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ABSTRACT

Often the analysis of time-dependent chemical and biophysical systems produces high-dimensional time-series data for which
it can be difficult to interpret which individual features are most salient. While recent work from our group and others has
demonstrated the utility of time-lagged covariate models to study such systems, linearity assumptions can limit the compression
of inherently nonlinear dynamics into just a few characteristic components. Recent work in the field of deep learning has led to
the development of the variational autoencoder (VAE), which is able to compress complex datasets into simpler manifolds. We
present the use of a time-lagged VAE, or variational dynamics encoder (VDE), to reduce complex, nonlinear processes to a
single embedding with high fidelity to the underlying dynamics. We demonstrate how the VDE is able to capture nontrivial
dynamics in a variety of examples, including Brownian dynamics and atomistic protein folding. Additionally, we demonstrate a
method for analyzing the VDE model, inspired by saliency mapping, to determine what features are selected by the VDE model
to describe dynamics. The VDE presents an important step in applying techniques from deep learning to more accurately
model and interpret complex biophysics.

1 Introduction
Simulations of biomolecules have provided insight into molecular processes with increasing time- and length-scales due to
advances in both algorithms1 and hardware2. Such simulations can have thousands of degrees of freedom, making it crucial to
have meaningful and statistically robust methods to extract underlying dynamical processes3.

The dynamics of molecular systems are often represented using the dynamical propagator approach4. Given an ensemble of
particles at time t distributed in phase space with a given probability distribution p(x, t), we seek to describe a propagator as an
operator that can describe the new distribution of the ensemble, p(x, t + τ), given some lag time τ . When τ is chosen such that
these probabilities are independent of the history of the system, the model is said to be Markovian.

The Markovian propagator contains all the information needed to propagate the system forward in time. To make a Markov
state model (MSM) from a biomolecular simulation, each frame in the time-series dataset is assigned to a tractable number of
discrete states5. The transition matrix stores the conditional transition probabilities between all pairs of states at the specified
lag time. This transition matrix is also constrained to obey microscopic reversibility and ergodicity. Due to these constraints,
the eigenvalues are real with a unique highest Perron eigenvalue of one and all subsequent eigenvalues with absolute values
smaller than one. The non-Perron eigenvalues and their eigenfunctions correspond to processes in the time-series, representing
their timescales and interstate fluxes, respectively.

In 2013, the derivation of a variational approach to conformational dynamics (VAC)6 showed that estimates of MSM
eigenvalues cannot exceed their true values. Thus, the choice of MSM states can be optimized according to this variational
principle. In fact, the VAC applies in a more general case than MSMs: the eigenfunction approximations need not come
from the discrete state decomposition that characterizes a MSM, but rather can come from other features; in the case of
protein dynamics, these features might represent torsional angles or pairwise distances between amino acids. In this spirit,
many methods have been developed to compute approximations to the propagator of a molecular system from simulation
data, including time-structure-based independent component analysis (tICA)7–9 and extensions (kernel tICA10, sparse tICA11),
VAMPnets12, soft-max MSMs13, and diffusion maps14. These methods make different assumptions about the underlying
eigenfunctions of the system; for example, approximating the eigenfunctions of the propagator under the constraint of linear
combinations of features produces tICA8, which can be further enhanced as a nonlinear approximation via the kernel trick10.

Any method for approximating the dynamics of a complex system has two objectives: to adequately represent complexity
in the form of model nonlinearity and to be interpretable, that is, to be readily analyzable for feature importance. In Figure
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1, we indicate how several commonly-used methods for dimensionality reduction of dynamical systems compare in terms
of achieving these two aims. Complexity and interpretability often come at the expense of each other. For instance, kernel
methods such as kernel tICA10, 15 improve the ability to capture nonlinear effects of features in dynamics over linear methods;
however, identifying biophysical meaning in coordinates in an implicit kernel space remains a challenge. Conversely, standard
tICA and sparse tICA allow for more precisely identifying relevant biophysical features, but the linearity of tICA limits the
complexity of dynamics it can represent.

An alternative technique for dimensionality reduction is the autoencoder framework16, 17. An autoencoder is a deep
unsupervised learning algorithm that aims to learn a low-dimensional representation of high-dimensional data18, 19. An
autoencoder has two components: an encoder network and a decoder network. The encoder network reduces the input data to a
low-dimensional representation, referred to as the latent space of the autoencoder, and the decoder network reconstructs the
latent representation to the original dimensionality. The difference between the original data and the reconstruction is used
to update and train the network. variational autoencoder (VAE) adds regularization to the encoder framework by applying
Gaussian noise to the latent space20. The term “variational” stems from this stochasticity: the autoencoder is an implementation
of variational Bayesian inference with a Gaussian prior, which maximizes the lower bound on the log-likelihood of the observed
data16.
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Figure 1. An overview of a subset of the methods used to analyze protein dynamics in terms of model interpretability and
ability to capture non-linear motions7–10, 15, 21–24. Here, we define interpretability as the ease with which a scientist can analyze
the model for feature importance with respect to dynamics. For example, principal component analysis (PCA), arguably the
simplest model mentioned, is typically ill-suited to analyze complex dynamics and, therefore, the resulting principal
components are not reliably meaningful. In contrast, the VDE is able to leverage deep learning to model non-linear
relationships between time-dependent observables and saliency mapping to understand which observables contribute most to
the model. We note that saliency mapping is a general technique for analyzing neural networks and can also be applied to
related methods.

Recently, the autoencoder framework has been extended to model time-series data24–30. Analysis in these applications
typically involves mapping time-series data to latent spaces with the same dimensionality as the length of the initial time-series
data and has not focused on approximating a propagator for the time-series data; however, there are a couple of notable
exceptions. Doerr and De Fabritis30 recently compared a simple autoencoder to other methods for dimensionality reduction
of biophysical simulation data. Wehmeyer and Noé introduced a time lag into an autoencoder (TAE) framework to describe
dynamics24. Interestingly, they demonstrate that in the limit of a single linear hidden layer, the tICA solution can be attained.

In this work, we extend the traditional VAE architecture to approximate a propagator for time-series data in an architecture
denoted as a variational dynamics encoder (VDE). This represents the first use of a time lag within a variational autoencoder
to our knowledge. Additionally, we introduce a novel “autocorrelation” loss function, which is inspired by the VAC6. We
demonstrate that this approach yields models with more explanatory power than linear dimensionality reduction techniques
in both the Müller-Brown potential and the folding landscape of the villin headpiece subdomain. We also explore the
generative capability of the VDE as a propagator of dynamics and show that, as implemented, it is unable to reliably capture
thermodynamics at differing temperatures. Finally, we demonstrate a novel analysis method, inspired by saliency mapping
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in neural nets for visual classification31–33, to lend interpretation to VDE models. This combination of using the VDE with
saliency mapping creates a framework that enables nonlinear combinations of features while remaining interpretable.

2 Model: Variational Dynamics Encoder (VDE)
2.1 VDE Architecture
The architecture of the VDE, as seen in Figure 2, closely resembles that of a VAE; however, the training procedure is slightly
modified to suit time-series data24, 30. The most significant modification being that featurized data, xt , at some timepoint, t, are
fed into the network in order to make a prediction of the state of the system, x′t+τ , at a future timepoint, t + τ , where τ is some
user-selected lag time such that the dynamics of the system is Markovian. We note that choosing a lag time at which the system
is Markovian depends entirely on the system is being modeled34. At a long enough lag time for the system to be approximated
as a Markov process, intrastate transitions occur much more quickly than interstate transitions. The appropriate lag time
depends on the system of study: for protein folding, tens of nanoseconds might be appropriate; for electron dynamics, a suitable
lag time might be on the order of femtoseconds. If a system is Markovian at a lag time τ (if the intrastate transitions occur more
quickly than τ ), then the system will be Markovian at all lag times greater than τ and the timescales of the subprocesses will be
constant for all Markovian lag times. Therefore, τ should be large enough to achieve Markovianity, but small enough to make
statistically significant observations of the system’s dynamics.
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Figure 2. A schematic of the VDE. Features, xt , at some timepoint, t, are fed into the network in order to make a prediction of
the state of the system, x′t+τ , at a future timepoint, t + τ , where τ is some Markovian lag time. As with a traditional VAE, the
network can be subdivided into three parts: the encoder network; variational layer, Λ; and the decoder network, as labeled. Our
encoder network is a DNN with non-linear activation functions in the hidden layers, which eventually bottlenecks into the
one-dimensional latent space, zt . The latent space is then slightly perturbed with Gaussian noise by the Λ-layer to generate z′,
as described by Kingma and Welling16. Finally, the decoder network, also a DNN, mirrors the encoder network in architecture
by using z′ to generate x′t+τ , a prediction of how the system will evolve after one lag time of τ .

As with a traditional VAE, the network can be subdivided into three parts: the encoder network; variational layer, Λ; and the
decoder network. The encoder network is a deep neural network (DNN) with non-linear activation functions and a user-selected
number of hidden layers, which eventually bottlenecks into the one-dimensional latent space, zt . In this way, the encoder
network functions as a non-linear dimensionality reduction of xt . The latent space is then perturbed by Gaussian noise within
the Λ-layer, with mean parameter, µ , variance parameter, σ2, and arbitrary scaling, α , to generate z′, as described by Kingma
and Welling16. Finally, the decoder network, also a DNN, mirrors the encoder network in architecture by using z′ to generate
x′t+τ , a prediction of how the system will evolve after a duration of τ .

Once the VDE has been trained, it can be used for both dimensionality reduction and synthetic trajectory generation. During
dimensionality reduction, only the encoder network is necessary, which provides a direct mapping of x 7→ z. During trajectory
generation, the entire VDE network is needed. An initial set of features, x0, is fed through the network to generate x′τ , the
predicted state after a duration of τ . This can be done iteratively to generate an arbitrarily long trajectory of features exhibiting
dynamics consistent with that of the original system used during training. In order to overcome the model’s insensitivity to the
Λ-layer used during training, we recommend that the noise factor, α , is increased such that αgeneration� αtrain.
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2.2 VDE Loss Function
The VDE is quantitatively evaluated by calculating the sum of three loss functions: reconstruction loss (LR), Kullback–Leibler
divergence loss (LKL), and autocorrelation loss (LAC):

LVDE = LR +LKL +LAC. (1)

The first of these three, reconstruction loss, attempts to quantify how well the VDE approximates the state of the system at
t + τ , given the true state of the system at time t16, 20. In doing so, we evaluate the ability of the network to approximate the
Markovian propagator after a single lag time. This can be done by considering the mean squared error between the predicted
propagation, x′t+τ , and the true propagation, xt+τ :

LR = E
[∥∥x′t+τ − xt+τ

∥∥] . (2)

The Kullback–Leibler divergence loss allows for variational inference of the latent space and considers the latent space
priors that generate z′t :

LKL = E

[
1+ logσ (zt)

2−µ (zt)
2−σ (zt)

2

2

]
, (3)

where µ and σ are separate affine transformations that estimate the mean and standard deviation, respectively, of the Gaussian
prior locally applied to the latent space, as seen in Figure 3. Coupled with the reconstruction loss, the Kullback–Leibler
divergence enables a trade-off between model complexity and simplicity of the Gaussian prior. Reconstruction loss pushes the
model towards having high fidelity to the training data, while the Kullback–Leibler divergence acts as a regularization term to
ensure that the latent space behaves as a Gaussian emission16. This scheme also has the benefit of allowing for sampling of the
latent space, using the same priors, to generate new trajectories as mentioned in Section 2.1.

Maximizing 
Autocorrelation

Variational
Bayes

z

‘z

LAC

LKL

xt

Figure 3. A diagram representing the effects of the autocorrelation loss and KL-divergence loss functions on the VDE latent
space. A trajectory, x, which contains several states represented by different colors, can be mapped onto a latent space, z. Here,
we randomly select frames from x from each state to be mapped onto z. Maximization of the autocorrelation of z ensures that
the slowest process within a trajectory can be modeled continuously within the latent space. Perturbation of the latent space
with learnable, value-specific Gaussian noise enables a variational Bayes approach for propagating values from the original
trajectory, x. In doing so, we are also able to infer the posterior probability of values within z and effectively perform sampling
within the latent space.
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Although minimization of the reconstruction loss has the potential to recover these dynamical processes23, we find that
in some cases, such as in Section 4.3, it alone is not sufficient35. In order to improve model convergence, we borrow from
the VAC6, a specific application of the variational principle from quantum mechanics adapted for Markov modeling and a
useful tool for parameter selection. The variational principle states that, in the limit of infinite data, no process can be estimated
from the data that is slower than the true process. If we interpret the variational principle as the measure of the quality of
this approximation, the phase-space decomposition that leads to a linear model with larger leading dynamical eigenvalues is
consequently the better phase-space decomposition11. In the limit of a single process which determines the dynamics of a
system, there is only one eigenvalue to consider, which is equivalent to the autocorrelation of the decomposed trajectories. We
propose that maximizing the autocorrelation of z optimizes training towards generating a more complete representation of the
long time-scale kinetics observed within time-series. The autocorrelation loss, LAC, takes the following form:

LAC =−ρzt ,zt+τ
=−E [(zt − z̄t)(zt+τ − z̄t+τ)]

szt szt+τ

, (4)

where z̄t and szt are the sample mean and standard deviation of the latent space for a particular batch of data, respectively. For
linear models, this leads only to a first-order approximation of slowest process; however, by incorporating this into the VDE’s
loss function, we take advantage of the deep encoder as a general approximator to the slowest processes found within in our
data6.

When we consider that z is a rich latent observable of the true dynamics, its autocorrelation also represents a weighted sum
of the all the dynamical eigenvalues of the system36:

ρzt ,zt+τ
= ∑

i j
z̄iP(Xt = i) z̄ jP(Xt+τ = j|Xt = i) = ∑

i j
z̄iz̄ jπiTi j = ∑

i jk
z̄iz̄ jλk(φk)i(φk) j = ∑

k
λkω

2
k , (5)

where Xt is some latent state of the system at time, t; π is the stationary distribution of X ; T is the transition matrix; and λ and
φ are eigenvalues and eigenvectors of T . ωk represents the inner product between the observable and the k-th eigenvector. This
ω2-weighted sum is closely related to the generalized matrix Rayleigh quotient (GMRQ), which is calculated as an unweighted
sum of leading dynamical eigenvalues and can be used as a scoring metric for cross-validating Markovian models11. Through
the optimization of ρzt ,zt+τ

, we implicitly maximize the GMRQ for our model.
Algorithm 1 outlines how these two losses are calculated and used for backpropagation in practice. Note that the data is split

into many smaller batches during training, with xt as input variable and xt+τ as the target variable, to take advantage of stochastic
gradient descent methods. We also recommend pre-processing features—either via standardization or median-centering and
scaling by interquartile ranges—to prevent the reconstruction loss from overpowering the autocorrelation loss37.

3 Methods
3.1 Müller-Brown Potential
We first test the VDE as a proof-of-concept in characterizing Brownian dynamics under the Müeller-Brown potential, a well-
studied smooth two-dimensional potential energy surface. We generated 10 independent simulations of the 2-D Müller-Brown
potential governed by the following equation:

ẋ =−∆V (x)
kT

+
√

2DR(t) ,

where kBT = 1.5×104 Joules, D = 10−2 meters-squared per second, and R(t) is a delta-correlated Gaussian process with zero
mean, and V (x) is defined as:

V (x) =
4

∑
j=1

A j · exp
[
a j (x1−X j)

2 +b j (x1−X j)(x2−Yj)+ c j (x2−Yj)
2
]
,

where a=(−1,−1,−6.5,0.7); b=(0,0,11,0.6); c=(−10,−10,−6.5,0.7); A=(−200,−100,−170,15); X =(1,0,−0.5,−1);
and Y = (0,0.5,1.5,1) as suggested by Müller and Brown38. Using the Euler-Maruyama method for numerical integration and
a time step of 0.1, we produced ten unique trajectories with 106 time steps, saved every 100 steps. The initial positions were
sampled via a uniform distribution over the box: [−1.5,1.2]× [−0.2,2.0].

VDEs for the Müller-Brown potential were trained with a lag time of 10 time steps; 3 hidden layers with 256 nodes each;
the Swish activation function39; α-value of 10−3; batch size of 100; dropout rate of 30%; and a learning rate of 1×10−4. We
note that these parameters were not optimized using automated hyperparameter selection. Gradient descent was performed with
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the Adam optimizer40. Models were trained for 50 epochs, at which point the losses were observed to be converged. Prior to
training, trajectories were preprocessed by subtracting their overall median values and scaling by inter-quartile ranges.

In constructing MSMs for the Müller-Brown potential, the scaled trajectories were then subject to dimensionality reduction
using principal component analysis (PCA)21, time-structure-based independent component analysis (tICA)7–9, and the pre-
trained VDE, in order to generate one-dimensional representations of the system’s dynamics. We then partitioned the
representations into twelves clusters using the mini-batch k-means algorithm41, 42. Finally, the clusters were used to construct
a maximum-likelihood estimated reversible MSM43. A lag time of 10 time steps was chosen for both MSM construction
and dimensionality reduction, as the resulting models provided optimal convergence of implied timescales. The MSMs were
then evaluated 100 randomly seeded hold-out datasets to generate unbiased GMRQ scores and standard errors. All trajectory
generation and analyses were performed with MSMBuilder37, MDEntropy44, and MSMExplorer45.

Finally, in order to generate “fake” trajectories using the VDE, we randomly sampled initial positions via a uniform
distribution, as described above, and iteratively propagated these coordinates through the VDE for 1,000 steps, equivalent
to 10,000 integrator steps. This was done for five scaling values, α , evenly sampled in logspace between 10−2 and 10−1 to
understand how the Λ-layer affects propagation.

Algorithm 1 Training the VDE

1: procedure TRAIN(model, data)
2: for batch ∈ data do
3: xt , xt+τ ← batch
4: zt ← model.encode(xt)
5: z′t ← model.lambda(zt)
6: x′t+τ ← model.decode(z′t)
7: zt+τ ← model.encode(xt+τ)
8:
9: µt ,σt ← model.lambda.parameters

10:
11: LR← E

[∥∥x′t+τ − xt+τ

∥∥]
12: LKL← E

[
1+logσ2

t −µ2
t −σ2

t
2

]
13: LAC←−ρzt ,zt+τ

14:
15: model.loss←LR +LKL +LAC
16:
17: model.loss.backward()
18: model.optimizer.step()

3.2 Villin Headpiece Domain
We demonstrate the utility of the VDE method in characterizing the folding landscape of villin headpiece domain (pdb: 2f4k), a
widely-studied 35-residue fast-folding protein, referred to henceforth as villin. Simulation data for villin was generated by
Lindorff-Larsen et al.46. The simulation length was is 125 µs and is strided at 2 ns for analysis. Cα contact distances were
used for featurization37, 47. VDEs for villin were trained with a lag time of 44 ns, selected to be the same as that in the optimal
tICA model. Other than expanding the number of hidden layers nodes to 1024, the training procedure was identical to that
of Section 3.1. The VDE was compared to an optimized tICA model, with respect to MSM GMRQ scoring, for villin, as
featurized with Cα contacts, that was identified via hyperparameter optimization48. Husic et al.48 have indicated that Cα

contacts are a useful featurization for representing folding processes48, hence the selection of this featurization. However, using
φ −ψ backbone dihedral angles for featurization results in a VDE model with a latent space that is highly correlated with
the VDE latent space featurized by Cα contacts (Figure S1), indicating the robustness of the VDE dimensionality reduction
process. For the optimized tICA model, a tICA lag time of 44 ns, 4 tICA components, and kinetic mapping49 were selected
according to hyperparameter optimization48. To construct MSMs on tICA-transformed and VDE-transformed data, analogous
steps as for the Müller potential in Section 3.1 were performed. Mini-batch k-means clustering was performed with 125 clusters
for both sets of data. This was the optimal cluster number identified for tICA, and hyperparameter searching showed little
influence of cluster number on MSMs from VDE-transformed data. MSMs for both tICA- and VDE- transformed models were
constructed with 50 ns lag time. To obtain error estimates for MSM equilibrium populations and MSM timescales, 100 rounds
of bootstrapping were performed over the original set of trajectories. The resulting ranges of values were used for error bars.
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3.3 Protein Saliency Maps
Saliency maps were designed for classification algorithms and thus needed to be modified for our application (Algorithm 2).
Briefly, we first generate a faux two-step trajectory starting from a random protein conformation, for instance, a misfolded state,
and going to the desired protein conformation, for instance, the folded state. The misfolded state is propagated through the
network, and the residual to the folded state (Figure 7a) is propagated back to obtain loadings on individual distances. This
back-propagation is just the chained partial derivative of the reconstruction error with respect to the atomic coordinates of the
system.

Ideally, we perform this process for a large number of possible misfolded to folded transitions to obtain robust saliency
maps. The median values for each feature across all of these maps can then be integrated to obtain residue level statistics or
rank ordered to find important features. It is worth noting that our method is different from classical saliency scoring whereby
only the desired class label score is propagated backwards.

Algorithm 2 Computing saliency maps

1: procedure SALIENCY(model, data)
2: xt , xt+τ ← data
3: x′t+τ ← model.forward(xt)
4: model.loss =

∥∥x′t+τ − xt+τ

∥∥
5: model.loss.backward()
6: return ∂model.loss

∂xt

We note that both the VDE’s noise parameter and the autocorrelation loss should be set to zero for consistent results
and numerical stability. We also recommend computing the saliency scores multiple times across many configurations and
averaging out the results. Lastly, we note that the protein saliency maps can be used in a variety of different protein deep
learning algorithms, including VAMPnets12 and TAE23.

4 Results
4.1 A Non-Linear Encoding for Brownian Dynamics
We first apply the VDE framework to the well-studied 2-D Müller-Brown potential and demonstrate it can adequately describe
the dynamics of this simple system. Figure 4 shows results for a) the VDE, b) tICA, and c) PCA. We note that while tICA and
PCA both identify the same dominant linear coordinate, representing diffusion from minor to major basin, the VDE generates a
non-linear projection that is able to distinguish these basins more clearly, as well as the transition region.

1
2

3

1
2

3

1
2

3

c) PCAb) tICAa) VDE

Figure 4. The 2-D Müller-Brown potential (gray-scale contours) overlaid with colormap projections of the one-dimensional a)
VDE, b) tICA, and c) PCA coordinates. While tICA and PCA identify a strictly linear mode that approximates the slowest
dynamical process (i.e. diffusion from region 1 to 3), the non-linear VDE is better able to map out basins (regions 1 and 3) and
intermediate state (region 2). Note that because the region outside of the contours is energetically unfavorable, the color
projections in that space are extrapolations of each method, respectively.

To establish an unbiased assessment of the VDE’s performance compared to tICA or PCA, we measure its ability to
represent the original trajectories, as well as its ability to capture slow-timescale dynamics. In order to measure the former, we
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employ mutual information to understand exactly how many more bits of information is shared between the VDE latent space
and the original features than the principal components of PCA and tICA; as shown in Supplementary Materials Figure S1, we
find that it shares more than twice as many bits of information with the original features than the linear methods do. To address
the latter, we constructed MSMs using identical hyperparameters and compared GMRQ scores of the slowest process. The VDE
achieves a slightly higher mean GMRQ score (1.8580±5×10−4) than tICA (1.8460±5×10−4) or PCA (1.8472±5×10−4)
on held-out data. This, along with the mutual information results, suggests that the VDE is better able to represent the dynamics
of this system.

4.2 The VDE Does Not Behave as a True Propagator
As VAEs are regarded as a generative model, we consider the relationship between the VDE and the propagator function. When
trained on the Müller-Brown potential, with kBT = 1.5×104 Joules, the VDE is able to generate “fake” trajectories with some
similarities in dynamics to the original simulations, as seen in Figure 5 (pink curve). Furthermore, when we modulate the
effect of the Λ-layer by adjusting the scaling parameter α , we are also able to mimic some effects of changing the simulation
temperature without having to re-train the VDE. Figure 5b demonstrates that when decreasing (dark blue and purple curves) or
increasing (orange and yellow curves) α , the VDE is able to adjust barrier heights in a similar fashion to what is observed in
simulation, shown in Figure 5a. However, we find that this fidelity to simulation is lacking in transition regions and previously
unobserved regions of phase-space, where the VDE does a poor job of recapitulating true thermodynamics.

VDE CoordinateVDE Coordinate

a) Brownian thermodynamics at many temperatures b) VDE thermodynamics at many scaling values
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Figure 5. One-dimensional free energy projections generated from the VDE coordinate for a) true Brownian-dynamics
simulations at different temperatures and b) fake trajectories generated by the VDE, trained at kBT = 1.5×104 Joules, with
different scaling values, α , a proxy for temperature, within the Λ-layer. Although not a true one-to-one comparison, we find
that free energy barriers (between regions 1, 2, and 3) are lowered, as expected, when temperature is increased within the
Müller-Brown potential; however, free energies of transition (region 2) and boundary regions (beyond regions 1 or 3) of
phase-space cannot be reproduced reliably. We note that the selected α values have not been rigorously fitted to best match the
different values of kBT shown, but were instead evenly sampled over a fixed interval, in which similar dynamics to simulation
are observed.

Also of note is the case of α = 0 (not shown in Figure 5b), where the VDE behaves essentially as an indicator function,
reporting which basin a given frame will eventually diffuse towards in a low temperature simulation. As α is increased, the
VDE must decide which basin to push the now heat-bathed system towards and more realistic dynamics can be observed. Such
behavior is analagous to a ‘black-box’ Langevin equation, whereby the VDE has learned some of the underlying dynamical
characteristics of the system; although, there seems to be a strong attraction to certain basins (e.g. region 2) which is not
observed in simulation. Because of this attraction, increasing α raisies intermediate basins towards realistic free energies rather
than lowering them, as one might expect when raising the temperature of a simulation. We recommend greatly increasing α , as
described in Section 2.1, when generating synthetic trajectories due to this trend.

4.3 A Simple Encoding for Villin Headpiece Dynamics
We next apply the VDE to pairwise alpha-carbon (Cα) contacts in order to model the folding process of the villin headpiece
subdomain. Here, we aim to assess the quality of the VDE as a dimensionality reduction technique for protein folding by
quantifying how well a MSM constructed from VDE-transformed data separates relevant timescales and distinguishes basins
within the landscape. With these metrics in mind, the VDE appears to represent the folding landscape well and can even
out-perform tICA using similar MSM hyperparameters.
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Figure 6a depicts trajectory data projected onto the slowest two tICA processes (tICs) from an optimized tICA model48 and
colored by the projection onto the VDE latent coordinate. In the optimal tICA model, 2 tICs are needed to capture both the
folding and a prominent misfolding process. The first tIC is unable to completely separate unfolded and folded state, whereas
the second tIC distinguishes the folded and unfolded state but is unable to distinguish the folded and misfolded state. In contrast,
the VDE latent coordinate is able to discriminate between all three states: folded, unfolded, and misfolded. By comparing
the free energies of the VDE latent space (Figure 6c) and the first tIC (Figure 6d), we observe that the VDE coordinate has a
narrower basin of folding than that of the first tIC, indicating the VDE latent coordinate more sharply resolves the folding basin
than the first tIC does.
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Figure 6. The latent space of the VDE is able to discriminate between three significant states in the folding coordinate of
villin: the folded (yellow), unfolded (orange), and a prominent misfolded (purple) states (shown in a). In contrast, an optimized
tICA model requires two coordinates to differentiate these states. The autocorrelation loss is crucial for this; without it the VDE
is unable to describe the landscape (shown in b). Comparing the free energies of the VDE coordinate (c) and the first tICA
coordinate (d) indicates that the VDE is better able to separate the folded and unfolded state from the misfolded state. When
comparing the timescales of MSMs constructed from both models (e), the VDE has a slower first process than an optimal tICA
model with 4 tICA components and performs significantly better than a tICA model with a single coordinate, indicating a
superior model. Error bars represent the range of 100 bootstrapped replicates.

To test the benefit of using the autocorrelation loss discussed in Section 2.2, we trained models of villin using only the
reconstruction loss and no autocorrelation loss. The projection of the optimal model with no autocorrelation loss is portrayed
in Figure 6b. In this projection, there is minimal differentiation between different parts of the landscape. This highlights the
necessity of incorporating an autocorrelation loss into the VDE loss function.

MSMs for the villin landscape were constructed from both the VDE model and the optimized tICA model. Comparing
these models indicates that the VDE model identifies a slower timescale than the tICA model. Figure 6e portrays the timescales
of the slowest five processes identified by MSMs built from the VDE projection, our optimized tICA model, and a tICA model
built with one tICA component. The timescale of the slowest process in the MSM from the VDE projection is 1620± 80
nanoseconds, whereas the timescale of the slowest process in the optimal tICA model is 770±40 nanoseconds. According to
the variational approach to conformational dynamics, as described in Section 2.2, a model with longer timescales should be
closer to modeling the true dynamics of the system.

4.4 Protein Saliency Maps Enable Interpretation of the VDE
As noted in Figure 1, nonlinear methods for time-series analysis tend to sacrifice model interpretability. Linear tICA provides
“loadings” on each input feature for each slow mode. Thus, the absolute magnitude of these loadings can be used to understand
holistic protein dynamics at the atomic scale37. To make VDEs more interpretable, we designed a novel variant to saliency
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maps (see Section 3.3) to gain insight into how the network operates and propagates protein configurations at a particular lag
time. Saliency maps31–33 were originally proposed for looking at spatial support for varied classification problems. For image
data, they find spatial features that a network looks for during classification, i.e., by asking how much does any individual pixel
contribute to the final prediction. This is done by back-propagating from the desired class score through the network and into
the image pixels. Similar to tICA loadings, the magnitude of the derivative can then be used to gauge feature importance per
output class. An alternative closely related method, namely guided back-propagation, only propagates the positive derivatives
through the network.This allows the modeler to visualize what pixels a network looks at when it ouputs a certain class label.
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Figure 7. Protein saliency maps can be used to gain insight into the VDE. a) In saliency maps, the distances between the
predicted and targeted output (i.e. contact distances in the folded states) are propagated back through the network to the input
contact distances in order to gain insight into what the network learns. This is repeated for a large batch of possible
configurations. b) For villin, the folded state is characterized by Cα contact distances to the central Asparagine residue. In the
misfolded state, this residue is too close to the first helix forming non-native contacts. The green lines denote the 5 contacts
with the highest median saliency scores. c) Integrating over the saliency at the atomic level allows us to infer the importances of
individual residues in certain state transitions, making them prime candidates (red stars) for further biophysical characterization.
The distributions are computed over 200 transitions.

To perform the saliency analysis, we computed a median value for the derivative of the residual between villin’s misfolded
and folded basin with respect to its input contact features. As shown in Figure 7b, these saliency maps for villin found 5
important Cα contacts. The 5 contacts (indicated with green lines in Figure 7b), all involve contacts to residues around Asn19.
Remarkably, we can also integrate the saliency scores for each atomic feature to infer feature importances at the residue scale.
The residue importance Figure 7b-c can be used to potentially design new molecular simulations and biophysical experiments.
For example, in the case of villin, our model predicts distances to Asn19 as being critical for movement out of the misfolded
partially helical state (Figure 7b). Mutating this residue to a proline or glycine could potentially be used to prevent the system
from sampling the misfolded state. A potential drawback for this method is it requires sufficient knowledge of the system to
identify a relevant path to investigate the corresponding initial and final conformations. This can be accomplished by either
some empirical analysis, clustering, or simply sampling conformations at the minima and maxima of the latent space.
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5 Discussion
In this work, we have introduced a variational autoencoder to analyze dynamical processes by incorporating a time lag into
the traditional autoencoder structure, introducing an autocorrelation loss during training, and leveraging the Gaussian noise
introduced into the latent space during training, dimensionality reduction, and synthetic trajectory analysis. Furthermore,
we have introduced a saliency mapping approach inspired by advances in deep learning in order to interpret which features
contribute to the identified progress coordinate.

We demonstrate that the VDE is able to outperform state-of-the-art methods, such as tICA, in describing slow dynamics in
both the 2-D Müller-Brown potential and protein folding. In the more complex case of protein folding, we show the utility
of the VDE in understanding the conformational landscape of the villin headpiece domain, which is non-trivial due to the
prominent misfolded state observed. The latent space of the VDE captures the transitions among misfolded, unfolded, and
folded, and a MSM constructed using the VDE projection exhibits a significantly longer timescale for the slowest process
than the optimized one constructed from tICA-transformed data. We also show how biophysical insights into the network’s
decision-making can be attained via protein saliency mapping. For villin, we identify important Cα contacts that we predict
potentially play a role in misfolding-folding transitions. We anticipate that such results will prove useful in experimental design,
such as in FRET experiments, to decide how to effectively probe a protein to observe conformational change.

We also examine the generative nature of the VDE, showing that it can generate realistic dynamics when trained on
Brownian dynamics trajectories and has potential to extrapolate dynamics at temperatures it has not observed; however, as is,
the model is unable to recover proper thermodynamics nor is it able to generate new conformations. We hypothesize that at
least some of discrepancies observed in the generated free energies landscapes may be due to the simplicity of the Gaussian
prior used. Assuming Langevin dynamics, one might expect the noise term within the reduced coordinate to be a non-trivial
function of the original dynamics, rather than a Gaussian process. Another approach to improving trajectory generation may be
to train on trajectories sampled using replica exchange methods and condition on an additional temperature variable. We expect
that a better understanding of how VDE priors and parameters relate to simulation parameters will lead to using the VDE to
efficiently sample thermodynamics across different simulation conditions.

While the VDE shows much promise, there are a few reasons why we cannot recommend it as a complete replacement of
previous methods, such as tICA, just yet. First, when training deep autoencoders using a autocorrelation loss (i.e. as inspired by
the VAC), there is a noticeable dependence on batch size that arises during training. The autocorrelation, as well as the related
variational loss, attempts to calculate global equilibrium statistics, such as the exchange timescale for the slowest process.
However, for finite batch sizes, we might only observe a single event in that process within a given batch. This may lead to
underestimating the computed statistics since the network has no information about the rest of the dataset. This problem does
not arise in tICA or MSMs because timescales and other global statistics are only estimated after all the data has already been
processed. Another issue with using the autocorrelation loss, as implemented, arises from the reality that many processes can
occur with similar timescales. Each of these processes can be assigned highly similar autocorrelations, and thus might lead to
volatile training; although, we believe our compound loss function can somewhat attenuate this issue, since the network is
designed to keep track of global transition dynamics in addition to fitting the slowest processes.

One area for further study is the effect of the components of the loss function on the latent encoding obtained. Concurrent
work in our group has demonstrated that both the incorporation of the autocorrelation loss and the time-lagged reconstruction
loss are necessary for obtaining a latent space with maximal autocorrelation35.

All in all, VDEs and recent related work23, 24 herald exciting opportunities for bridging Markov models and deep learning.
We believe the expressive power of neural networks provides a natural solution to the choice-of-basis problem that plagues
many Markovian analyses, while the strong theoretical underpinnings behind MSMs allow us to select and potentially even
validate cross-validate neural architectures11, 50, ultimately allowing us to address fundamental questions in biophysics.

Availability
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Author Contributions
CXH, HKWS, MMS, and BEH performed analysis and wrote the manuscript. CXH, HKWS, MMS, BEH, and VSP conceived
of the methodology and edited the manuscript. VSP supervised the project.

11/14

https://github.com/msmbuilder/vde
https://github.com/msmbuilder/vde
https://github.com/msmbuilder/vde/tree/notebooks/
https://github.com/msmbuilder/vde/tree/notebooks/


Acknowledgements
We would like to thank J. Chodera, P. Eastman, E. Feinberg, A. Peck, and R. Sharma for insightful discussions. We acknowledge
funding from NIH grants U19 AI109662 and 2R01GM062868 for their support of this work. CXH and HKWS acknowledge
support from NSF GRFP (DGE-114747). MMS would like to acknowledge support from the National Science Foundation
grant NSF-MCB-0954714. This work used the XStream computational resource, supported by the National Science Foundation
Major Research Instrumentation program (ACI-1429830), as well as the Sherlock cluster, maintained by the Stanford Research
Computing Center.

Disclosures
VSP is a consultant and SAB member of Schrodinger, LLC and Globavir, sits on the Board of Directors of Apeel Inc, Freenome
Inc, Omada Health, Patient Ping, Rigetti Computing, and is a General Partner at Andreessen Horowitz.

References
1. Shirts, M. & Pande, V. S. Screen savers of the world unite! Sci. 290, 1903–1904 (2000).

2. Shaw, D. E. et al. Anton, a special-purpose machine for molecular dynamics simulation. Commun. ACM 51, 91–97 (2008).

3. Shukla, D., Hernández, C. X., Weber, J. K. & Pande, V. S. Markov state models provide insights into dynamic modulation
of protein function. Acc. Chem. Res. 48, 414–422 (2015).

4. Prinz, J.-H. et al. Markov models of molecular kinetics: Generation and validation. J. Chem. Phys. 134, 174105 (2011).

5. Husic, B. E. & Pande, V. S. Markov state models: From an art to a science. J. Am. Chem. Soc. (2018).

6. Noé, F. & Nüske, F. A variational approach to modeling slow processes in stochastic dynamical systems. Multiscale Model.
Simul. 11, 635–655 (2013).

7. Naritomi, Y. & Fuchigami, S. Slow dynamics in protein fluctuations revealed by time-structure based independent
component analysis: the case of domain motions. J. Chem. Phys. 134, 065101 (2011).
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