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Despite the innate complexity of the cell, emergent scale-invariant behavior is observed in many
biological systems. We investigate one example of this phenomenon: the dynamics of large complexes
in the bacterial cytoplasm. The observed dynamics of these complexes is scale-invariant in three
measures of dynamics: mean-squared displacement (MSD), velocity autocorrelation function and the
step-size distribution. To investigate the physical mechanism for this emergent scale-invariance, we
explore minimal models in which mobility is modeled as diffusion on a rough free energy landscape
in one dimension. We discover that all three scale-invariant characteristics emerge generically in the
strong disorder limit. (Strong disorder is defined by the divergence of the ensemble-averaged hop
time between lattice sites.) In particular, we demonstrate how the scale-invariance of the relative
step-size distribution can be understood from the perspective of extreme-value theory in statistics
(EVT). We show that the Gumbel scale-parameter is simply related to the MSD scaling parameter.
The EVT mechanism of scale-invariance is expected to be generic to strongly-disordered systems and
therefore a powerful tool for the analysis of other systems in biology and beyond.

I. INTRODUCTION

Although most biological phenomena have well-
defined and characteristic time and length scales, there
are intriguing examples of emergent scale-invariant be-
havior which are self-similar over a wide range of scales
[1–3]. In the context of random motion, diffusion is
the canonical scale-invariant effective model, but our ex-
perimental observations argue for the existence of other
generic scale-invariant effective models describing ran-
dom motion [4]. In this paper, we propose a natu-
ral mechanism for the emergence of non-diffusive but
scale-invariant behavior which can be understood from
the perspective of the statistical properties of the ex-
treme values of random variables [5, 6]. Extreme Value
Theory (EVT) has already been used in many interest-
ing contexts (e.g. [7–12]) and our results suggest that this
approach may be a powerful tool for understanding dy-
namics in the cell.

The movement of large complexes in the bacterial cy-
toplasm is an example of a biological system with emer-
gent scale-invariance [4]. Our laboratory and others
have previously characterized the dynamics of large ex-
ogenous complexes by tracking the motion of mRNA
molecules bound by the fluorescent fusion MS2-GFP
which forms complexes comparable in size to the ribo-
some [4, 13–18]. In the following discussion we shall
refer to these molecular complexes as particles. To avoid
the complications introduced by the tighter confinement
of the particle along the short axis of the rod-shaped
bacterium, we shall focus on the one-dimensional mo-
tion of the particle along the long axis of the cell. As
we have previously discussed [4], the observed particle
motion is scale invariant from the perspective of three
distinct metrics: (i) mean-squared-displacement analy-
sis (MSD), (ii) the step-size distribution and (iii) the ve-
locity autocorrelation function.

A. Existing models

Four mechanisms are commonly invoked to model
sub-diffusive phenomena: Continuous Time Random
Walk (CTRW), fractional Brownian motion (fBm), inho-
mogeneous media (e.g. spatial dependence of the dif-
fusion coefficient) and scaled-Brownian motion (time-
dependent diffusivity) [19, 20]. In each of these
models, there is a memory mechanism that results
in non-diffusive motion. In a CTRW, particles exe-
cute stochastic hops after a randomly-distributed wait
time. Power-law-distributed wait times lead to sub-
diffusive motion. In the closely related inhomogeneous
media model (patch model), particles diffuse through
quenched patches (i.e. static) with patch-specific diffu-
sion coefficients. For strong enough disorder, these
models result in sub-diffusive motion [21, 22]. (Both
CTRW and inhomogeneous media are closely related to
the trap model that we will discuss shortly.) In scaled-
Brownian Motion, the diffusion coefficient evolves in
time [20]. Finally, fractional Brownian motion (fBm) is
a process closely related to Brownian motion except that
that the motion increments (steps) are not independent
but power-law correlated [19, 20].

None of these mechanisms predict the observed phe-
nomenology without add mechanisms [4]. For instance,
of these models only fBm describes the observed anti-
correlation between successive steps in the motion [4].
But, the steps in an fBm are Gaussian distributed, in
contrast with the Laplace-distributed steps of the ob-
served dynamics. One practical approach to construct-
ing a model with all the desired properties is to combine
the fBm model with one of the mechanisms for generat-
ing a non-gaussian steps-size distribution. For instance,
Granick and coworkers have proposed a model in which
the diffusion coefficient is exponentially-distributed and
quenched (Exp-D) to generate Laplace-distributed steps
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[23]. We have recently proposed combining the fBm and
Exp-D models (fBm-Exp-D) to describe the observed dy-
namics [4]. Although this model can fit most of the
observed phenomenology [4], it is essentially an em-
pirical model where both the distribution of diffusion
coefficients as well as the fBm Hurst parameter are fit
to the data, but the model gives no insight into either
the source of the distribution of diffusion coefficients
nor the mechanisms that give rise to fBm. A more sat-
isfactory model would demonstrate how these scale-
invariant characteristics are a generic emergent property
of the complex systems. In this paper, we will explore a
family of models where the observed phenomena arise
generically in the strong disorder limit.

The paper is organized as follows: In Sec. II, we briefly
describe the experimental methods used to capture the
trajectory data. (We will present one new experimental
result in the analysis in Sec. IV F.) In Sec. III, we define
the models for particle mobility. In Sec. IV, we charac-
terize the models using numerical simulations. We de-
scribe how strong disorder in a barrier model appears
to generically generate the observed scale-independent
motion we observe. In Sec. V, we describe an analytic
framework for understanding the strong disorder limit.

II. EXPERIMENTAL METHODS

We use the MS2-mRNA system as a probe for the dy-
namics of large complexes in the cytoplasm. The system
(from I. Golding) consists of the E. coli strain DH5α-Z1
carrying two plasmids, the first encoding the GFP-MS2
protein fusion for labeling the mRNA and the second
low copy plasmid carry an inducible message with a 96-
tandem repeat of MS2 binding sequences [14].

A detailed experimental and imaging protocol is
given in Ref. [18]. In short, the cells were grown
overnight in Luria Broth media (LB) with the appro-
priate antibiotics, diluted and grown to approximately
mid-log phase. The cells were then induced with IPTG
(Isopropyl b-D-1-thiogalactopyranoside 1 µM) and aTc
(anhydrotetracycline 10 ng/mL) for 15 min at 30◦C.
A 2 mL innoculum of cell culture was spotted onto
agarose-media pads (2% Invitrogen UltraPureTM LMP
Agarose REF: 16520-050) and sealed with VaLP (1:1:1
vaseline:lanolin:paraffin). Time-lapse phase-contrast
and wide-field-fluorescence microscopy images were
collected at 1 second and 1 minute time intervals and
trajectory data were analyzed using the custom made
MATLAB software (The MathWorks, Natick, MA) Su-
perSegger [24]. For the 1-minute-time-interval data,
only full-cell-cycle cells were used for the analysis.

III. MODEL

The bacterial cytoplasm is an extremely crowded and
non-equilibrium environment [25] and it has recently
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FIG. 1. Panel A: The dynamics is modeled as transitions be-
tween adjacent occupancy states (integer sites) through tran-
sitions states (half-integer sites). Panel B and C: To under-
stand the generic model, we study two limiting cases: the trap
and barrier models. In the trap model, the occupancy states
have free energies −βX where X is distributed like a one-
dimensional chi-squared random variable and β is a parame-
ter controlling the disorder strength. In the barrier model, the
transition states have free energies βX . Panel D: A representa-
tive trajectory from each model is shown. The trap and barrier
models have qualitatively different dynamics. The trap model
shows persistent pausing behavior in the motion correspond-
ing to long-lived trapping events. The barrier model shows a
reflection behavior caused by large energy barriers. (Simula-
tion details are described in Sec. D 1.)

been proposed that it behaves like a glass [26]. Due
to the strong crowding in the cell, it seems natural to
investigate random walks in a disordered free-energy
landscape [19]. We model the cytoplasm as a one-
dimensional lattice. We represent integer sites in the lat-
tice as occupancy states and half-integer sites as transi-
tion states. (See Fig. 1A.) The free energy (in units of
kBT ) of each state is Gi. The hopping rate k and aver-
age hopping time τ from site i to sites i ± 1 have the
Arrhenius dependence:

ki→i±1 = τ−1 = t−1
0 exp(Gi −Gi± 1

2
), (1)

where t0 represents a fundamental relaxation time in the
system and the free energy difference in the exponent
represents the height of the free energy barrier to transi-
tion through the transition state. It is important to stress
that the free energies are effective quantities defined by
the transition rates.

We will treat the free energies as quenched disorder:
The free energies are static in time for each lattice site.
In reality, the disorder is dynamic, but this approxima-
tion is motivated by the assumption that there are bar-
riers whose dynamics are slower than the dynamics of
interest (In fact, this assumption has significant experi-
mental support. We have explicitly investigated the dy-
namics of nearly all non-diffuse proteins in E. coli and
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shown that there is structural disorder that persists on
times scales comparable to the cell cycle [27].) In the
most general model, the free energies of both the occu-
pancy and transition states are represented as random
variables [19]. But, it is useful to consider two limit-
ing cases: In the trap model, the depth of the transition
state is stochastic whereas the free energies of all tran-
sition states are 0. In the barrier model, the free energies
of the barriers are stochastic whereas the free energies
of the occupancy states are 0 (Fig. 1C). These models
were originally studied in the context of electron trans-
port in the 1980s [19, 28, 29] and it is already well known
that strong disorder, defined by the divergence of the
disorder-averaged hopping time:

〈τ〉G →∞, (2)

results in sub-diffusion [19]. It is necessary to choose
a semi-infinite interval distribution for the free energy
so that the traps and barriers preserve their nature
(Gi± 1

2
> Gi) and to achieve the strong disorder limit. A

canonical distribution with these properties is the one-
dimensional chi-squared distribution, multiplied by a
unitless disorder strength β. As we will show, the ex-
plicit functional form of the free energy distribution will
not be of central importance. It is straight-forward to
show that in the chi-squared disorder model, β ≥ 1

2 sat-
isfies the definition of strong disorder (Eqn. 2).

IV. SIMULATED RESULTS

We begin our investigation with a numerical exper-
iment: We simulate particle dynamics in the trap and
barrier models. (A detailed description of the simula-
tions can be found in the appendix, Sec. B.) We compare
the simulated characteristics of the motion to the exper-
imental characteristics we have previously described in
detail [4, 18].

A. Disorder strength determines MSD scaling

A common metric for the analysis of particle trajec-
tories is the Mean Squared Displacement (MSD), which
takes the form of a power law for scale-invariant sys-
tems: 〈[

∆x2(t)
]
t=0

〉
G
≈ 2 D δtα, (3)

which we will call E-MSD for ensemble-averaged MSD
where the angle brackets represent an ensemble aver-
age, ∆x(t) ≡ x(t+δt)−x(t) is the displacement over lag
time δtwith start time t, α is the scaling exponent andD
is a generalized diffusion coefficient. The motion is char-
acterized by the scaling exponent α: If α = 1, the motion
is diffusive and α < 1 corresponds to sub-diffusive mo-
tion.
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FIG. 2. Panel A: Disorder strength controls mobility. Sim-
ulated MSD curves for a range of disorder strength β as a
function of lag time δt. (Simulation details are described in
Sec. D 2.) Panel B: MSD scaling coefficient α versus disorder
strength β. The dynamics in the barrier model were diffusive
(α = 1) for β < 1

2
and sub-diffusive for β > 1

2
. The disorder

strength is α ≈ β−1 in the strong disorder limit. (Simulation
details are described in Sec. D 3.) Panel C: Ergodicity. Simu-
lations suggest that the barrier model is ergodic: E-MSD and
T-MSD are equal. The trap model is non-ergodic: There is a
large mismatch between E-MSD and T-MSD due to aging phe-
nomena. (Simulation details are described in Sec. D 4.)

To understand the relation between disorder strength
and the dynamics, we compute the MSD for different
disorder strengths in both the barrier and trap models.
(See Fig. 2 for simulations of the barrier model. Simu-
lations of trap model are analogous but not shown.) As
the roughness of the free energy landscape increases, we
expect the motion to slow down and result in a reduc-
tion in the MSD. This reduction could be realized via
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FIG. 3. Velocity autocorrelation function (VAC) for trap
and barrier model. The velocity autocorrelation function
Cv(∆t; δt) is shown for the trap and barrier model for strong
disorder, where ∆t is the delay time and δt is the lag time over
which the displacements are calculated. The barrier model
shows excellent qualitative and quantitative agreement with
experimental observations (δt = 10 s). The trap has no anti-
correlation between successive steps, and therefore is incon-
sistent with observations. (Simulation details are described in
Sec. D 5.)

two distinct changes in the MSD: A reduction in the ef-
fective diffusion coefficient D or the scaling exponent α.
For weak disorder β < 1

2 , only the effective diffusion co-
efficientD decreases with increasing disorder strength β
and the scaling exponent α = 1 is diffusive at long times
[30]. But, for strong disorder, β > 1

2 , the scaling exponent
α decreases with increasing β. Simulation suggests a
simple approximate relation between disorder strength
and the scaling exponent in the strong-disorder limit:
α ≈ β−1. (See Fig. 2B.) In conclusion, both the trap and
the barrier model can match the observed sub-diffusive
MSD.

B. Ergodicity

Another key characteristic of sub-diffusive motion is
ergodicity: the equivalence of temporal and ensemble
averaging. The failure of these two averages to be
equivalent is typically interpreted to reveal an aging
phenomena [19]. To probe the ergodicity we compare
an ensemble-averaged MSD (Eqn. 3) to the time time-
averaged MSD (T-MSD):〈

∆x2(t)
〉
t,G

, (4)

which are averaged over both the start time as well as
ensembles.

As we have previously discussed [4], the experimen-
tal data reveals little ergodicity breaking on short times
scales and some on timescales comparable to the cell
cycle which is consistent with the large-scale cellular
changes that occur on these time-scales. (See the inset
in Fig. 2C) To test the trap and barrier models, we com-
puted both the ensemble and time-averaged MSDs in
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FIG. 4. Panel A: The distribution of relative step sizes is ap-
proximately scale-invariant in the strong disorder limit. The
simulated distribution function for the barrier model is shown
for lag times varying over four orders of magnitude. All
distribution functions are Laplace-like in agreement with the
experimental data (δt = 10 s). (Simulation details are de-
scribed in Sec. D 6.) Panel B: Strong disorder (β > 1

2
) leads to

Laplace-like distributions while weak disorder (β < 1
2

) results
is Gaussian-like step-size distributions. (Simulation details are
described in Sec. D 7.) Panel C: In the strong disorder limit,
the relative step-size distribution is insensitive to the distribu-
tion of the random free energies G, which is demonstrated by
the first three disorder models: Chi-squared, Exponential and
Gumbel. For weak disorder (Normal model), Laplace-like dis-
tributions can still be observed at short lag times (red dots)
but at long times, the distribution approaches Gaussian (red
dashed). (Simulation details are described in Sec. D 8.)

the two models. Simulations reveal strong ergodicity
breaking in the trap model and no ergodicity breaking
in the barrier model. (See Fig. 2C.) The mechanism of er-
godicity breaking (i.e. aging) in the trap model is already
well known in the context of the closely related CTRW
[19]: Over time, the number of trapped particles grows,
leading to a reduction in the average mobility. Although
ergodicity breaking is observed in experiment, it is not
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significant at short times, in contrast to the predictions
of the trap model. Therefore the observed absence of
ergodicity breaking at short times is consistent with the
barrier model but not the trap model.

C. Anti-correlated motion

Although both trap and barrier models are sub-
diffusive, the trajectories shown in Fig. 1D are clearly
distinct at a qualitative level. The trap model shows
characteristic long-lived pausing events which were
qualitatively absent in the observed traces. (Experimen-
tal trajectories are shown in Ref. [18].) In contrast, the
presence of barriers has a much more subtle effect on
the motion. Barriers lead to the reflection of the par-
ticles but stochastic changes in direction are present in
canonical Brownian motion, making the reflection phe-
nomenon difficult to distinguish from regular brownian
motion by inspection. We find that the reflection phe-
nomenon does lead to a clear statistical signature: nega-
tive velocity autocorrelation, as discussed below.

A canonical method to characterize the memory is
computing the correlation between steps using the ve-
locity autocorrelation function (VAC–i.e. a displacement
correlator):

Cv(∆t; δt) ≡ 〈∆x(t) ∆x(t+ ∆t)〉G / 〈 ∆x(t) 〉2G , (5)

where ∆x is the displacement over lag time δt and the
expectation is over multiple ensembles of disorder (G).
As we have previously reported, the observed velocity-
autocorrelation function Cv(∆t; δt) is negative for ∆t >
δt and roughly scale invariant [4]. (See Fig. 3.)

To test the barrier and trap models, we simulated
the VAC in the two models. The predictions of the
trap model do not match experiment: The VAC is 0 for
∆t > δt. On the other hand, the barrier model predic-
tions are in excellent quantitative agreement with exper-
iment. (See Fig. 3.) The VAC is both negative and scale
invariant (depends only on ∆t/δt) and has no additional
fitting parameters since the disorder strength β is de-
termined from fitting the MSD. The simulations clearly
support the barrier and are inconsistent with the trap
model.

The observation of a negative velocity-autocorrelation
function is often interpreted to imply that the medium
is viscoelastic [16], but this is an emergent rather than
a microscopic characteristic of the barrier model. The
agreement between the observed and predicted velocity
autocorrelation process is unremarkable from another
perspective: For stationary processes, the velocity auto-
correlation function is half the second derivative of the
MSD. In the context of strong disorder, the trap model is
non-stationary and therefore their velocity autocorrela-
tion function and MSD are not equivalent. For this rea-
son, it is essential to measure and analyze both the MSD
and the VAC independently [4, 16].

D. Step sizes are Laplace distributed for strong disorder

The last striking scale-invariant feature of the motion
is the relative step-size distribution [4]:

p(∆x/σ; δt) ≡ 〈p(∆x/σ; δt)〉G , (6)

measured by histogramming step sizes from multiple
trajectories and computed by averaging over the ensem-
ble. To test the barrier model, simulated the disorder-
averaged step-size distribution. In the strong disorder
limit (β > 1

2 ), we discovered that the step-size distribu-
tion is Laplace-like and scale invariant (Fig. 4AB), qual-
itatively matching the observed distribution. Since the
choice of the chi-squared distribution was motivated
by convenience not physics, the agreement between the
model and observations suggest that the Laplace-like
step-size distribution must be universal. To investi-
gate this hypothesis, we simulated a number of other
distributions: exponential, normal and Gumbel. In
all cases, strong disorder resulted in step-size distribu-
tions which are Laplace-like, whereas weak disorder re-
sults in Gaussian-like distributions in the long time limit
(Fig. 4C). These simulations suggest a Renormalization-
Group behavior: The functional form of the macroscopic
step-size distribution is insensitive to the underlying mi-
croscopic distribution of the free energy barriers. In
summary, the barrier model naturally reproduces the
step size distribution in the strong disorder limit with-
out the need to tune the distribution of barrier free ener-
gies.

E. Testing the quenched diffusion constant model

We have previously proposed that the mechanism
that gives rise to the observed Laplace distribution is
an exponential distribution of quenched diffusion coef-
ficients. This model predicts that the distribution of step
sizes within a single trajectory is Gaussian. The Laplace
distribution arises from pooling the data from multi-
ple trajectory with exponentially distributed quenched
diffusion coefficients. Unfortunately the step-size his-
tograms for individual trajectories are not well sampled,
but it is straightforward to analyze this question statis-
tically. Consider two competing models for the step-
ping process: (i) Steps are Gaussian distributed around
0 with a trajectory-specific variance σ2

I versus (ii) Steps
are Laplace distributed with an trajectory-specific de-
cay rate λI . To measure the relative statistical support
for the two models we use information-based inference
[31, 32]: We compute the Akaike Information Criterion
(AIC) for the two models. The model with the small-
est AIC value is selected. (The expression for AIC in
the respective models has a simple analytic form that
can be written in terms of empirical expectations over
moments of the observed steps, as shown in Appendix
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Sec. A 1.) The difference in the information criteria is:

AIC(i) −AIC(ii) = 1.8× 103 nats, (7)

strongly favoring the Laplace over the Gaussian dis-
tributed model. (The relative statistical weight, the
Akaike weight, is the exponential of ∆AIC [31, 32].)

Since a trajectory-specific diffusion coefficient is not
required to generate Laplace-distributed steps in the

barrier model, it is therefore informative to test whether
the data supports trajectory-specific models a single
model describing all steps. Again, we can compute the
difference in AIC for a (iii) single decay constant model
versus (ii) a trajectory-specific decay constant model:

AIC(iii) −AIC(ii) = 3.4× 104 nats, (8)

strongly favoring the trajectory specific-decay-constant
model. This evidence suggests that there is potentially
particle-to-particle or cell-to-cell variation, a conclusion
that is not surprising in a biological context.

F. Conditional probability and memory

The form of the MSD, VAC and step-size distribution
were all known prior to our proposing the barrier model
to describe the mobility. We wished to predict the de-
pendence of an uncharacterized metric of motion to test
the barrier model. The velocity-autocorrelation func-
tion can be understood as a moment of the conditional
probability distribution for step-size: p[∆x(t+ δt)|∆x(t)]

which provides a more informative test than the velocity
autocorrelation function alone. Furthermore, the mod-
els make qualitatively different predictions for the dis-
tribution, as is shown in Fig. 5A. Since competing mod-
els make qualitatively different predictions for the struc-
ture of the conditional probability, we believe this dis-
tribution is a powerful tool for distinguishing between
models of the dynamics.

To test our model, we computed the Kernel-Density-
Estimate (KDE) of the conditional probability distribu-
tion for step-size and compared it to the models. Both
the barrier and fBM-Exp-D model [4] provides excellent
qualitative agreement with the observed distribution
(Fig. 5B). In both the observed data and the model, there
is a strong diagonal band which represents the charac-
teristic anti-correlation between subsequent steps.

G. Mechanism for sub-diffusion

To understand the mechanism for sub-diffusion, it
is informative to compute the Green’s function p[x(t +
δt)|x(t)] without averaging over disorder. (See Fig. 6.)
The characteristic feature of the Green’s function is the
block-diagonal structure which is the consequence of
the largest stochastic barriers. The physical mechanism
for this structure can be understood intuitively: In the
strong disorder limit, particles rapidly jump over barri-
ers with hop times τ less than the lag time δt, but the par-
ticle motion is limited by the presence of barriers where
the hop time is much longer than the lag time (τ � δt).
The uniformity of the probability density in the blocks
demonstrates that the motion is limited by these large
barriers for strong disorder (β � 1

2 ).
Qualitatively, the motion can be understood as fol-

lows: As the time-scale increases, the free energy of the
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largest barrier that can be jump increases logarithmi-
cally. Displacement and free energy have an analogous
relation: The largest free energy encountered grows log-
arithmically with displacement.

H. Mobility in Dim > 1

So far, we have worked in one spatial dimension,
along the long axis of the cell, to avoid consideration
of the confinement along the short axis. An important
consideration is to consider how our results general-
ize to three dimensions. The dynamics of random un-
correlated barrier models changes fundamentally in the
long-lag-time limit in larger dimension: No matter how
strong the disorder, large barriers can be avoided by
traveling a circuitous path. Barrier models are therefore
always diffusive at sufficiently long times in dimension
greater than one [33]. These models are qualitatively
similar to obstructed diffusion (obstacles, Lorentz-like
and fence models [34]). However, we hypothesized that
dynamics observed in one dimension might still be ap-
plicable for finite lag times, which is supported by sim-
ulation. (See Fig. 7.) In practice, the crossover between
sub-diffusive dynamics and diffusion may be extremely
long. On shorter times, the qualitative effect of the
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FIG. 7. Barrier models in higher dimension. Even though
motion is diffusive at sufficiently long lag times, the crossover
time between sub-diffusion and regular diffusion may be ex-
tremely long for strong disorder. The step-size distribution for
very strong chi-squared disorder is shown above. The EVT-
shape is preserved even in the longest lag times shown. (Sim-
ulations details in Sec. D 12.)

added dimensions is to renormalize (i.e. reduce) the ef-
fective one-dimensional barrier strength.

V. ANALYTIC RESULTS

The scale-invariant and generic properties of the mo-
tion observed in simulation suggest that a simple ana-
lytic framework many describe many characteristics of
the motion. In this section, we will describe just such
an approach that leverages results from extreme value
theory.

A. Slowest-step model

The observation from simulation that the dynamics
are limited by the slowest step, motivates a simple
model for the step-size distribution roughly analogous
to the Beer-Lambert law (e.g. [35]). Consider the proba-
bility of the particle escaping over n barriers with lattice
spacing x0: If the motion is limited by the largest barrier,
we can approximate this probability as the probability
that all n barriers are smaller than the largest barrier g
that can be jumped in lag time δt:

Pr{∆x > nx0} ≈ Pr{G1...n < g} = [FG(g)]n, (9)

where the FG is the CDF for barrier height G. If we sub-
stitute the relative displacement |∆x| = nx0 for the bar-
rier number n, the pdf for for displacement is a Laplace-
like distribution:

〈p(∆x)〉G ≈ 1
2λ e

−λ|∆x|, (10)

as observed, where the decay constant is specified by the
CDF:

λ ≡ −x−1
0 logFG(g) (11)
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The barrier free energies for two realizations of G (β = 1) are
plotted versus position on a linear-log plot. The EVT curve
represents the extreme value prediction for the height of the
maximum barrier as a function of displacement (∆x/x0).

where x0 is the lattice size and step-size variance:〈
∆x2

〉
G

= λ−2 = [x0/ logFG(g)]2. (12)

A more rigorous derivation and an exact expression for
Eqn. 10 are given in the Appendix. (See Eqn. A19.) The
slowest-step model can therefore be understood to im-
ply the universal Laplace-like shape of the step-size dis-
tribution function. (See Fig. 8.) The Laplace-like step-
size distribution had previously been proposed in the
barrier model, but on a purely numerical basis [36].

The slowest-step model also explains strong-
disorded-like behavior of normally distributed barriers
(weak disorder) at short lag times. In this case, the
disorder does not satisfy the strong disorder condition
and therefore the step-size distribution is Gaussian and
MSD is diffusive in the long time limit. However, for
large variance, the step-size distribution is Laplace dis-
tributed and the MSD is sub-diffusive for intermediate
times, as was previously reported [37]. (See Fig. 4C.)
This phenomenology arises since the motion is limited
by the slowest step on short times, but not long times.

B. Extreme value theory

Does the slowest-step model also give rise to a scale-
independent MSD? The fact that the behavior is domi-
nated by the largest barrier suggests the use of Extreme
Value Theory (EVT) [5, 6]. In loose analogy to the cen-
tral limit theorem, the Fisher-Tippett-Gnedenko theo-
rem states that the CDF for the maximum G(n) of n in-
dependent and identically distributed random variables
G in the large n limits takes the form of the generalized-
extreme-value distribution:

F (g; ξ, σ, µ) =

{
exp[−(1 + ξs)−1/ξ] ξ 6= 0

exp[− exp(−s)] ξ = 0
, (13)

if the limit exists, where s ≡ (g − µ)/σ, which depends
only on three parameters: a location µ, scale σ and shape
ξ [5, 6]. To exploit the EVT result, we coarse grain the
system. We group adjacent lattice sites to generate a
coarse-grained lattice: x0 → x′0 = Λ x0. We will assume
that in the coarse-grained system: (i) the motion is still
limited by largest barrier and (ii) the dilation Λ is large
enough such that the Generalized-extreme-value distri-
bution (Eqn. 13) can be substituted for FG′ in Eqn. 12.
Finally, the limiting barrier height g scales with lag time
δt:

g ≈ log δt/t′0 + µ, (14)

where t′0 is a constant time scale that absorbs the location
parameter µ and fundamental relaxation time t0. Comb-
ing this with Eqns. 13 and 12 gives an expression for the
E-MSD:

〈
∆x2

〉
G
≈ 2x′20

{
[1 + (ξ/σ) log δt/t′0]2/ξ ξ 6= 0

(δt/t′0)2/σ ξ = 0
, (15)

where ξ is the shape parameter and σ is the scale param-
eter of the generalized extreme value distribution.

We now consider three conditions on the shape pa-
rameter: ξ > 0, ξ < 0 and ξ ≈ 0. (i) If ξ < 0, the dis-
tribution of G falls into the basin of attraction of the (re-
versed) Weibull distribution. In this case G is bounded
from above and therefore the strong disorder assump-
tion (Eqn. 2) is violated and the motion becomes diffu-
sive in the long lag time limit. (ii) If ξ > 0, the limit-
ing distribution is Fréchet (e.g. the distribution of G has
power-law tails) and the MSD grows more slowly than a
power-law. In this case, the effective MSD scaling expo-
nent decreases with time. (iii) Finally, for disorder where
the limiting distribution is Gumbel-like (ξ ≈ 0), the MSD
is scale-invariant with an MSD scaling parameter:

α = 2/σ, (16)

related to the EVT scale parameter σ. In this case, the
E-MSD is scale invariant:〈

∆x2
〉
G
≈ 2D δt2/σ, (17)

and the lattice spacing x′0 and time scale t′0 are absorbed
into the generalized diffusion coefficient D in the MSD
formula. In the special case that the disorder is mod-
eled by a scaled chi-squared, α = β−1 as was observed
empirically in simulation. (See the Appendix Sec. A 3.
An analogous limiting expression can be derived for the
MSD using other methods [28].)

In summary, a quenched barrier model does generi-
cally result in a scale-invariant MSD, provided that the
distribution of barrier free energies is strongly disor-
dered (but without power-law tails). This analysis re-
veals that the EVT scale-parameter for the distribution
of barrier free energies determines the MSD scaling ex-
ponent (Eqn. 16).
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VI. DISCUSSION

The observed particle motion is scale invariant from
the perspective of three metrics of the dynamics: (i)
mean-squared-displacement analysis (MSD), (ii) the
step-size distribution and (iii) the velocity autocorrela-
tion function [18]. We have demonstrated that all three
of these properties arise genericly in the context of the
quenched barrier model in the strong disorder limit. In
particular, the anti-correlation of successive steps is a
key signature of both the barrier model as well as the ob-
served data. For instance, the competing trap model is
both sub-diffusive and has a Laplace-like step-size dis-
tribution (in the strong-disorder limit), but shows no
anti-correlation in successive steps (Fig. 3). Although
we previously modeled this anti-correlation empirically
using a fBm mechanism [4], this phenomenology is an
emergent feature of barrier models. In summary, al-
though our previous work demonstrated that most of
the observed phenomenology could be fit to a complex
chimera of the fBm and Exp-D models, this observed
phenomenology arises generically in the context of bar-
rier models. Furthermore, we tested whether the mo-
tion was consistent with a quenched diffusion coeffi-
cient combined with gaussian distributed steps, as pre-
dicted by the fBm-Exp-D model. Even at the single tra-
jectory level, the step size distribution was better mod-
eled by a Laplace distribution, as predicted by the bar-
rier model (Sec. IV E).

We have made a number of formal assumptions in our
model: (i) We first assumed that the free energy land-
scape is quenched, or static in time. From a practical
perspective, it is necessary only that the dynamics of the
quenched disorder is slow compared to the observed
dynamics. If the barriers transition from quenched
(static) to annealed (dynamic) on a short time scale, the
particle motion transitions back to diffusive on longer
timescales (e.g. [23]) and the velocity autocorrelation
function would be zero. (ii) We also assume a strong-
disorder limit in which the quenched-disorder-averaged
hop time diverges. This is a convenient formal statistical
assumption which can be violated without significant
changes in the predictions of the model. The relevant
physical assumption is that dynamics is limited by the
slowest step, as is the case for normally distributed bar-
riers with a short lag-time (Fig. 4C). (iii) The most con-
sequential assumption is the effective one-dimensional
motion. One-dimensional barriers are interpreted as ef-
fective barrier heights between positions along the long
axis of the cell. The ability of the particles to take cir-
cuitous routes in higher dimension will always result in
diffusive motion in the asymptotic large-time limit [19].
This crossover is observed in glasses (dim > 1) [38] as
well as simulations of the barrier model, where the long-
time-limit dynamics transitions between sub-diffusive
and diffusive. (Not shown.) Like-wise, the step-size dis-
tribution can be initially described by a Laplace-like dis-
tribution at short times before transitioning to a Gaus-

sian distribution at very long times (See Fig. 7). But
these properties do not compromise the applicability
of the barrier model in the context of our experiments.
The finite length of the cell and cell cycle prevents an
analogous long-time limit from being characterized ex-
perimentally. Furthermore, in the bacterial system, the
confinement due to the cell membrane and nucleoid ex-
clusion may act to make the dynamics effectively one-
dimensional in the long-time limit [18].

A number of different physical mechanisms could
generate the hypothesized rough free-energy landscape. A
trap-like landscape is a natural model for particles that
can bind with a distribution of binding free energies
(e.g. transcription factors binding the chromosome). The
trap model applies because the forward and backward
jump rates are expected to be equal since hopping is lim-
ited by unbinding. On-the-other-hand, a barrier model
would be a natural model for crowding and exclusion
phenomena where entropic barriers frustrate the transi-
tion between open sites on the lattice (e.g. [35]). The for-
ward and backward hop rates are expected to be distinct
since these transitions hop over different configurations
of crowders. (See Fig. 1.)

A. More realistic models

The proposed model is not intended to capture every
aspect of the dynamics, but should be understood as an
attempt to study a minimal model with the characteris-
tics of the observed dynamics. For instance, the exclu-
sion of particles from the nucleoid results in biases in
the motion on long time-scales, which we have already
characterized in some detail [18]. Furthermore, in many
analogous tracking experiments, there does appear to be
some ergodicity breaking [39, 40]. This phenomenology
is naturally present in the models we have discussed by
introducing traps and barriers. In many systems there
may also be a significant degree of quenched disorder
in the diffusion coefficient itself, consistent with our sta-
tistical analysis in Sec. IV E.

B. Barrier versus fBm models

The barrier model shares many phenomenological
features with fBm and therefore it is natural to ask
whether the barrier model is one specific realization of
a more general fBm class of models. Barrier and fBm
models are distinct. (E.g. fBm have Gaussian step-size
distributions.) Another key distinction is their motiva-
tion. Barrier models are easily motivated by the under-
lying physics and there are no hidden states or variables
since the memory of the system is encoded in the par-
ticle position. In contrast, fBm models are essentially
phenomenological in nature [20, 41], although they can
be justified in some cases (e.g. [42]). Therefore the barrier
model provides a simple, but yet non-canonical, mecha-
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nism for the emergence of the macroscopic phenomenon
of velocity anti-correlation.

C. Strong disorder is generic in biology

The EVT mechanism may predict emergent scale-
invariant behavior in other systems since strong disor-
der appears to be ubiquitous in biology. For instance,
the motion of lipids and proteins in the membrane ap-
pear to show a barrier-hopping like phenomenology in
some contexts. Lipids and membrane proteins appear to
undergo relatively rapid motion in small confined mem-
brane domains, then exhibit a slower hopping behav-
ior between neighboring domains [43–45], which have
been described by fence models [34]. If the interdomain
hopping rate is strongly disordered, we would expect
to see scale-invariant behavior due to an EVT mecha-
nism. (Strong quenched disorder in the hopping rates
is the essential assumption here since, in some simple
simulated lipid systems, the dynamics appears to show
relatively small deviations from diffusion [46, 47].) An-
other interesting potential application is chemical kinet-
ics. In metabolism, reactions are often limited by the
slowest step. If we treat these effective reaction rates
as random variables, EVT might be used to predict the
scaling of average reaction rate with reactant number.
In the context of evolution, EVT has already been ap-
plied to describe fitness and beneficial mutations [9–11].
The framework may also have interesting applications
beyond dynamics as well. For instance, high-resolution
characterizations of DNA flexibility have previously re-

ported bending probabilities with Laplace-like distribu-
tions suggesting that similar arguments may apply in
mechanical contexts as well when studying the flexibil-
ity of DNA molecules with sequence dependent flexibil-
ity [48].

D. Conclusion

We have demonstrated that diffusion on a quenched
rough free-energy landscape with strongly disordered
barriers naturally gives rise to motion with the same
scale-invariant dynamics observed for large complexes
in the bacterial cytoplasm. In the strong disorder limit,
this barrier model generically predicts all three observed
scale-invariant phenomena: (i) MSD, (ii) relative step-
size distribution and (iii) the velocity autocorrelation
function as well as making other non-trivial predictions
about the dynamics. We explain the emergent scale-
invariant properties of model using an Extreme Value
Theory framework. We expect this approach will be ap-
plicable to describing dynamics in many other biological
systems.
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Appendix A: Analysis

1. Model selection by information-based inference

a. Information-based model selection

Let the candidate probability distribution function be q(X|θ) where X are the observations and θ ∈ Θ are the pa-
rameters. (For simplicity, we will consider only models where the steps are independent and identically distributed
over a trajectory.) The Shannon information is defined:

h(X|θ) ≡ − log q(X|θ). (A1)

The maximum likelihood (minimum information) estimate for the parameters are defined:

θ̂X ≡ arg min
θ
h(X|θ), (A2)

and the minimum information is h(X|θ̂X). The unbiased estimator of the information for a second data set (of the
same sample size and structure as X), generated by the same stochastic process and encoded by parameters θ̂X is
the Akaike Information Criterion (AIC) [31, 32]:

AIC(X) = h(X|θ̂X) +K (nats), (A3)

where K is the complexity which is equal to the model dimension (K = dim Θ) for a regular statistical model in
the large sample size limit [31, 32]. The model with the smallest AIC value is selected. (See the statistical weight,
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defined below.) The complexity corrects for the overfitting phenomenon and facilitates the direct comparison of
models of different model dimension. AIC was originally defined in information units of demi-nats instead of nats
(base-e). The historical definition therefore contains an extra factor of two multiplying the RHS of Eqn. A3 [31, 32].
The Akaike weight (relative statistical weight) for model i is:

wi ∝ e−AICi . (A4)

The information-based approach is particularly powerful in the context of selecting between multiple non-nested
models [31, 32].

b. Empirical expectations

Let ∆xiI be the ith step in the Ith trajectory, the number of steps in the Ith trajectory be nI , the number of trajec-
tories be N and the total number of steps in all trajectories be nT. We define empirical expectation of function f over
trajectory I :

f(∆xI) ≡ n−1
I

ni∑
i=1

f(∆xiI), (A5)

and over all trajectories:

f(∆x) ≡ n−1
T

N∑
I=1

nIf(∆xI). (A6)

c. Gaussian distribution with trajectory-specific variance

For the Gaussian distribution with trajectory-specific variance σ2
I , the total information for trajectory I is:

h(∆xI |σ2
I ) =

nI
2

[
log 2πσ2

I +
∆x2

I

σ2
I

]
. (A7)

It is straight forward to show that σ̂2
I ≡ ∆x2

I by minimizing h. AIC for trajectory I is:

AIC(∆xI) =
nI
2

[
log 2π∆x2

I + 1
]

+ 1, (A8)

where K = 1 since there is one unknown parameter (σ2
I ). AIC for all N trajectories is computed by summing over

the individual trajectories:

AIC(∆x) =

N∑
I=1

nI
2

[
log 2π∆x2

I + 1
]

+N. (A9)

d. Laplace distribution with trajectory-specific decay constants

For the Laplace distribution with trajectory-specific decay constant λI , the information for trajectory I is:

h(∆xI |λI) = nI

[
log

2

λI
+ λ|∆xI |

]
. (A10)

It is straight forward to show that λ̂I ≡ |∆xI |
−1

by minimizing h. AIC for trajectory I is:

AIC(∆xI) = nI

[
log 2|∆xI |+ 1

]
+ 1. (A11)

where K = 1 since there is one unknown parameter (λI ). AIC for all N trajectories is computed by summing over
the individual trajectories:

AIC(∆x) =

N∑
I=1

nI

[
log 2|∆xI |+ 1

]
+N. (A12)
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e. Laplace distribution with one decay constants

For the Laplace distribution with a single λ the computation is analogous to that shown above:

AIC(∆x) = nT

[
log 2|∆x|+ 1

]
+ 1, (A13)

where K = 1 since there is one unknown parameter λ.

f. Comments

Note that since ∆x has units, AIC has a unit-dependent offset which drops out when difference of AIC are
computed. A convenient check of the information-based statistical approach is to compute ∆AIC for simulated
Gaussian and Laplace distributed data with the same structure as the observed data. For Laplace distributed
data, ∆AIC = 1.5 × 104 nats, strongly favoring the Laplace-distributed model. For Gaussian distributed data,
∆AIC = −1.3× 104 nats, strongly favoring the Gaussian-distributed model, as expected.

2. Exact treatment of slowest step model

We shall assume that the particle begins at lattice site i = 0 and that over lag time t the particle equilibrates over
the lattice sites between the trapping barriers at positions−J andK respectively. Let ε be the probability that a given
barrier is too large to hop. The probability for the limiting barrier positions are:

pJ(j − 1
2 ) = ε(1− ε)j−1, (A14)

pK(k − 1
2 ) = ε(1− ε)k−1, (A15)

respectively with ∆L(J,K) = J + K accessible lattice sites, where j and k are natural numbers and the barriers are
located at half-integer positions. The equilibration assumption implies that the probability of occupancy of a site
between the limiting barriers is:

p(i| − J,K) = ∆L−1. (A16)

We then compute the marginal likelihood p(i) by marginalizing over J and K using probabilities in Eqns. A14 and
A15:

p(i) =

∞∑
k=1,j=|i|+1

pJ(j − 1
2 )pK(k − 1

2 )

∆L(j − 1
2 , k − 1

2 )
, (A17)

=

∞∑
k=1,j=|i|+1

ε2(1− ε)j+k−2

k + j − 1
, (A18)

= e−λ
′ |i| ·

∞∑
k=1,j=1

ε2(1− ε)j+k−2

|i|+ k + j − 1
, (A19)

where λ′ ≡ − log(1 − ε). The dominant Laplace-like scaling with lattice-site displacement i is clear from the first
factor in Eqn. A19. The second factor has a weaker dependence on i. By Laplace-like distribution, we mean the the
log probability has the following scaling in the lattice displacement i:

log p(i) = −λ′ |i|+ O(log |i|), (A20)

where Odenotes the order of scaling.

3. Gumbel parameters for chi-squared distribution

In this section, we compute the scale and location parameters for the chi-squared distribution. The cumulative
distribution for a chi-squared is:

Prχ2
1
{X > x} = Fχ2

1
(x) = Γ−1( 1

2 ) γ( 1
2 ,

x
2 ), (A21)



13

where Γ is the gamma function and γ is the lower incomplete gamma function γ(s, z). To find the Gumbel location
and scale parameters, we solve the following approximate equality for large x and N :

exp
[
−N exp

(
−x−µσ

)]
≈ − logN + x

2 + log Γ(s)− (s− 1) log logN + ... (A22)

Matching up terms on the right and left, we have :

σN ≡ 2, (A23)
µN ≡ 2 logN − log logN − 2 log Γ( 1

2 ) + ... (A24)

We now convert to the free-energy random variable G ≡ βX , which β is the variance. The re-parameterization
results in

δg ≡ 2β, (A25)
g0 ≡ 2β

[
− 1

2 log logN − log Γ(1
2 )
]

+ ... (A26)

which leads to a simple result for the scaling exponent: α = β−1, i.e. the inverse of the disorder strength for strong
disorder.

Appendix B: Simulations

For all simulations, we begin with the initial condition that all sites on the lattice have equal initial probability.

1. Master Equation

The master equation describing the lattice hopping model is:

ṗi = ki−1/2pi−1 + ki+1/2pi+1 − (ki−1/2 + ki+1/2)pi, (B1)

where pi is the probability distribution of the particles at the occupancy state i and ki+1/2 is the hopping rate through
the transition state i+ 1/2. We use periodic boundary conditions at the end points. To solve the master equation for
individual realizations of the quenched disorder, we use the built-in matrix exponentiation in MATLAB (expm):

p(t; {G}) = eK({G})tp(0), (B2)

where K is the rate matrix given free energies G.

2. Gillespie Simulation

For the simulations of the trajectories we use a stochastic Gillespie simulation [49, 50]. To obtain the next occupancy
site at regular time intervals, we use a modification of the Gillespie simulation [51]. In short, for each time step
∆t′ we define the total hopping rate ktot, equal to the sum of the hopping rates to every neighboring lattice site.
The probability that the particle has transitioned to a neighboring state during the time step ∆t′ is dictated by
CDF P (∆t′) = 1 − exp(−ktot∆t

′). The transition occurs if a random number r1, uniformly distributed between
0 to 1, is smaller than the CDF P (∆t′). If the transition is to take place, the new occupancy state is found using a
second random number r2, evenly distributed from 0 to 1, and the cumulative probability distribution of the adjacent
hopping rates. To allow for additional transitions between tnew and tcurrent + ∆t′ we repeat the same procedure with
a shortened time step:

δt′ = tcurrent + ∆t′ − tnew. (B3)

The process is repeated until no transition takes place.
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Appendix C: Free energy probability distributions

For convenience, we include explicit definition of the probability distributions which were used in the article for
the free energy barriers. In each case, the disorder strength β of the free energies was defined by multiply the random
variable X by the disorder strength:

G ≡ βX. (C1)

The chi-squared distribution is defined by the PDF:

p(x; k) =
1

2k/2Γ(k/2)
xk/2−1 e−x/2 , (C2)

for dimension k and x has support x ∈ [0,∞). In our simulations, we used dimension k = 1. The normal distribution
is defined:

p(x;µ, σ) =
1√

2πσ2
e−(x−µ)2/2σ2

, (C3)

for mean µ and standard deviation σ and x has support x ∈ (∞,∞). In our simulations we used µ = 0 and σ = 1.
The exponential distribution is defined:

p(x; k) = k e−kx, (C4)

where k is the rate and x has support x ∈ [0,∞). In our simulations, we used rate k = 1. The Gumbel distribution
is defined by the CDF:

P (x;µ, σ) = exp[− exp[−(x− µ)/σ]], (C5)

where µ is the position and σ is the scale parameter respectively and x has support x ∈ (∞,∞). For our simulations,
we used µ = 0 and σ = 1.

In each case we use the CDF method for generating random variables: We first generate uniformly distributed
random variable (Y ) with support on the interval Y ∈ [0, 1] and then use the inverse CDF to generate X :

Xi ≡ P−1(Yi). (C6)

Appendix D: Plot simulation details

1. Details for Fig. 1D

Trap model: Chi-squared distributed traps: Gi = −βX and Gi+ 1
2

= 0 with β = 1.5 and t0 = 1 (Eqn. 1) to define the
rates. Trajectories were generated using a Gillespie simulation (Sec. B 2). The time interval shown was T = 1000 t0.
Barrier model: Chi-squared distributed barriers: Gi = 0 and Gi+ 1

2
= βX with β = 1.5 and t0 = 1 (Eqn. 1) to

define the rates. Trajectories were generated using a Gillespie simulation (Sec. B 2). The time interval shown was
T = 1000 t0.

2. Details for Fig. 2A

All model curves: Barrier model with chi-squared distributed barriers: Gi = 0 and Gi+ 1
2

= βX and t0 = 1 (Eqn. 1)
to define the rates. MSDs were computed using the master equation (Sec. B 1). Simulations were performed on a 105

site-lattice with periodic boundary conditions. N = 50 realizations were averaged.

3. Details for Fig. 2B

Same as above. Scaling exponent α was estimated by fitting on the interval δt/t0 ∈ [106, 108].
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4. Details for Fig. 2C

Barrier model: Chi-squared distributed barriers: Gi = 0 and Gi+ 1
2

= βX , β = 1.5 and t0 = 1 (Eqn. 1) to define
the rates. Trap model: Chi-squared distributed barriers: Gi = 0 and Gi+ 1

2
= βX , β = 1.5 and t0 = 1 (Eqn. 1) to

define the rates. For the T-MSD: The total time interval averaged over was T = 1010 t0. The initial conditions for
both models was a uniform distribution over all lattice points.

5. Details for Fig. 3

Trap model: Chi-squared distributed traps: Gi = −βX and Gi+ 1
2

= 0 with β = 1.5 and t0 = 1 (Eqn. 1) to define the
rates. Barrier model: Chi-squared distributed barriers: Gi = 0 and Gi+ 1

2
= βX with β = 1.5 and t0 = 1 (Eqn. 1) to

define the rates. VACs/DACs were computed using the master equation (Sec. B 1). Simulations were performed on
a 104 site-lattice with periodic boundary conditions.

6. Details for Fig. 4A

Barrier model: Chi-squared distributed barriers: Gi = 0 and Gi+ 1
2

= βX with β = 5 and t0 = 1 (Eqn. 1) to define
the rates. Relative step size distributions were computed using the master equation (Sec. B 1). N = 50 realizations
were averaged. Simulations were performed on a 104 site-lattice with periodic boundary conditions.

7. Details for Fig. 4B

Barrier model: Chi-squared distributed barriers: Gi = 0 and Gi+ 1
2

= βX and t0 = 1 (Eqn. 1) to define the rates.
Relative step size distributions were computed using the master equation (Sec. B 1) for time interval δt = 100 t0. N =
50 realizations were averaged. Simulations were performed on a 104 site-lattice with periodic boundary conditions.

8. Details for Fig. 4C

Barrier model: This disorder strengths and time interval were: β = 5 and δt = 103 t0 for Chi-squared, Exponential
and Gumbel, β = 3.0 and t0 = 0.1 t0 for short normal and β = 0.3 and t0 = 0.1 t0 for long normal. Relative step size
distributions were computed using the master equation (Sec. B 1) for time interval δt = 100 t0. N = 50 realizations
were averaged. Simulations were performed on a 104 site-lattice with periodic boundary conditions.

9. Details for Fig. 5A

Barrier model: Chi-squared with disorder strengths and time interval: β = 5 and δt = 103 t0. N = 50 realizations
were averaged. Simulations were performed on a 104 site-lattice with periodic boundary conditions. Conditional
step size distributions were computed using the master equation (Sec. B 1) Trap model: Chi-squared with disorder
strengths and time interval: β = 5 and δt = 103 t0. N = 50 realizations were averaged. Simulations were performed
on a 104 site-lattice with periodic boundary conditions. Conditional step size distributions were computed using the
master equation (Sec. B 1) fBm model: The built-in MATLAB function wfbm was used to generate fBM trajectories.
To match the observed scaling exponent (α ≈ 0.65), we used a Hurst parameter H = 0.32. fBm-Exp-D model: Same
as fBm, but the trajectories were scaled to generate an exponential distribution of diffusion coefficients on the inter-
val [0.005, 5.2]. Exp-D model: Canonical diffusion with quenched diffusion coefficient. The diffusion coefficient was
exponentially distributed on the interval [0.005, 5.2]. The time interval was δt = t0. Conditional step size distribu-
tions were computed analytically at fixed D then weighted numerically over D. Diffusion model: Conditional step
size distributions were computed analytically.
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10. Details for Fig. 5B

Barrier model: Chi-squared with disorder strengths and time interval: β = 5 and δt = 103 t0. N = 50 realizations
were averaged. Simulations were performed on a 104 site-lattice with periodic boundary conditions. Conditional
step size distributions were computed using the master equation (Sec. B 1). KDE: The kernel was normal with
σ = 0.2.

11. Details for Fig. 6

Barrier model: Chi-squared with disorder strength β = 5. Simulations were performed on a 104 site-lattice with
periodic boundary conditions. The Greens function was computed using the master equation (Sec. B 1).

12. Details for Fig. 7

Barrier model: Chi-squared with disorder strength β = 18 and t0 = 1 in two dimensions. Simulations were per-
formed on a 103× 103 site-lattice with periodic boundary conditions. Trajectories were simulated using the Gillespie
simulation method. (Sec. B 1). N = 100 realizations were averaged for 106 step trajectories.
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