorted by a liquid crystal is visu-

alized using fluorescence microscopy. The images above were captured during the shell formation

process. In first stage (a), the NPs segregate into shrinking isotropic domains; at a later stage (b),

these domains adopt a spherical shape; in the last stage (c), shells of NPs are formed when the

interior of these spherical domains also becomes nematic.

Liquid crystals (LCs) are an ideal class of materials to serve as soft hosts for tunable

assemblies, since their molecular structure can be modified by changing the temperature.

Also, LCs can be manipulated to produce macroscopic domains with a defined optical axis,

because their molecular orientation can be externally controlled by electric and magnetic

fields and surface anchoring. This means that they can act as a switchable host for dynamic

NP assembly and function. Our group has recently demonstrated examples of this ability
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by reorienting chains of quantum dots using a nematic host[20], modulating quantum-dot

emission from a LC device[21–23], and using a liquid-crystal host to reversibly modulate the

emission intensity of QD/magnetic NP clusters [13, 24–26].

In this work we focus on a particular form of phase separation, previously reported by

our group[27], that occurs when a homogeneous mixture of mesogen-functionalized NPs and

5CB molecules is cooled below the isotropic-nematic transition temperature: first (Fig. 1a),

the NPs segregate into shrinking isotropic domains, where the particles remain uniformly

distributed; in a second stage (Fig. 1b), these domains adopt a spherical shape. Finally

(Fig. 1c), shells of closely packed NPs are formed when the interior of these spherical domains

also become nematic (see Electronic supplementary Information for the article by Rodarte et

al. [27]), pushing the particles to the droplet boundary. Careful observation of this interior

domain formation indicate that the nematic phase nucleates and grows at a random point

inside the isotropic domain away from the phase boundary. The shells vary in diameter from

200 nm up to ∼10 microns. Once formed, the shells can be extracted from the host LC phase

and resuspended in an alternate organic solvent (for instance, toluene). This structural

stability extends to high temperatures, but the shells break apart and NPs redisperse at

temperatures between 115 ◦C and 125 ◦C [27].

Why do NP shells form at all, when there is a nematic liquid crystal at either side of the

shell? In this work we provide a thermodynamic model with a first-order transition that

accounts for the formation of these shells.

When particles with a spherical geometry are introduced into a liquid crystal solvent, their

ability to disperse depends on several factors: their size, the order parameter of the host

phase and the molecular anchoring conditions on the particle surface (for example particle

ligands and their orientation). A liquid crystal fluid can therefore be a good or bad solvent

for spherical particles. In the case that the liquid crystal is a poor solvent, the particles tend

to cluster and precipitate. In the limit of very small particles (∼1 nm or less), dispersal is

favored in both the isotropic and nematic phases as these particles are too small to respond

to the liquid crystal ordering. As size increases, however, particles tend to exhibit a reduced

dispersibility in the nematic phase and will aggregate. This aggregation effect results from

the Frank elastic energy cost per particle to place a particle with spherical geometry in

a nematic environment, thereby distorting the equilibrium director field. NPs larger than

a few nanometers coated with non-mesogenic ligands have been shown experimentally to
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aggregate in the nematic phase [28–30]. The specific nanoparticles (6nm Quantum dots)

used in the experiments of Rodarte et al. include mesogenic ligands attached to the particle

surface via a flexible arm. While these mesogenic particles do not disperse in the nematic

phase (possibly due to elastic-energy costs [31, 32] or electrostatic effects [33]), they do

disperse homogenoeously in the isotropic phase of 5CB [27]. Hence, in our model, we

assume that the NPs have great affinity for the isotropic phase [7, 28, 34–36] (see Fig. 2).

Transport of particles and clusters by isotropic-nematic domain walls has been reported

previously[37, 38], but since we are considering only the thermodynamics we do not model

such transport explicitly.

When the system initially phase separates into NP-rich isotropic domains and NP-poor

nematic domains, we observe a time-dependent length-scale associated with the cooling

rate, and that faster cooling rates lead to smaller shells. Such behavior noted previously

by Rodarte et al. [27] has also been observed computationally for the isotropic-nematic

transition without nanoparticles [39] and attributed to the interplay between symmetry

breaking and causality described by the Kibble-Zurek mechanism [40, 41]. The relationship

between cooling rate and final shell size will be discussed in detail in a separate publication

[42]. High speed movies of shell formation (available as supplemental information for [27])

show that shrinking isotropic droplets reach a final outer radius Rext before nucleation of

the inner nematic domain, during which time Rext does not appear to change. Hence, in this

work we analyze the system starting from the second stage (Fig. 1b), considering a spherical

domain of given radius Rext. This sphere contains, initially, NPs distributed homogeneously

at a volume fraction η0. We then consider the free energy of the system when a nematic

droplet of radius Rint is located at the center of the spherical domain. We assume that

the nematic phases inside and outside the original spherical domain confine the NPs to the

region between them, and develop a mean-field theory model for the free energy of the shell

and the nematic droplet.

In the model, we include the elastic and Landau-de Gennes free energies for the ne-

matic droplet and the excluded-volume free energy of NPs considered as hard spheres. The

excluded-volume term favors small values of Rint, while the other two terms favor larger ones.

An equilibrium droplet radius Rint > 0 is found for sufficiently low temperature quenches,

∆T = T −Tc, where Tc = 308 K is the isotropic-nematic transition temperature for 5CB[43].

In the next sections, we describe in detail our free energy model for the formation of NP
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FIG. 2. (Color online.) We study a model where, (a) nematic 5CB surrounds a sphere of isotropic

5CB with NPs suspended homogeneously inside it. The radius of that sphere, Rext is fixed. Then,

(b) we analyze the free energy of the system when a droplet of nematic 5CB, with varying radius

Rint, confines the NPs to a shell of width ∆R = Rext −Rint.

shells in a nematic host and use Monte Carlo simulation to find accurate expressions for

each of the free energy contributions mentioned above. Then we use those expressions to

calculate the equilibrium droplet radius Rint as a function of the temperature quench ∆T

and the initial NP volume fraction η0. We discuss the presence of a first-order transition that

leads to formation of shells and identify the role of the excluded-volume and phase-transition

free energies in setting the shell thickness ∆R = Rext − Rint. We also discuss the role that

the elastic energy has in setting the activation energy that must be overcome in order to

nucleate the inner droplet and associated shell. In the conclusions we consider other systems

where similar competition between excluded-volume interactions and phase-transition heat

could lead to formation of self-assembled structures.

II. METHODS

A. Model for the micro-shell and nematic droplet

We assume that the system contains an inner nematic droplet with radius Rint and that

the NPs are confined to an external shell where 5CB remains isotropic (see Fig. 2b). The

outer size of the spherical domain is known experimentally to be set by the cooling rate of the

system, and is related to the process of growth and coarsening of the nematic phase network

around the shrinking isotropic domains containing NPs [42]. We also assume infinitely

strong anchoring at the shell boundary and model the excess free energy of the system F

5



with respect to the situation where Rint = 0. Then, F is the sum of three volumetric terms:

F =

∫

shell

fNP dX+

∫

droplet

(fE + fI-N) dX. (1)

Here, fNP is the free energy density due to excluded volume of the NPs dispersed in the shell

and X is a point of the domain. For the liquid crystal in the inner droplet, fE is the elastic

free-energy density and fI-N is a Landau-de Gennes free-energy density accounting for the

isotropic-nematic transition.

We model the NP free energy density with the Carnahan-Starling expression for hard-

spheres[44]. The NP volume fraction is assumed to be constant over the whole shell; it is an

increasing function of the inner droplet radius

η(Rint) =
η0

1− (Rint/Rext)
3
. (2)

The state of the liquid crystal in the nematic droplet is described by the alignment tensor

field Q(X): at each point X, it corresponds to the local average Q = 〈ûû− I/3〉, where û
represents the molecular orientation and I is the identity matrix. The scalar order parameter

is given by S = 3λ1/2, with λ1 the largest eigenvalue of Q, and the director n̂ is the unit

eigenvector associated with λ1. One advantage of using the alignment tensor as the order

parameter is that the elastic free energy does not diverge at topological defects, because the

derivatives of Q are continuous[45, 46].

We defined non-dimensional quantities using, as the unit of length, the external radius

Rext and, as the unit of energy, the latent heat ǫ required to bring a sphere of radius Rext

from the nematic to the isotropic phase, at 1 K below the clearing point:

ǫ = −4πR3
ext

3
fI-N(∆T = −1 K). (3)

Hence, we use the following reduced quantities: coordinates x = X/Rext, internal-droplet

radius r = Rint/Rext, free-energy F = F/ǫ, and free-energy densities

f ∗
NP =

6kBT

πǫ

(

Rext

σ

)3 [
η2(4− 3η)

(1− η)2

]

, (4)

f ∗
E =

L1Rext

ǫ

[

1

2

∂Qjk

∂xl

∂Qjk

∂xl

]

, (5)

f ∗
I-N =

L1Rext

ǫ

(

R2
ext

ξ2
U

)[(

1

U
− 1

3

)

Tr Q2

2
− Tr Q3

3
+

(Tr Q2)2

4

]

. (6)
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In these equations, kB is Boltzmann constant, T temperature, σ the NP diameter, L1 an

elastic modulus related to the Frank elastic constant K11 by L1 = 2K11/S
2 in the one-

constant approximation, ξ is the bare coherence length of the nematic, and U is a parameter

related to the bulk order parameter by U = 3/(1+Sb−S2
b ). In turn, the bulk order parameter

was related to the temperature quench ∆T by fitting experimental data for 5CB[43],

Sb = 0.352− 10.417
∆T

Tc
− 112.213

(

∆T

Tc

)2

. (7)

From the experiments by Rodarte et al.[27], we set Rext = 1 µm and σ = 5 nm as typical

values, along with ξ = 10 nm and L1 = 10−11 N which are typical for nematics[47].

B. Monte Carlo simulation of the droplet

The integration of the NP free-energy density can be performed analytically by assuming

that the NP volume fraction is uniform over the shell region, but calculation of the LC

terms over the nematic droplet requires the field Q(x). We used a simulated-annealing

Monte Carlo methodology to obtain it, where the variables subject to random variation are

the five independent components of the alignment tensor [48, 49]. By using these degrees

of freedom, we were able to sample configurations where the order parameters S and B, as

well as the director n̂ and second optical axis m̂, may vary simultaneously in space.

Further details about the simulations are given as Supplemental Material [50], but we

mention here that we carried out them by taking advantage of the cylindrical symmetry

of the expected equilibrium configurations for homeotropic anchoring (uniform, axial and

radial[51, 52]). We represented the state of the whole droplet using just a slice of the Q field

in the xz plane containing the axis of symmetry. While this slice is two-dimensional, our

calculations still evaluated integrations over the entire three-dimensional domain and, since

Q still had five degrees of freedom, the director associated with it was not restricted to lie on

the xz slice. We validated this method by performing fully three-dimensional simulations:

as described in the Supplemental Material, we found that they agree within 2, 1 and 0.1%

for droplets with Rext = 200, 300 and 400 nm, respectively.

Fig. 3 illustrates the annealing protocol (for a droplet with r = 0.2, Sb = 0.5 and strong

radial anchoring), showing initial, intermediate and final configurations. We checked that

the final free energy after three annealing steps was insensitive to the initial configuration
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being random, uniform with S(x) = 0 or uniform with S(x) = Sb and constant director.

a) b)

c)

FIG. 3. (Color online.) We performed simulated annealing to find the inner-nematic droplet

configuration that minimizes its free energy. For the case with reduced inner radius r = 0.2,

Sb = 0.5 and strong radial anchoring, we show (a) the initial random configuration, (b) the

equilibrated configuration after the first annealing run, and (c) the final equilibrated configuration

after the second (and last) annealing run. The simulation shows that the order parameter field

S(x) is inhomogeneous due to the presence of a central hedgehog defect.

III. RESULTS

A. A Gaussian-profile model for the order parameter field accounts for the topo-

logical defect in the nematic droplet

For strong homeotropic anchoring at the edge of the nematic droplet, the equilibrium

configurations obtained in our simulations correspond to uniaxial hedgehog defects [51, 52],

as shown in Fig. 3. The biaxiality parameter in these configurations is very small, its r.m.s.

value is lower than 0.001. This allows to represent the final, equilibrium configurations with

a radial director configuration n̂(x) = x̂ and a radial profile of the scalar order parameter,

S(x), as shown in Fig. 4.
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FIG. 4. The order parameter profile S(x) as function of the radial coordinate x is shown for

nematic droplets with varying radius r = 0.2 (dark gray diamonds), 0.4 (gray squares) and 0.6

(ligth gray circles), at T = 294 K with bulk order parameter Sb = 0.6. The solid line corresponds

to the analytical model of S(x) given in Eq. (8), which is independent of the droplet size.

Figure 4 also shows that S(x) for the different radii can be approximated well by a single

Gaussian profile:

S(x) = Sbulk

(

1− e−x2/d2
)

, (8)

where d represents the width of the defect-core region. A fit to a subset of our simulation data

(for r = 0.2, 0.3 and 0.4, and Sb=0.39 and 0.60), results in the following parametrization:

d(Sb) = 0.267− 0.367 Sb. (9)

Combining Eq. (8) and (9) with a radial director field, we obtain an analytical model for

the equilibrium Q tensor field:

Q = S(x) (x̂x̂− I/3) . (10)

B. Analytical expressions of the free-energy terms reproduce accurately the sim-

ulation results

We calculated analytically the total phase-transition and elastic free energies by inte-

gration of the corresponding densities, using the Q field given by Eq. (10) and computer-

algebra software [53]. The general results are given in the Supplemental Material [50], but
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for droplets much larger than the defect core, r ≫ d, they simplify to

FIN =

(

L1R
3
ext

ǫξ2

)

4πr3S3
b

3

[

1− 3Sb

27

]

(11)

FE =

(

L1Rext

ǫ

)

8πrS2
b

[

1−
√
π

(

1− 11
√
2

32

)

d

r

]

. (12)

These closed expressions for the free energies can be evaluated for the entire range of

interest of radius r and temperature quench ∆T (and corresponding Sb). To cover the

experimentally-accessible temperature range (between the clearing point and the crystalliza-

tion temperature of 5CB), we need to consider values of ∆T as low as -13.6± 0.5 K[43, 54, 55]

and, correspondingly, values of Sb up to 0.60.

Figures 5 and 6 compare the closed expressions and simulated values for the phase-

transition and elastic free energies. They agree very well over the entire size and temperature

ranges: the total free energy of the nematic droplet calculated analytically has a r.m.s.

difference of 5% with respect to the simulation data. Given this level of agreement, in the

next sections we will mainly discuss the formation of NP micro-shells using the analytical

free-energy expressions of Eq.(11) and (12), but will be able to make comparisons with

simulation results.
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FIG. 5. (Color online.) The phase-transition free energy FIN is a decreasing function of droplet

radius r: simulation results are shown as circles, with solid ones indicating those used to fit

Eq. (9). The analytical free energy from Eq. (11), shown with lines, remains accurate even when

extrapolated to the largest simulated droplets. The range of Sb and ∆T cover the experimental

range between crystallization and isotropic-nematic transition.
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FIG. 6. (Color online.) The elastic free energy FE is an increasing function of droplet size r. As

in Fig. 5, the analytical free energy from Eq. (12), shown with lines, is in good agreement with

simulation results (circles). Again, solid circles indicate simulations used to fit Eq. (9).

C. A first-order transition leads to shell formation

To obtain the total free energy of the system, we added the analytical free energies

for the nematic droplet and the Carnahan-Starling contribution from the shell. Figure 7

illustrates the scale for each contribution: the positive NP contribution is the larger one,

growing steeply with the radius r. The phase-transition contribution is the second largest

in magnitude and of opposite sign, while the elastic one is the smallest. From this, we

see that the free energy minima will be set mainly from a competition between the LC

phase-transition energy and the NP excluded-volume free energy terms. The LC elasticity

contribution will be of secondary importance for the mechanism leading to the NP shells

and, therefore, details about the anchoring type and strength (as well as the detailed director

configuration inside the LC droplet) become less pressing for determining the mechanism

behind the formation of the NP shells.

Figure 8 shows the total free energy of the system F (r) as a function of the LC droplet

radius, for three different temperatures at initial NP volume fraction η0 = 0.02. We observe

that there is a first-order transition at ∆Tshell = −0.5 K, when the free energy at a minimum

with r > 0 becomes equal to zero. For higher temperatures, the thermodynamically stable

state is the one with r = 0 (no nematic droplet and hence no shell). As ∆T is lowered below

-0.5 K, the stable state corresponds to larger-radius droplets and thinner shells.

Fig. 9 displays this first-order transition by plotting the equilibrium radius, req(∆T ), as

a function of the quench ∆T for constant NP fraction η0: just below the clearing point,
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FIG. 7. (Color online.) The excluded-volume (black dot-dashed line ), elastic (blue solid line)

and phase-transition (dashed line) contributions to the total free energy of the system scale very

differently with inner droplet radius r: while the elastic contribution grows slowly with increasing

r, the hard-sphere and phase-transition terms grow quickly and have opposite sign. The lines

correspond to analytical expressions for the free energies, while Monte Carlo simulation data are

shown as points, for the case with ∆T = −0.6 K and initial NP volume fraction η0 = 0.02

(0.37,-0.2K)

(0.38,-0.5K)

(0.40,-1.0K)
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FIG. 8. (Color online.) A first-order structural transition is found for temperatures sufficiently

below the clearing point, Tc: at ∆T = (T − Tc) = −0.5 (blue solid line) the free energy for the

minimum with r > 0 is the same as that with the system with no shell formed (r = 0). At lower

temperatures, e.g. ∆T = −1.0 (red dashed line) the global minimum is the state r > 0, that is,

the state with a shell is favored thermodynamically. For sufficiently high temperatures, such as

∆T = −0.5 (black dot-dashed line) the only minimum is at r = 0 and no shell would be formed.

the stable state is an isotropic drop. When the temperature quench decreases below ∆Tshell

there is a discontinuity in the equilibrium radius and suddenly a nematic droplet and NP

shell are formed. The equilibrium radii in Fig. 9 were obtained from analytical expressions
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in Eqns. (11-12), but we also calculated them by interpolation of the free energies at those

temperatures at which we performed simulations. The difference between req obtained from

simulation and from the analytical model was found to be quite small (less than 0.04% for

∆T < −5.0 K, and less than 3% at ∆T = −0.6 K, the temperature of our simulations closest

to the transition point.)
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FIG. 9. (Color online.) The equilibrium radius as a function of the temperature difference

∆ T = (T − Tc) decreases as the initial NP volume fraction increases (that is, the shells thicken

as η0 grows). The first-order transition point ∆Tshell also decreases with increasing η0: lower tem-

peratures are needed in order to form a stable shell as one increases the initial volume fraction

of NPs (lower and higher volume fraction curves indicated by black solid and red dashed lines,

respectively).

The range of equilibrium shell thickness displayed in Fig. 9 corresponds to the experi-

mental thickness observed by Rodarte et al.[27]. In the same figure, we see that the effect

of increasing the initial NP volume fraction is to lower the transition point, ∆Tshell, as well

as to enlarge the shell thickness. We have thus identified two experimental variables that

control the formation and thickness of the NP shells: the quench temperature and the initial

NP concentration. Analyzing the function req(∆T, η0) at constant ∆T , one finds that the

thickness of the shell increases with η0 (as one would expect). The transition manifests then

as a threshold value η0,max above which no shells can be formed, as the equilibrium radius

jumps discontinuously to zero (this behavior is illustrated in the Supplemental Material

[50]).
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D. The activation barrier is set by LC elasticity
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FIG. 10. (Color online.) The equilibrium radius is set mainly by competition between the NP

excluded-volume and LC phase-transition free energies. The total free energy (black solid line)

displays an equilibrium point E and an activated state A. If one neglects the LC elasticity term

(red dashed line), the new equilibrium point E’ is shifted by 8% to the right of E and the barrier

to formation of shells is lowered.

Since shell formation corresponds to a first-order transition, we can expect hysteresis

associated with the crossing of an activation barrier. This barrier is illustrated in Fig. 10,

with the activated and equilibrium states labeled as A and E, respectively. The same Figure

shows that most of the barrier is contributed by the elastic energy, by showing the effect of

neglecting the latter quantity that scales linearly with r. (This would be the case also for

other director configurations, such as the bipolar texture associated with planar anchoring

conditions.) Hence, the barrier-crossing kinetics will be affected sensitively by the LC elas-

ticity and one may control the formation rate of the shells through the elastic constants and

surface anchoring coefficient of the liquid crystal. Also of notice is that the nematic-droplet

radius corresponding to the activated state is about 300 nm. This is much larger than the

estimated size (of a few nanometers) of critical nuclei for homogeneous nucleation of liquid

water from its vapor[56]. Such relatively large size may allow measurements of nucleation

kinetics as a function of the barrier height using light scattering techniques or by high speed

fluorescence imaging.
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IV. CONCLUSION

We have provided a first-order structural-transition framework to study the assembly of

nanoparticle shells by liquid crystal sorting. The free energy from excluded-volume interac-

tions between the NPs competes with the change in free energy due to the isotropic-nematic

phase transition: the former drives a thicker NP shell while the latter favors a thinner one,

so that an equilibrium thickness is eventually achieved. The effects of LC elasticity are much

smaller and manifest chiefly in controlling the height of the activation barrier between the

states with and without shells.

We obtained closed expressions for the Landau-de Gennes and elastic free energies by

parametrizing the order parameter field of the inner nematic droplet with a radial director

and Gaussian profile for the nematic order parameter. These closed expressions account

successfully for the results of our field-based Monte Carlo simulations and the experimen-

tally observed behavior of formation of shells at temperatures below the isotropic-nematic

transition of 5CB.

We expect that a field-based simulation could be useful in describing the initial phase-

separation sorting process, where pure-nematic domains grow inside the isotropic mixture if

NPs and 5CB. We are currently modeling such a kinetic separation process [42], involving

fields with and without conservations laws, as in model C of the classification of Hohenberg

and Halperin of dynamic critical phenomena [57].

We also expect that field-based models of self-assembly driven by phase or structural tran-

sitions would be useful to search for other morphologies of aggregation besides the spherical

one. Cylinders and lamellae could also be attainable by tuning the interactions among NPs

and different soft-matter hosts. As possibilities for such cooperative self-assembly hosts, we

can mention smectic [58] and cholesteric liquid crystals [48], as well as polymers and ionic

liquids [16].
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