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Abstract 

We describe a mechanochemical and percolation cascade that augments myosin’s 

regulatory network to tune cytoskeletal forces. Actomyosin forces collectively generate 

cytoskeletal forces during cell oscillations and ingression, which we quantify by elastic 

percolation of the internally-driven, cross-linked actin network. Contractile units can 

produce relatively large, oscillatory forces that disrupt crosslinks to reduce cytoskeletal 

forces. A (reverse) Hopf bifurcation switches contractile units to produce smaller, steady 

forces that enhance crosslinking and consequently boost cytoskeletal forces to promote 

ingression. We describe cell-shape changes and cell ingression in terms of inter-cellular 

force imbalances along common cell junctions.  

 

Introduction 

The cytoskeleton is an out-of-equilibrium structural network internally driven by 

actomyosin complexes (1). Actomyosin contraction is a ubiquitous source of molecular-

force production that drives cell-shape changes, which collectively drive tissue 

movements to develop cell, tissue, organ, and organismal form during morphogenesis (2). 

Previous investigations of dorsal closure, a developmental stage of Drosophila 

melanogaster and a model system for cell-sheet morphogenesis (3,4), have characterized 

generic shape changes in amnioserosa cells that include oscillations in cross-sectional 

area transitioning to ingression (5-7). Ingression is the persistent loss of cross-sectional 

(apical) area as the cell internalizes below the remaining sheet of cells (amnioserosa 

tissue). Apoptosis is one of the ingression processes occurring during dorsal closure, 

which is characterized by relatively rapid ingression accompanied by an apoptotic force 

that provides one-third of the overall tissue force produced by the amnioserosa (8). 

Cell oscillations have generated considerable interest (e.g., 9-14,6,7). These 

oscillations occur at low-Reynolds number and from this perspective it was surprising 
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that a band of oscillation frequencies (5.7±0.9 mHz) was resolved in amnioserosa cells 

(7). Dierkes, et al., have put forth a compelling physical model that attributes these 

oscillations to nonlinear dynamics coupled with the turnover of contractile molecules 

(13); however, in this model each cell was abstracted as a 1-D, equivalent mechanical 

circuit. Inspired by the mathematical insights of the Dierkes model, we have investigated 

a molecular model for a 3-D cytoskeleton that: 1) identifies the key-attributes of a 

molecular contractile unit that leads to a unified mechanism for producing oscillations 

and the steady forces that promote ingression; 2) characterizes a regulatory process that 

switches contractile units from oscillatory to steady-force production; and 3) incorporates 

the role of actin cross-links in scaling piconewton actomyosin forces to nanonewton 

intercellular forces. 

Results 

The following subsections report results that range from molecular to cellular 

dynamics. We first present the molecular structure of contractile units, followed by 

quantifying their nonlinear elasticity and the turnover of their myosin mini-filaments. We 

find that oscillatory or steady forces arise at the level of these contractile units. Then we 

present the collective dynamics for boosting the piconewton contractile-unit forces into 

nanonewton cytoskeletal forces, which preserves the oscillatory or steady time 

dependence that arose at the molecular level. Furthermore, we quantify how the 

imbalance of intercellular forces on common cell junctions leads to either oscillations in 

the area of the apical cross-section or to the ingression of cells in tissue. We then 

quantitatively characterize a regulatory process for oscillatory contractile units switching 

into contractile units that produce steady forces with the consequence of cells exhibiting 

oscillations in apical cross-sectional area switching to ingressing cells within tissue.  To 

validate this mechanochemical mechanism, we carry out numerical simulations that 

recapitulate experimental observations of oscillating amniosersosa cells switching to 

ingression during dorsal-closure. 

Contractile unit:  structure   

We model the cytoskeleton as a network of actin filaments that form both myosin-

independent cross-links and cross-bridges to myosin mini-filaments (Fig. 1). Cross-

bridges produce mechanical forces and crosslinks transmit those forces through the actin 



 3

network.  Recent high-resolution measurements using lattice-light sheet and TIRF-SIM microscopies find that the actin filaments are not disassembling and the actin network is not being compromised within the apicomedial cytoskeleton of the amnioserosa (15).  The following defines a contractile unit that incorporates these key 

attributes (Fig. 1a) and summarizes biological evidence that is consistent with this 

definition. In particular, this subsection describes the structure of a contractile unit, its 

shape changes, and how it makes mechanical connections to distort its local cytoskeleton. 

The structure of a contractile unit is shown schematically in Fig. 1a. A bi-polar 

myosin mini-filament is at the core of each contractile unit. Electron microscopy of 

Drosophila mini-filaments measured 14.9±3 heads at each end, which suggested that 

eight myosin-2 dimers assemble into a mini-filament comprising 16 monomers (16), 

where a myosin-2 monomer is a pair of myosin heavy chains, a pair of essential light 

chains, and a pair of regulatory light chains. Within a contractile unit, one end of the 

myosin mini-filament is cross-bridged to a segment of one actin filament and the other 

end is cross-bridged to a segment of another actin filament. Generally each of these two 

actin segments is cross-linked at two locations to filaments in the local (surrounding) 

actin network, where a segment is that fraction of an actin filament between its two cross-

links (compare Fig. 1a and 1b). These four (myosin-independent) actin cross-links and 

these two actin segments lie at the periphery of this contractile unit (Fig. 1a). Each actin 

filament extends beyond its segment (beyond this contractile unit) to form part of the 

local actin network (Fig. 1b). Contractile unit forces are transmitted to the local 

cytoskeleton through these four crosslinks and the extensions of these two actin 

filaments. At very high concentrations myosin mini-filaments also can exhibit cross-

linking behavior within an actin network (17) and Fig. 1b also includes two hybrid 

contractile units that could form at such high concentrations. For example, consider the 

contractile unit that includes the lower-right myosin mini-filament in Fig. 1b, where its 

upper actin segment is defined by an actin cross-link and by a cross-bridge attachment 

site to a neighboring myosin mini-filament. Its generic lower segment is defined by two 

cross-links. 

Each contractile unit generates contractile (actomyosin) forces that can distort its 

local cross-linked actin network. The magnitude of these forces depends on the duty ratio  
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r, which is the fraction of time a myosin head is strongly bound to actin during the 

mechanoenzymatic cycle (18, page 222), and on the number ܰ of heads that can bind 

actin. The filament duty ratio for one end of a myosin filament is  

rfilament ൌ 1 െ ሺ1 െ  ሻே(19). For Drosophila mini-filaments, the experimental value for rݎ

is 0.1 and rfilament was calculated to be 0.81 (using ܰ = 16) (19). The magnitude of the 

contractile force due to one end of a myosin mini-filament cross-bridged to an actin 

segment is S rfilament Fon, where S ≤1 now takes into account steric constraints for forming 

cross-bridges and Fon is the average (piconewton) force exerted on the segment by a 

bound cross-bridge (20). Each contractile unit can transmit actomyosin forces along the 

four actin-filament extensions and through the four cross-links to distort the local 

cytoskeleton (Fig. 1b). The overall strain in the apicomedial cytoskeleton is due to the 

integrated stresses from numerous contractile units distributed throughout its cross-linked 

actin network (Fig. 1 e,f).  

A contractile unit can change shape for two reasons.  First, contractile-unit forces 

are generated at the actomyosin binding sites and transmitted along the segments to the 

cross-links. The local network also exerts external forces on these four cross-links at the 

periphery of each contractile unit. The net effect is the cross-link location and spacing 

can change as force balance is established. Second, the mechanism for generating the 

actomyosin forces also changes the geometry of the actin segments within the contractile 

unit. Actomyosin forces cause the myosin mini-filament to walk along each actin 

segment until stalling, which rotates the myosin mini-filament to drive the inward 

deflections of both elastic actin segments as portrayed in Fig. 1a,b. This cross-link 

geometry and segment orientation are consistent with the proposal by Verkhovsky and 

Borisy (21, figure 9). The conclusions that follow will generalize for other segment 

orientations. 

Now we identify the direction of deflection that will be cited in the following. 

Consider the enumerated myosin mini-filament in Fig. 1b, reproduced in isolation in Fig. 

1a. The deflected segment and the line connecting its two cross-links (two black dots) 

form a triangle, highlighted with shading in both panels. The height of this triangle is 

perpendicular to the dashed line connecting the two cross-links (Fig. 1c). The deflection 

direction lies along the height of this shaded triangle and the value of the height 
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satisfying force balance is the steady-state (or reference) deflection lo. The steady-state 

forces for contraction T(co,r) and elasticity K(lo) are anti-parallel and lie along the 

deflection direction. An analogous analysis can be applied to the lower shaded triangle. 

Contractile unit:  nonlinear elasticity 

The dynamical equation for a contractile unit is based on Newton’s Second Law 

at low-Reynolds number: ߤ ௗ௟ௗ௧ ൌ ܶሺܿ, ሻݎ െ   ሺ݈ሻ         (Eq. 1)ܭ

where μ ௗ௟ௗ௧ is the drag force and l is the deflection of an actin filament (the height of the 

triangle in Fig 1c). T(c,r) is the component of the actomyosin forces relative to its steady-

state value T(co,r) and is given by the formula: ܶሺܿ, ሻݎ ൌ ܶሺܿ௢, ሻݎ ൅ ଵሺܿݐݎ െ ܿ௢ሻ        (Eq. 2) 

Eq. 2 is novel, distinguished by the inclusion of the duty ratio r. c is the total (cross-

bridged plus not-cross bridged) concentration of assembled myosin monomers and ܿ௢ is 

the steady-state value. The second term on the right-hand side captures the effects of both 

regulating r and also fluctuations in the number of myosin monomers assembled into a 

myosin mini-filament. T(c,r) is antiparallel to the direction of K(l) ( Fig. 1c), which is the 

net elastic force of an actin segment. 

Each actin segment is modeled as a pre-stressed, linearly-elastic rod. Force-

extension experiments found that the stiffness of a single actin-filament (with and without 

tropomyosin) was almost constant (linearly elastic) in the range of 35-170 pN tensile 

force (22). The length changes for single filaments of composite actin/tropomyosin were 

0.02-0.06% of the unstressed length per pN of tensile force. These experimental 

observations support modeling each actin segment as linearly elastic, where the actin 

segments are pre-stressed by the local cytoskeleton. 

To determine the pre-stress in an actin segment of a contractile unit, momentarily 

visualize that segment as being straight (along the dashed line, from cross-link to cross-

link, in Fig. 1c) with a total length x1+ x2. x1 is the length of the segment fraction from 

cross-link 1 to the center of the cross-bridge attachment site and x2 is the length of the 

segment fraction from the center of the attachment site to cross-link 2 (when the segment 

is straight). The segment fractions are pre-stressed a distance d1 and d2 (extension 
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corresponds to positive values and compression corresponds to negative values for d1 and 

d2). Thus the equilibrium lengths for the two segment fractions are x1-d1 and x2–d2, 

respectively. 

Now return to the deflection geometry shown in Fig. 1c and assess the forces 

acting on the cross-bridge attachment site. This geometry is consistent with experimental 

observations of myosin cross-bridging leading to relatively localized bending (centered 

on the attachment site) of the actin filaments (23). Recall that the contraction force T(c,r) 

is the component of the actomyosin force along the deflection direction. The net elastic 

force K(l) is the vector sum of felastic,1 and felastic,2, which are the linearly elastic forces of 

two segment fractions. The magnitudes of felastic,1 and felastic,2 are: ௘݂௟௔௦௧௜௖,ଵሺݏଵሻ ൌ ݇ሾݏଵ െ ሺݔଵ െ ݀ଵሻሿ                   (Eq. 3)  

௘݂௟௔௦௧௜௖,ଶሺݏଶሻ ൌ ݇ሾݏଶ െ ሺݔଶ െ ݀ଶሻሿ                   (Eq. 4) 

where k is the Hookean constant. Then K(l) is given by: ܭሺ݈ሻ ൌ ௘݂௟௔௦௧௜௖,ଵሺݏଵሻ ߠ݊݅ݏଵ ൅ ௘݂௟௔௦௧௜௖,ଶሺݏଶሻ ߠ݊݅ݏଶ                (Eq. 5) 

θ1 and θ2 are the angles between the segment fractions and the dashed line. It is 

straightforward but tedious to simplify Eq. 5.  First, solving for s1: ݏଵ ൌ ଵට1ݔ  ൅ ሺ ௟௫భሻଶ                     (Eq. 6) 

Similarly for s2: ݏଶ ൌ ଶට1ݔ  ൅ ሺ ௟௫మሻଶ                     (Eq. 7) 

Second, sinθ1=
௟௦భ and sinθ2=

௟௦మ. Insert Eqs. 3 and 4 and these two trigonometric 

definitions into Eq. 5, then substitute Eq. 6 and Eq. 7 for s1 and s2. Third, the force-

balance condition in the deflection direction is T(co,r) = K(lo). Now use a Taylor Series 

expansion about the steady-state value lo for each of the two square-root terms. After 

some algebra, it can be shown (to third order): ܭሺ݈ሻ ൌ ሺ݈௢ሻܭ ൅  ݇ଵሺ݈ െ ݈௢ሻ ൅ ݇ଷሺ݈ െ ݈௢ሻଷ                 (Eq. 8)  

where ݇ଵ ൌ  ݇ ቀௗభ௫భ ൅ ௗమ௫మቁ and ݇ ଷ ൌ  ௞ଶ  ቀ௫భିௗభ௫భయ  ൅ ௫మିௗమ௫మయ  ቁ. The linear-term k1 vanishes when 

d1=d2=0 (no pre-stress). Thus this intrinsic nonlinear elasticity k3 (l - lo)3 is a geometrical 

effect that arises when linearly elastic actin filaments are deflected. 
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We have carried out an order-of-magnitude estimate of the segment deflection, 

recognizing that actin filaments bend more readily than they elongate (18). Each of the 

two actin segments in a contractile unit was idealized as having a length Lseg. Each 

segment is cross-linked to two neighboring actin filaments, where each of the four 

neighboring actin filaments was idealized as having a length Lneighbor. To keep the 

mathematics tractable, the neighboring actin filaments were modeled as cantilevered 

beams (18, page 103). Initially both the neighboring actin filaments and the actin 

segments were straight. Actomyosin forces then changed the shape of the contractile unit 

and the four neighboring actin filaments as the forces balanced. More specifically, both 

actin segments deflected and each of the four neighboring actin filaments bent (moving 

the four cross-links). We used Lseg = 0.5 μm and Lneighbor =1 μm as representative values 

and we used the experimental value for the flexural rigidity of actin-tropomyosin (18, 

Table 8.1). Factoring in both geometry and the steric constraint, we estimated T(co,r) as 

0.1 pN.  The orders of magnitude for both lo and the change in cross-link spacing were 

100 nm. These estimates are biologically significant, consistent with numerous 

contractile units driving relevant distortions of the apicomedial cytoskeleton. 

Turnover of myosin mini-filaments 

We model the steady-state myosin mini-filament as an assembly of 16 myosin-2 

monomers. In addition, we assume an assembled mini-filament exhibits turnover, i.e., the 

number of assembled monomers N(t) can deviate about this steady-state (reference) value 

No=16. There are supportive experimental observations about myosin assembly and 

disassembly, albeit indirect. For Acanthamoeba, three sequential lateral dimerization 

steps (antiparallel monomers, dimers, tetramers, and then octamers) produce a 232-nm 

long myosin-2 mini-filament characterized by a bare zone and two ends, each decorated 

with eight myosin heads (24). In contrast, for vertebrate skeletal muscle the assembly 

mechanism involves nucleation (lateral anti-parallel dimer assembly to produce the bare 

zone) followed by an elongation process (parallel dimer assembly at each end) to produce 

a 1.57 μm (myosin) thick filament (25). Following nucleation, the mechanism for 

assembly and disassembly is via parallel dimers coming on and off the ends, respectively. 

For human non-muscle myosin-2, electron micrographs of three paralogs quantified 

length distributions of 301±24 nm, 323±24 nm, and 203±33 nm (26). The assembly and 
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disassembly mechanisms for Drosophila myosin-2 mini-filaments (360 nm length) are 

not as thoroughly studied at this time, but it is thought they follow a plan of nucleation 

and elongation. Electron micrographs of Drosophila myosin-2 mini-filaments (16) are 

consistent with three sequential anti-parallel assembly steps (nucleation) followed by two 

sequential (at each end) parallel dimer steps (elongation), yielding 14.9±3 monomers. 

One interpretation of this account is myosin mini-filaments are monodispersed in size and 

the reported uncertainties reflect harsh experimental methods (16,26). An alternative 

interpretation is the elongation process admits size distributions, which is consistent with 

two recent findings regarding myosin kinetics. First, the partitioning of 300 nm myosin-2 

mini-filaments has been investigated in fibroblasts (27). The fluorescence intensity of 

individual mini-filaments doubled just prior to partitioning. Second, myosin-2 turnover 

has been investigated in REF52 cells where 300±20 nm mini-filaments form stacks (28). 

Turnover had a characteristic half-life of 60 s and was independent of actin dynamics. 

Given these supportive biological observations, we model deviations in the number of 

monomers assembled in a myosin mini-filament, however, we cannot rule out dimer (or 

other) deviations. We also cannot rule out an alternative model for deviations based on an 

unknown regulatory mechanism that would reduce the activity to zero for a fraction of 

the myosin heads on each end of a myosin mini-filament. Fig. 1d portrays the kinetic 

pathways at one end of a myosin mini-filament for assembled myosin and free myosin 

monomers. 

 Our turnover equation, which introduces the effect of myosin cross-

bridging/regulation in addition to volume changes in chemical kinetics, tracks deviations 

in the concentration of monomers in an assembled myosin mini-filament. The turnover 

equation for a myosin mini-filament end is:  ௗ௖ௗ௧ ൌ  െ ௖ି௖೚ఛሺଵା௥ሻ െ ௖௏ ௗ௏ௗ௧           (Eq. 9) 

where V is the volume local to this end. The first term on the right-hand side includes the 

duty ratio r [the average lifetime of an assembled monomer is τ(1+r)= ଵ௞೏, where ݇ௗ is 

the dissociation constant]. 
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Eq. 9 is a novel extension of generic turnover equations. More specifically, 

turnover equations for various dimensions have been applied to the cytoskeleton in the 

past (e.g., 29,11-13). The generic 3-D turnover equation is: ௗ௖ௗ௧ ൌ  ݇௔ െ ݇ௗܿ െ ௖௏ ௗ௏ௗ௧                   (Eq. 10) 

where ka is the association constant. The three chemical species for myosin are free 

(unassembled) monomers, monomers assembled in myosin mini-filaments but not cross-

bridged to an actin segment, and assembled monomers that are cross-bridged to an actin 

segment. c is the total (cross-bridged plus not-cross bridged) concentration of assembled 

myosin monomers. The right-most term in Eq. 10 vanishes when the volume is constant, 

producing a more familiar kinetic equation. 

The duty ratio affects the average lifetime of an assembled monomer. To see this, 

consider the special case where c=co and ௗ௖ௗ௧ = ௗ௏ௗ௧  = 0. In this steady state Eq. 10 

simplifies to ka = kdco, where ݇ௗ ൌ ଵఛሺଵା௥ሻ. τ(1+r) is the average lifetime of an assembled 

monomer, which takes into account the concentration c referring to both the cross-

bridged plus the not cross-bridged myosin monomers, whereas the dissociation process is 

from not-cross-bridged, assembled monomers to free monomers. In other words, the 

nominal lifetime τ (for a monomer assembled in a myosin mini-filament) has been 

increased by a multiplicative factor of (1+r) due to assembled and cross-bridged myosin 

monomers being chemically distinct from assembled monomers that are not cross-

bridged to actin segments. The duty ratio can be expressed in multiple forms: 

ݎ  ൌ  భೖ೚೙భೖ೚೙ା భೖ೚೑೑  or, equivalently, ݎ ൌ ௧೚೙௧೚೙ା௧೚೑೑ ൌ ௧೚೙்೎೤೎೗೐, where ton is the average time a 

myosin head is attached to actin, toff is the average time it is detached, and their sum 

ton + toff is Tcycle, the period of a cycle (18). Substituting for ka and kd, Eq. 10 becomes 

Eq. 9. The next subsection will identify r(t) as the control parameter regulating 

contractile dynamics. 

Expressing Eq. 9 in terms of concentrations is a natural choice for assessing 

chemical kinetics. In preparation for assessing force production by contractile units, 

however, we re-express Eq. 9 in terms of the number N(t) of assembled monomers, where 



 10

N(t)=c(t)V(t) is the number of monomers in a myosin mini-filament. Making this 

substitution eliminates the second term on the right-hand side of Eq. 9, yielding: 

ௗேௗ௧ ൌ െܸ ೇಿିಿ೚ೇ೚ఛሺଵା௥ሻ ൌ െ ௢ܰ ಿಿ೚ି ೇೇ೚ఛሺଵା௥ሻ                 (Eq. 11) 

The length l(t) and number N(t) can be expressed in terms of their deviations δl and δN 

from their steady-state values lo and No, respectively: ݈ሺݐሻ ൌ ݈௢ሺ1 ൅ ሻݐሻ                   (Eq. 12) ܰሺ݈ߜ ൌ ௢ܰሺ1 ൅  ሻ                  (Eq. 13)ܰߜ

The role of the local volume in Eq. 9 is to track the concentration of assembled 

myosin monomers and, equivalently, the role in Eq. 11 is to track the number density of 

assembled monomers. The local volume V(t) is modeled as a cylinder with its z-axis 

passing through a mini-filament end and its base separating the mini-filament into two 

halves. Since a myosin mini-filament has two ends, each contractile unit has two local 

volumes. The volume of such a cylinder is: ܸ ൌ ௖௬௟ሺ1ݎൣ ߨ െ ௢ሺ1ܮሻ൧ଶ݈ߜ െ  ሻ                (Eq. 14)݈ߜ

Generally the value of the radius rcyl is halfway to the nearest myosin mini-filament in the 

lateral directions and the height ܮ௢ of the cylinder is halfway to the nearest myosin mini-

filament in the longitudinal direction. Recall 0<݈ߜ is an inward deflection, so changes in 

the radius and height are tracked through the two ሺ1 െ  ሻ terms in Eq. 14. Recognizing݈ߜ

that ௢ܸ ൌ ௢, the ratio ௏௏೚ is given by: ௏௏೚ܮ௖௬௟ଶݎ ߨ ൌ ሺ1 െ ሻଷ݈ߜ ൎ 1 െ  (Eq. 15)                  ݈ߜ3

We then make three substitutions into the right-most equality in Eq. 11: substitute 

for ௏௏೚ using Eq. 15 and, based on Eq. 13, substitute both ௗேௗ௧ =No 
ௗఋேௗ௧  and ேே೚ = 1 + δN. The 

resulting expression is: ௗఋேௗ௧ ൌ െ ଷఋ௟ାఋேఛሺଵା௥ሻ                  (Eq. 16) 

Eq. 16 is the turnover equation in terms of the deviations δl and δN from their steady-

state values lo and No, respectively. 
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Contractile unit: steady or oscillating dynamics 

This section reports the results of a stability analysis (detailed in Appendix A), 

which quantifies the parameters for which a contractile unit produces either steady or 

oscillating forces that distort their local actin network. Steady actomyosin forces would 

increasingly deflect each actin segment until force balance with the net elastic force is 

achieved (Fig. 1c). Oscillating actomyosin would cause the segment deflection l(t) to 

oscillate about the steady value lo and the number N(t) of monomers assembled into a 

myosin mini-filament to oscillate about the steady value No. 

The stability analysis (30) characterizes the solutions of the turnover equation 

(Eq. 16) coupled with the dynamical equation (insert Eqs. 2 and 8 into Eq. 1). The region 

above the bifurcation line in the phase portrait (Fig. 2a) corresponds to stable oscillations 

(29), recapitulating the oscillations of the Dierke’s model (13). Fig. 2 characterizes six 

oscillating solutions. Increasing the offset above the bifurcation line (solutions shown as 

red, green, and blue circles in Fig. 2a) corresponds to oscillations of increasing amplitude 

that are increasingly anharmonic (Fig. 2b-e).  

Next we systematically characterized the consequences of moving a solution 

across the bifurcation line (Fig. 3a) by decreasing the control parameter ݐݎଵഥ  as time 

progresses (Fig. 3b). Moving a solution across the bifurcation line, as summarized in 

Fig. 3, involves a Hopf bifurcation. More specifically, consider a solution that originates 

below the bifurcation line in a phase portrait, which would be a stable fixed point. Now 

increase the value of rݐଵഥ  until the solution crosses the bifurcation line and settles into a 

stable limit cycle. This process is a Hopf bifurcation (29). Switching from an oscillation 

to a steady solution is reversing though a Hopf bifurcation. 

  Figure 3 demonstrates that the dynamical details are strongly dependent on the 

final location when reversing through a Hopf bifurcation. The general trend in Panel d is 

the deeper the offset below the bifurcation line, the more rapid the transition. The red 

solution corresponds to the deepest offset, where the transition to the fixed point is a 

relaxation process without overshoot or damped oscillations. The next largest offset is the 

blue solution, which exhibits one overshoot in Panel d. The next largest offset is the 

purple solution, which exhibits damped oscillations before settling into the fixed point at 

~30 time units. The green solution in panel d, barely below the bifurcation line in Panel a, 
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exhibits critical slowing (29) and has not yet settled into the fixed point at 50 time units.  

Panel c exhibits a similar pattern in that the deeper the offset from the bifurcation line, 

the more direct the clockwise inward spiral to the fixed point. In other words, the number 

of wraps of the clockwise inward spiral decreases with increasing depth below the 

bifurcation line (Panel d). The solutions for each case were simulated for 50 time units 

for presentation purposes, which has a strong effect on the green solution. More  

specifically, this critically slowed clockwise inward spiral has been truncated to leave an 

open core so as not to obscure the other three cases.  Increasing the simulation beyond 50 

time units would progressively fill the open core with space filing green spirals. 

In summary, when reversing through a Hopf bifurcation the solution that initially 

was a stable oscillation switches to a steady force (in contrast to a quiescent state) and 

deepening the offset below the bifurcation line (Fig. 3a) decreases the number of wraps 

and shortens the transition time (Fig. 3c,d). 

Boosting the piconewton contractile-unit forces to nanonewton cytoskeletal forces  

The preceding subsections have been focused on the dynamics of molecular 

contractile units (Fig. 1a,b). Now we turn our attention to the collective effect of 

numerous contractile units distributed throughout the apicomedial cytoskeleton of an 

amnioserosa cell (Fig. 1 e,f).  We invoke elastic percolation theory (Appendix B), where 

there is compelling experimental evidence that reconstituted model cytoskeletons are 

consistent with elastic percolation theory (31,32). The generic term “cluster” from this 

theory, in our application, refers to more than two actin filaments connected by cross-

links, where the hallmark of elastic percolation theory is such cross-links are randomly 

distributed among all possible paired binding sites in the actin network.  

Adherens junctions and disordered contractile units can each exert stresses on a 

cross-linked actin network. Stress transmission throughout the actin network depends on 

cross-links that can bear stress. The dotted oval in Fig. 1e encircles one cluster that 

includes three contractile units. This cluster, however, is not connected via cross-links to 

the junctional belt and would not change the cell shape. In contrast, each of the other 

three clusters in Fig. 1e are multiply connected to the junctional belt and contractile-unit 

forces produced within each of these clusters could change the cell shape. A remarkable 

feature of elastic percolation theory (Appendix B) is that the cytoskeletal forces will scale 



 13

relative to contractile-unit forces, where the scaling factor is ሾ݌ሺ݂ሻ െ  ௖ሿସ (33,34). Here݌

p(f) is the probability of a crosslink at any potential cross-linking site and pc is the critical 

threshold for the first cluster making contact with junctional belts at two locations. 

Further increase in ݌ሺ݂ሻ above ݌௖ is accompanied by an increasing preponderance of 

parallel networks of contractile units in the cross-linked apicomedial cytoskeleton. 

Cross-links undergo binding and unbinding events that can exhibit catch and/or 

slip bond dynamics. Here we treat the cross links as slip bonds, consistent with the model 

of Bell (34) and the experimental observations of Alvarado, et al (31).  Bell has modeled 

the stress-dependence of unbinding slip bonds (34), where the unbinding rate koff(f) is 

summarized by Bell’s Equation: ݇௢௙௙ሺ݂ሻ ൌ ݇௢௙௙,௢ ݁ ೑೑೚                  (Eq. 17) 

where f is the net force exerted on a cross-link by the two actin filaments. koff,o is the 

unbinding rate when f=0. fo is deduced from the potential energy surface for the cross-

link bond. Thus the unbinding constant increases exponentially as it bears stress. 

Alvarado, et al., extended Bell’s Equation to include the possibility that a cross-

linking molecule could rebind shortly after unbinding (31). Upon unbinding, v is the 

relative speed of the two liberated actin filaments. If v is sufficiently slow, the cross-

linking molecule can remain within the proximity of the original actin binding site such 

that the probability for rebinding to the original site ݁ିೡ೚ೡ  is significant. The reference 

speed vo corresponds to koncxd, where kon is the binding rate, cx is the concentration of 

cross-linking molecules, and d is a measure of the size of the binding site. Consequently 

the effective stress-dependent unbinding rate koff(f) is given by: ݇௢௙௙ሺ݂ሻ ൌ ݇௢௙௙,௢ ݁ ೑೑೚ ݁ିೡ೚ೡ                  (Eq. 18) 

Given kon and koff(f), the probability p(f) for a cross-link can be modeled with the Hill 

equation (n=1). ݌ሺ݂ሻ ൌ ଵଵା಼೏ሺ೑ሻ೎ೣ                    (Eq. 19) 

where ܭௗሺ݂ሻ ൌ ௞೚೑೑ሺ௙ሻ௞೚೙ ൌ ௞೚೑೑,೚௞೚೙ ݁ ೑೑೚ିೡ೚ೡ                  (Eq. 20) 
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Experiments have demonstrated that global cytoskeletal contractions require a 

reduction in myosin motor activity, which seems counterintuitive but has been 

quantitatively accounted for in terms of the stress dependence of actin cross-linkers and 

the role they play in cytoskeletal stress propagation (31). This experimental observation 

is consistent with our mechanochemical mechanism in that ceasing oscillations 

necessitated moving the solution across the bifurcation line by decreasing the control 

parameter r(t) (Fig. 2), which decreases the contractility (Eq. 2). We attribute decreasing 

r(t) to myosin regulation (11,36,37). Reducing r(t) triggers a remarkable 

mechanochemical and percolation cascade. More specifically, decreasing r(t) 

proportionally reduces the local stresses exerted on cross-links by contractile units to 

exponentially reduce koff(f) (Eq. 20). Thus p(f) increases as does the connectivity and 

consequently increases cluster size and branching complexity (compare Fig. 1e,f), which 

is consistent with previous results (31, and references therein). Scaling is a consequence 

of progressively extensive parallel branching. 

Intercellular forces 

Cell-shape changes are a consequence of (applied) force imbalance along 

common cell junctions between neighboring cells. During oscillations of apical cross-

sectional areas, the direction of net intercellular force imbalance varies both along the cell 

junctions and as a function of time (7). During an ingression process, the magnitude of 

the net force imbalance along the common cell junctions increases substantially and 

essentially all of these net forces are pointed inwards from the perspective of the 

ingressing cell. 

 The increase of the cytoskeletal forces of an ingressing cell relative to its 

neighboring, non-ingressing cells can be quantified with elastic percolation theory. The 

average cytoskeletal force from the ingressing cell on a common cell junction is Fing(ring) 

and for a neighboring cell on that junction is Fosc(rosc), where ring < rosc. Applying 

Hooke’s Law on that common cell junction, Fing(ring)=κ(ring)Δx and Fosc(rosc) = κ(ring)Δx. 

Δx is the motion of the common cell junction. The magnification factor M is defined by 

Fing(ring) = M Fosc(rosc). Inserting κ(r)= κ[p(r)- pc]4 into both average forces, the 

magnification factor M is given by: 
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ܯ ൌ ி೔೙೒ሺ௥೔೙೒ሻி೚ೞ೎ሺ௥೚ೞ೎ሻ ൌ ൤௣೔೙೒൫௥೔೙೒൯ି௣೎௣೚ೞ೎ሺ௥೚ೞ೎ሻି௣೎ ൨ସ
                (Eq. 21) 

Numerical simulations indicate the average force exerted on a cell junction by an 

ingressing cell can exceed that of a neighboring, non-ingressing cell by a factor of 1000 

or more (Fig. 3f).  Furthermore, the cross-link density indicates the cytoskeleton is 

relatively compliant (soft) in an oscillating cell and stiffens substantially in an ingressing 

cell. 

Recapitulating experimental data 

This section describes a validation-step for this mechanochemical model, which 

compared in vivo confocal measurements of the apical cross-sectional area of three 

amnioserosa cells during dorsal closure in Drosophila (7, Fig. 1e) to numerical 

simulations of time series of these apical areas.  These experimental time series exhibited 

oscillations about a background, which for about half of the cells was shoulder shaped. 

The oscillations and the shoulder-shaped background were analyzed in parallel. Fourier 

analyses of experimental observations indicate the apical-area oscillations essentially are 

harmonic and exhibit a band of frequencies centered at 5.7±0.9 mHz, where each 

oscillator initially was reversible and then progressively decreased in area amplitude. 

The shoulder-shaped background was quantified with an ingression function Ii(t) 

ሻݐ௜ሺܫ :(7) ൌ ఈ೔ଶ ሾ1 െ tanhሺߝ௜ ݐ െ ߬௜ሻሿ                 (Eq. 22)   

The index i identified the amnioserosa cells, which each had an initial area αi.  The 

imaging time is t, with t=0 corresponding to the first confocal image. ఛ೔ఌ೔ is the time of the 

inflection point, when the slope is ఈ೔ఌ೔ଶ .  

The time dependence for down-regulating the duty ratio ri(t) tracked the time 

dependence of Eq. 22: ݎ௜ሺݐሻ ൌ ௙௜௡௔௟,௜ݎ ൅ ሺ௥೔೙೔೟೔ೌ೗ି௥೑೔೙ೌ೗,೔ଶ ሻሾ1 െ tanhሺߝ௜ ݐ െ ߬௜ሻሿ              (Eq. 23) 

The values for εi and τi were determined by fitting of the experimental background 

shoulder with Eq. 22 (7). The experimental value for the duty ratio rinitial is 0.10 (19). 

Note that the duty ratio ݎ௜ሺݐሻ is the control parameter that moves the solution  

ଵഥݐݎ) , ଵఛത ሺଵା௥ሻ) on the phase portrait. 
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Our systematic investigation of the effect of the location of the solutions on the 

phase portrait informed our choices for rinitial ݐଵഥ  and rfinal. First, the experimentally 

observed harmonic oscillators indicate the initial parameters are just above the 

bifurcation line (Fig. 2) and that location was chosen to match the experimental 

amplitude of oscillation. Second, the depth of the final parameters determines the decay 

of the oscillations once ingression commences, i.e., the number of wraps as the oscillator 

decayed to the fixed point (Fig. 3). The depth was chosen to match the rate of oscillator 

decay in each of the three experimental time series. 

Recapitulating the data required summing at least five classes of oscillators with 

distinct parameter sets (Fig. 3e), where each class of oscillator corresponds to numerous 

entrained contractile units (38). We systematically explored how many distinct classes 

needed to be summed to semi-quantitatively recapitulate the data. More specifically, one 

class was too regular. More than one class with different frequencies ωഥ௜ ൌ ଵඥτത೔ሺଵା௥ሻ 
(Appendix A) introduced the desired interference, where the simulated time series 

depends on the values for τത௜, the relative amplitudes of the oscillators, and any phase 

shifts. Incrementing the number of oscillator classes, we found that five classes started to 

reasonably recapitulate the data and that six classes did not lead to noticeable 

improvement. 

The numerical simulations summed Ii(t) and a set of five area oscillators, which 

were synchronized by their inflection points, to produce Fig. 3e. The parameters of the 

five oscillators for each of the three time-series of the cross-sectional areas of 

amnioserosa cells presented in Fig. 3e are listed in Table 1. The frequencies were selected 

by systematically varying ߬ҧ and were roughly centered about ߬ҧ=1, which were then 

rendered dimension-full so that scaled values were within the experimental bandwidth 

and centered on its central frequency.  In each case, the sum of the five oscillator classes 

was scaled to reproduce the relative amplitudes from the experimental data (7). Each of 

the simulated time series compares favorably with the corresponding experimental time 

series (7, Fig. 1e) and was based on a monomer deviation of about  %ି଻ା଺  for the blue trace 

(less for green and red traces). This compares favorably with the experimental 

uncertainty of 14.9±3 (20%) (16). The red trace corresponds to a fast switching cell that 



 17

ingresses quickly. The green and blue traces are cells that switch and ingress more 

slowly. 

 

 

Table 1 

Parameters used in generating Fig. 3e 

Oscillator 

Number 

rinitial ݐଵഥ  1߬ҧ Relative 

Amplitude 

rfinal ε Phase 

       

Red Trace    0.030 0.330  

1 2.1 0.6 0.5   4 

2 2.3 0.8 0.5   0 

3 2.5 1.0 1.0   0 

4 2.6 1.1 0.5   0 

5 2.7 1.2 0.5   3 

Green 

Trace 

   0.065 0.053  

1 2.1 0.6 0.5   0 

2 2.3 0.8 0.5   0 

3 2.5 1.0 1.0   0 

4 2.6 1.1 0.5   0 

5 2.7 1.2 0.5   0 

Blue 

Trace 

   0.065 0.038  

1 2.1 0.6 0.5   0 

2 2.3 0.8 0.5   0 

3 2.5 1.0 1.0   0 

4 2.6 1.1 0.5   0 

5 2.7 1.2 0.5   0 
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Fig. 3e is a proof-of-principle that five classes of numerical area oscillators based 

on this mechanochemical mechanism can semi-quantitatively recapitulate each of these 

three experimental time series, where each parameter set is not unique. We attribute the 

distribution in oscillator frequencies to variable geometries of the contractile units (Fig. 

1c).  More specifically, the time scale is ఓ௞భ and, as derived earlier, ݇ଵ ൌ ݇ ቀௗభ௫భ ൅ ௗమ௫మቁ. 

 

Discussion 

These results indicate that oscillations in apical areas, the switching process, and 

cell ingression are manifestations of one multi-scale, mechanochemical mechanism 

operating in different parameter regimes. Once assembled a contractile unit could settle 

spontaneously into oscillations without requiring fine-tuning of either the monomer 

number or the initial deflection. Down regulating as opposed to upregulating the 

actomyosin force ensures that the contractile units have the dynamic range to quickly 

trigger ingression without the need to assemble additional contractile units. Incidentally 

decrementing the value of the duty ratio, but remaining above the bifurcation line as an 

oscillating solution, mimics a ratchet mechanism. These observations indicate that: cell 

oscillations can be a dynamical holding pattern; regulating r(t) to alter cross-link 

dynamics is a nimble switch; and ingression can be a key driver of tissue dynamics and 

morphogenesis (8,39,40). 

These results are relevant to several unresolved research questions in tissue 

biomechanics. Conjectures regarding a “clutch” that engages the apicomedial 

cytoskeleton to cell junctions (41) and “how increased myosin activity gives rise to cells 

that contract very slowly” (42) are consistent with establishing and rupturing percolating 

pathways of cross-linked actin clusters, respectively. Reports of actin and/or myosin 

exhibiting reversible and stage-dependent apicomedial coalescence, persistence, 

pulsation, and intense foci in addition to increased myosin activity leading to both 

abnormally compacted networks and the suppression of ingression (36,37) are consistent 

with the dynamics of percolating and non-percolating (disconnected islands) cluster 

dynamics. Hu, et al., have proposed a mechanism, mediated by the disordered actin 

network, for long-range interactions between myosin mini-filaments in REF52 cells (28). 

This proposal is suggestive of cluster dynamics. The results presented here promise 
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quantitative tests of how the mechanochemical and percolation cascade augments 

myosin’s regulatory network (36,37,43,44, reviewed in 11). For example, increasing 

myosin activity would increase the duty ratio, the filament duty ratio, and the contractile-

unit forces with the downstream effects of disrupting actin cross-links, reducing the 

number and parallelness of percolating pathways, and reducing the magnification of 

cytoskeletal forces. We have found that regulating myosin can change the “gear” of 

contractile units, switching from oscillations to steady-forces, and that counter-intuitive 

downstream effects (31) can boost piconewton molecular forces into nanonewton 

cytoskeletal forces. These observations highlight the importance of the biological and 

biomechanical mechanisms for regulating myosin activity during development. 

 

Appendix A:  Stability analysis 

We performed a stability analysis (30) of the 3D turnover equation (Eq. 16), 

which affects how many myosin monomers are assembled and contributing cross-bridges 

to generate the actomyosin force, coupled with the dynamical equation in the deflection 

direction that was presented as Eq. 1, reproduced here for convenience: ߤ ௗ௟ௗ௧ ൌ ܶሺܿ, ሻݎ െ   ሺ݈ሻܭ

We now re-express Eq. 1 in terms of δl and δN, paralleling the process we used to 

convert Eq. 11 into Eq. 16. 

Eq. 2 linearized the contraction force about its steady-state value, i.e., 

T(c,r)=T(co,r)+ rt1(c-co). Inserting Eq. 2 for T(c,r) and Eq. 8 for K(l), Eq. 1 becomes: ߤ ௗ௟ௗ௧ ൌ ሾܶሺܿ௢, ሻݎ ൅ ଵሺܿݐݎ െ ܿ௢ሻሿ െ ሾܭሺ݈௢ሻ ൅ ݇ଵሺ݈ െ ݈௢ሻ ൅ ݇ଷሺ݈ െ ݈௢ሻଷሿ            (Eq. A1) 

Since T(co,r) = K(lo) (steady-state force balance), these terms cancel in Eq. A1, resulting 

in: ߤ ௗ௟ௗ௧ ൌ ଵሺܿݐݎ െ ܿ௢ሻ െ ݇ଵሺ݈ െ ݈௢ሻ െ ݇ଷሺ݈ െ ݈௢ሻଷ                       (Eq. A2) 

We then make the following substitutions to re-express Eq. A2 in terms of the deviation 

δl about its steady-state value lo. Based on Eq. 12, we substitute both ௗ௟ௗ௧ ൌ ݈௢ ௗఋ௟ௗ௧  and 

l-lo = lo δl, yielding: ݈ߤ௢ ௗఋ௟ௗ௧ ൌ ଵሺܿݐݎ െ ܿ௢ሻ െ ݇ଵ݈௢݈ߜ െ ݇ଷሺ݈௢݈ߜሻଷ                (Eq. A3) 
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The first term on the right-hand side, rt1(c-co), can be rewritten as rt1coሺ ௖௖೚ –1). ௖௖೚ is equal 

to ೇಿಿ೚ೇ೚ ൌ  ಿಿ೚ೇೇ೚ . Using Eq. 15 to substitute 1 – 3δl for ௏௏೚ and Eq. 13 to substitute 1+δN for 

ேே೚, Eq. A3 becomes: ݈ߤ௢ ௗఋ௟ௗ௧ ൌ ଵܿ௢ݐݎ ቀଵାఋேଵିଷఋ௟ െ 1ቁ െ ݇ଵ݈௢݈ߜ െ ݇ଷሺ݈௢݈ߜሻଷ               (Eq. A4) 

We now convert Eqs. 16 and A4 into dimensionless forms, where the 

dimensionless parameters are ݐҧ ൌ ௞భఓ ҧ߬ ,ݐ ൌ ௞భఓ ଵഥݐ ,߬  = ଷ௖೚௞భ௟೚ t1, and ݇ଷതതത ൌ ௟೚మଽ௞భ ݇ଷ. We also 

substitute ߜഥ݈  = െ3δl, which includes a minus sign such that a positive value for ߜഥ݈  corresponds to an expansion of the contractile unit. With these substitutions, the 

dimensionless forms of the dynamical (Eq. A4) and turnover (Eq. 16) equations are: ௗఋ௟തതതௗ௧ҧ  ൌ െݐݎଵഥ ቀଵାఋேଵାఋ௟തതത െ 1ቁ െ ഥ݈ߜ െ ݇ଷതതത ߜഥ݈  ଷ                (Eq. A5)          ௗఋேௗ௧ҧ ൌ ఋ௟തതതିఋேఛത ሺଵା௥ሻ                    (Eq. A6) 

The determination of the bifurcation line is based on linearized forms of the 

coupled nonlinear equations (30). Linearizing Eq. A5 requires a series expansion of the 

denominator 1+ ߜഥ݈ , which excludes the solution ݈ߜ തതതത= -1. After some tedious algebra, the 

linearized form of Eq. A5 is: ௗఋ௟തതതௗ௧ҧ  ൌ ሺݐݎଵഥ െ 1ሻߜഥ݈ െ ଵഥݐݎ  (Eq. A7)                 ܰߜ

The eigenvalues are λ± = R ± iωഥ , where: ܴ ൌ ሺ௥௧భതതതିଵሻఛത ሺଵା௥ሻିଵଶ ఛത ሺଵା௥ሻ                    (Eq. A8) 

ωഥ ൌ ඥସఛത ሺଵା௥ሻିሾଵାఛത ሺଵା௥ሻି௥ ௧భതതത ఛത ሺଵା௥ሻሿଶ ఛത ሺଵା௥ሻ                  (Eq. A9) 

The bifurcation occurs when R=0. Setting R to 0 in Eq. A8 yields: ݐݎଵഥ ൌ 1 ൅ ଵఛത ሺଵା௥ሻ                 (Eq. A10) 

This has a particularly nice form, where both the intercept and the slope are 1 (Figs. 2a, 

3a). Inserting Eq. A10 into Eq. A9, we find that the dimensionless frequency of the limit 

cycle as R becomes non-negative is ω௢തതതത ൌ ଵඥఛത ሺଵା௥ሻ, which increases in value as 
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 ωഥ ൌ ω௢തതതതට1 ൅ ோଶ as the solution begins to move above the bifurcation line. 

These results should be considered along with the discussion of the steady state in 

the subsection on the nonlinear elasticity of the contractile unit. A steady solution 

corresponds to l(t)=lo, portrayed in Fig. 1c. An oscillating solution corresponds to 

l(t)=lo[1+δl(t)], which is an oscillation about lo with a frequency ω ഥ ( Figs. 2d,e). 

Furthermore, oscillations in the segment deflections are accompanied by oscillations in 

the positions of the four cross-links and oscillations in the distortion of the local 

cytoskeleton.  
Tutorial on interpreting phase portraits 

This section provides an account for how the solutions to these coupled, nonlinear 

equations can be characterized with multiple plots.  Phase portraits, which are plots of the 

dimensionless contractility parameter ݐݎଵഥ  versus the dimensionless turnover parameters ଵఛത ሺଵା௥ሻ  in Figs. 2a and 3a, or ݐଵഥ  versus  ଵఛത   in Fig A1a, visualize the two classes of 

solutions. More specifically, a bifurcation line separates an upper region of stable limit 

cycles (oscillations) from a lower region of stable fixed points (steady forces).  Time 

series (Fig. 2d,e, 3d, A1d,f) visualize (the approach to) steady or oscillating solutions. 

Plots of normalized number versus normalized deflection (Figs. 2b,c, 3c, A1c) visualize 

the limit cycles, i.e., the tradeoff between number (correlates with stress) and deflection 

(strain). 

Figure A1 can serve as a tutorial in synthesizing information from these multiple 

plots. Consider the blue circle in Fig. A1a, which is a solution in the stable fixed-point 

region. This solution corresponds to the blue curves in the other panels of Fig A1. In 

Panel d the steady-state solution is ௟௟೚ =1. The deflection l initially was arbitrarily chosen 

to be less than lo, but subsequently approaches the fixed-point value lo. In Panel f the 

initial number of assembled monomers N was arbitrarily chosen to be less than No. 

Similar to l, N subsequently approaches the fixed-point value No. In Panel c the fixed 

point is located at ேே೚ = ௟௟೚ = 1.  The initial values for ேே೚ and ௟௟೚ are indicated by the blue 

circle and the subsequent approach to the fixed point is the blue curve connecting that  
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circle to the fixed point at ேே೚ = ௟௟೚ = 1. Thus the subsequent approach from the initial 

location is a transient counterclockwise spiral towards the stable fixed-point. 

Next consider the red circle in Fig. A1a, which is a solution in the stable limit-

cycle region. Paralleling the discussion of the previous paragraph, this solution 

corresponds to the red curves in the other panels of Fig A1. In Panel d the initial choice 

for the red curve is very close to the reference value lo. l eventually settles into stable 

oscillations. In Panel c the red curve originates near the reference values ேே೚ = ௟௟೚ = 1 and  

exhibits a transient counterclockwise, outward spiral to the stable limit cycle (the 

outermost red orbit). For both the blue and red results in Panel c, for any initial location  

the system will be attracted to its stable solution, transiently spiraling into its fixed point 

or limit cycle and becoming stable, respectively. 

Comparison with Dierkes, et al. 

This section compares and contrasts our mechanochemical model with that of 

Dierkes, et al. (13). The Dierkes model demonstrates spontaneous nonlinear oscillations; 

however, the cross-sectional area of an amnioserosa cell was treated as a single 1-D 

contractile unit (equivalent mechanical circuit). Motivated by their mathematical insight, 

we have formulated a 3-D model for spontaneous oscillations based on the dynamics of a 

molecular contractile unit and have characterized an intrinsic nonlinear elasticity. 

Furthermore, we have extended the nonlinear dynamics to account for ingression.  We 

also have addressed the conundrum of how to boost piconewton actomyosin forces to 

nanonewton cytoskeletal forces to drive cell-shape changes with an application of 

percolation theory. 

There is a notational issue that addresses the qualitative difference between 

Fig. 3c and Fig. A1c. ߜഥ݈  in our notation corresponds to δl in the notation of Dierkes, et al. 

Or equivalently, െ3δl in our notation corresponds to δl in the notation of Dierkes, et al. 

This accounts for the clockwise approach in Fig. 3c and the counter-clockwise approach 

in Fig. A1c. 

While the Dierkes’ model differs from our model in biological and physical 

approaches, it is possible to draw a mathematical equivalence. The set of parameters 

invoked to arrive at the dimensionless forms in the two models are not identical, but the 
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equivalence can be drawn when comparing dimensionless equations. Our stability 

analysis culminated in the dimensionless Eqs. A5 and A6, which explicitly included the 

effect of the duty ratio r. The duty ratio was not considered in the Dierkes’ model and 

needs to be backed out of Eqs. A5 and A6 when pursuing mathematical equivalence. If 

the duty ratio r is set to 0 in Eq. A6, then the resulting equation for δN is mathematically 

equivalent to Eq. 13 in Dierkes’ Supporting Material. If the duty ratio r is set to 1 in Eq. 

A5, then starting with the resulting equation for ߜഥ݈  and substituting a series expansion for ଵାఋேଵାఋ௟  leads to a mathematically equivalent version of Eq. 12 in Dierkes’ Supporting 

Material. Similarly, backing out the duty ratio from the equation for the bifurcation line 

(Eq. A10) recovers Dierke’s version ݐଵഥ = 1 + ଵఛത. 

We have reproduced the numerical simulations reported in Dierkes et. al., using 

their model equations and notation (Fig. A1).  Panels a, b, d, and e in our Fig. A1 

correspond to Panels b, c, and d in Fig. 2 of Dierkes, et al. We agree with the 

characterizations that the blue solution is a stable fixed point and the red solution is a 

stable limit cycle. However, Dierkes, et al, interpreted the green solution as 

corresponding to the collapse of the cell and speculated that such a collapse could be 

related to ingression. Following Dierkes’ notation, “collapsing” corresponds to l(t) going 

to zero, i.e., δl reaches a value of minus one in the equation l(t) = lo (1 + δl). Inspection 

of Eq. A5 indicates that δl=-1 is to be excluded as a solution when a series expansion is 

substituted for the denominator. Thus the simulations are no longer reliable when the 

amplitude of the spontaneous oscillations reaches -1, which erroneously implies a 

vanishing apical area. Fig. 2 demonstrates that the limit cycles grow larger and the 

amplitudes of the oscillations get larger with increasing offset above the bifurcation line 

in the phase portrait. The dashed line in the Fig. A1a indicates the threshold for this 

numerical artifact, where the green solution is above this threshold. 

Here we have characterized the decrease in the amplitude of the oscillations to be 

the consequence of approaching the bifurcation line from above and that ingression 

(delamination) is the consequence of both a reverse Hopf bifurcation (Fig. 3a-e) and the 

remodeling of the cross-linked cytoskeleton to magnify the contractile-unit forces (Fig. 

1e,f). 
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Appendix B:  Tutorial on percolation theory applied to the cytoskeleton 

This section justifies the applicability of elastic percolation theory to account for 

the nonlinear dynamics of the cytoskeleton. The cytoskeleton is an out-of-equilibrium 

structural network internally driven by actomyosin complexes (1), i.e., by a disordered 

network of contractile units. It is active in the sense that actomyosin complexes convert 

chemical energy into mechanical work to internally drive the cross-linked actin network, 

which bears mechanical stress. Percolation has been applied successfully both to elastic 

networks in general (33,34) and to active, internally-driven model cytoskeletal systems 

(31,32). 

The term percolation appeals to the multitude of complex, tortuous paths taken by 

water as it moves through porous material. Consider each location within the porous 

material as either being an air pocket with a probability p or being an impenetrable solid 

with a probability 1-p. A probability p=0 corresponds to a solid rock. Now let p increase 

above zero. In the following, 1) a cross-link is analogous to the smallest possible air-

pocket; 2) a cluster is analogous to a larger, likely irregularly shaped air pocket; and 3) 

the percolation threshold is when the probability p has been increased such that, in 

general, a multi-branched, irregularly shaped air pocket first allows for water to flow 

through the porous material. Remarkably the transition as p increases through the 

percolation threshold pc has been shown to obey nonlinear scaling laws (33), as 

quantified below. 

The quantitative formalism for random percolation (33) begins with the concept 

of clusters as portrayed in Fig. 1e,f. Here a cluster is more than two actin filaments 

connected by cross-links. Treat the location of cross-links as being randomly distributed 

among all possible paired binding sites in the actin network. There are no clusters when 

the probability of a cross-link p(f) is zero, where f is the same force as in Eq. 18. Cross-

links increasingly occur as p(f) increases above zero and would be randomly located 

throughout the paired binding sites in the actin network. For relatively small values of 

p(f), there likely would be little if any clusters and, if there were a cluster, it most likely 

would be relatively small. But as p(f) continues to increase in all likelihood the number 

and the size of the clusters also will increase. With further increase, p(f) eventually will 
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cross a critical threshold pc when one cluster first becomes cross-linked to adherens 

junctions at two distinct locations, i.e., a percolation pathway is first established. For 

p(f) < pc, there are no percolation pathways and cell-shape changes would not be driven 

by this percolating network model of a cytoskeleton. For p(f) > pc, the percolation 

pathways can drive cell-shape changes. More specifically, the distribution of clusters 

changes and percolation pathways change as p(f) continues to increase beyond pc. For 

relatively small values of p(f)-pc, in all likelihood the clusters are relatively small or 

stringy, exhibiting relatively few percolation pathways connecting the adherens junctions 

(Fig. 1e). As p(f)-pc increases, in all likelihood there will be fewer, larger clusters with 

complex parallel branches making a relatively large number of connections to the 

adherens junctions (Fig. 1f). When p(f)=1, the probability of cross-linking has reached 

100% and all possible cross-links occur. 

For an elastic percolating network, extensive research has shown that the network 

elastic constant κ(r) = κ [p(r)- pc]
4 (33,34), where κ corresponds to the elastic stiffness of 

a contractile unit and the consensus view is the value of the critical exponent is close to, 

if not equal to, 4 (33). 
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Figure Legends 

Figure 1. Modeling cytoskeleton (2D schematics of 3D structures). Myosin mini-

filaments are blue, actin filaments are red, and actin cross-links are black dots. 

Contractile unit (cross-links enumerated, steady-state deflection shaded) shown a) in 

isolation and b) within a local network. c) Applied forces acting on an actin-segment at 

the force-balance condition T(co,r) = K(lo), where lo is the height of the triangle. fext,1 and 

fext,2 are components (along the segment) of the forces external to the contractile unit. d) 

Turnover at one end of a myosin mini-filament. e and f) Amnioserosa cell. Light green 

and dark green borders represent adherens junctions and cell membrane, respectively. 

The dashed boxes in each lower-left corner correspond to panel b (deflections 

suppressed). Clusters highlighted in gray. Panel e has four clusters and Panel f has one 

extensively branched cluster. These Mikado representations of the actin (red) filaments 

were generated as follows. First, a random distribution of points was generated within the 

hexagon. These points were classified as apicomedial, i.e., relatively central to the 

hexagon, or as cortical, i.e., near the edges of the hexagon. Then a line was centered on 

each point.  For points within the apicomedial region, the angular orientation was 

random.  For points within the cortical region, the angular orientation was restricted to 

mostly parallel the edge, but with random variations within the restricted range. The 

cross-links (black dots) and myosin mini-filaments (blue barbells) were strategically 

placed in Panels a and b to illustrate cluster formation. 

 

Figure 2. Characterizing oscillations. a) Phase portrait, which plots ݐݎଵഥ  (contractility) 

versus ଵఛതሺଵା௥ሻ (turnover). ݐଵഥ  and ߬ҧ are dimensionless versions of ݐଵand τ (Appendix A). 

The bifurcation (sloped) line separates an upper region of oscillating solutions from a 

lower region of steady solutions. The two sets of oscillating solutions (circles, left set ଵ ఛത  = 0.5, right set ଵ ఛത  = 1.0) have the same color-coded offsets (0.01, 0.38, and 0.75) above 

the bifurcation line. Color-coded limit cycles for the b) left-set and c) right-set solutions 

from Panel a. Normalized deflections for the d) left-set and e) right-set solutions. 
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Figure 3.  Switching from oscillations to ingression.  a-d) Characterizing switching. 

Phase portrait (Panel a) including an initial oscillating solution (black) and four final 

steady solutions (green, purple, blue, and red). Time dependence of the duty ratio (Panel 

b). Panel c tracks the transition from the now unstable limit cycle (black) to the stable 

fixed point (initial locations of N and l on the limit cycle for clarity). Green solution 

exhibits critical slowing and has been truncated for clarity. Panel d plots the normalized 

deflection. e) Recapitulation of the experimental data (fitting parameters listed in 

Table 1). f) Magnification factor M. 

 

Figure A1. Simulations of nonlinear dynamics, where the solutions are color-coded. a) 

Phase portrait, where k3 ௟೚మ௞భ  =15 (݇ଷ ௟೚మଽ௞భ =15 for Figs. 2,3). The bifurcation line is solid, 

the threshold for numerical artifact is dashed. Phase plots in terms of b) normalized 

concentration ௖௖೚ and c) normalized number ேே೚. d-f) Corresponding time series. To 

facilitate comparison with reference 13, these simulations are based on Eq. A5 with r set 

to 1, and Eq. A6 with r set to 0. 
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