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ABSTRACT

Echolocating bats use ultrasonic pulses to collect information about their environments. Some

of this information is encoded at the baffle structures – noseleaves (emission) and pinnae (recep-

tion) – that act as interfaces between the bats’ biosonar systems and the external world. The baffle

beampatterns encode the direction-dependent sensory information as a function of frequency and

hence represent a view of the environment. To generate diverse views of the environment, the bats

can vary beampatterns by changes to: 1) the wavelengths of the pulses or 2) the baffle geometries.

Here, we compare the variability in sensory information encoded by just the use of frequency or

baffle shape dynamics in horseshoe bats. For this, we use digital and physical prototypes of both

noseleaf and pinnae. The beampatterns for all prototypes were either measured or numerically

predicted. Entropy was used as a measure to compare variability as a measure of sensory infor-

mation encoding capacity. It was found that new information was acquired as a result of shape

dynamics. Furthermore, the overall variability available for information encoding was similar in

case of frequency or shape dynamics. Thus, shape dynamics allows the horseshoe bats to generate

diverse views of the environment in the absence of broadband biosonar signals.
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I.. INTRODUCTION1

Bats have mastered life in complex environments by relying primarily on their biosonar systems2

to collect sensory information about the presence, location, and nature of sound sources in the3

environment [1–3]. A good example of these capabilities are greater horseshoe bats (Rhinolophous4

ferrumequinum), a species that is able to navigate in dense structure-rich vegetation [4, 5] and hunt5

prey either in flight or by gleaning from surfaces [6, 7]. The sensory information required to6

accomplish this must be encoded at the interfaces of the bats’ biosonar system and the external7

world, i.e., as the emitted sounds exit the bat’s nostrils or as the returning echoes impinge on its8

ears. The space-frequency characteristics of the emission and reception structures can be described9

by a “beampattern”, a scalar-valued function that specifies the output or input gain of the system10

as a function of spatial direction and frequency. Each beampattern can hence be seen as a space-11

frequency filter that provides a certain view of the environment. The ability to generate different12

beampatterns could help the bats to obtain different views of their environment in order to tailor13

the received sensory information to their current needs.14

Beampatterns are the result of a diffraction process in which the outgoing or incoming ultrasonic15

wave packets interact with the surfaces of baffles shapes such as the noseleaves (emission) and the16

outer ears (reception). Hence, the beampatterns are determined by the geometry of the diffracting17

surface in conjunction with the wavelength of the diffracted sound. In principle, bats could utilize18

two different kinds of mechanisms to change their beampatterns, i.e., by virtue of: (i) changing19

the wavelength of their pulses or (ii) by changing the geometry of the diffracting surfaces. Bat20

species with broadband ultrasonic pulses (frequency-modulated or FM-bats for short [7]) should21

be in a good position to vary their beampattern shapes as a function of frequency. Their broad22

frequency bands correspond to a likewise broad range of wavelengths that can interact with the23
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baffle shapes in different ways to generate significantly different beampatterns [8, 9]. In general,24

beamwidth can be expected to decrease with increasing frequency resulting in a broader view of25

the environment at lower frequencies and a narrower for high frequencies [10–13]. In addition to26

the overall beamwidth, the shape of the beampatterns can depend strongly on frequency in terms27

of lobes of the beampattern that can appear, disappear, or change position with frequency [13, 14].28

Thus, as a result of all these possible variations in the beampatterns with frequency, objects that29

are located at different angular positions in the environment will get illuminated by different signal30

spectra that could impact the information that will be encoded in the returning echoes. Echo spectra31

are known to encode information about the nature and location of targets [7, 12, 14–16]. As of now,32

there is very limited evidence that FM bats have control over the shapes that diffract their emitted33

pulses and the received echoes, an exception being the observation that certain FM bats (Hypsugo34

bodenheimeri) can change their emission beamwidth by varying their mouth gape [12].35

Horseshoe bats (family Rhinolophidae) are so-called CF-FM bats (for constant-frequency -36

frequency-modulated [2]). Their biosonar calls consist of multi-harmonic signals, where each har-37

monic is dominated by a long narrow-band portion (CF component) that is framed by a frequency38

modulated (FM) component at the start and at the end [7].39

However, the pulse energy in these calls tends to be concentrated in the CF component with the40

FM component containing either comparatively low portions of the pulse energy or even being left41

out completely on occasion [4, 17, 18]. In addition, all but the second harmonic in these multi-42

harmonic biosonar calls are also relatively weak. This restricts the ability of such bats to generate43

differing beampatterns due to variation of beampattern shape with frequency.44

However, unlike what is currently known about FM-bats, CF-FM bats have a very conspicuous45

dynamic dimension associated with the baffles that surround the sites of ultrasonic emission (nose-46
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leaves) and reception (pinna, see Fig. 1). These baffles can undergo fast non-rigid deformations47

on time scales similar to the duration of individual pulse emissions and return echoes [19–21].48

The deformations are a result of specific muscular action [22, 23] with deformation amplitudes49

significant in comparison to the wavelength used [19–21].50

Some of the recent studies have shown that the deformations of the emission and reception51

baffles can bring about a significant change in the beampatterns (emission & reception) [13, 19,52

21, 24, 27]. In addition, changes in the emission beampatterns of horseshoe bats during natural53

biosonar behaviors have been recently reported, though the underlying physical mechanism re-54

mains unknown [26]. Taken together, these studies suggest that dynamics is an important aspect55

of bat biosonar. It could be hypothesized that the function of the dynamics in the emission and56

reception baffle shapes of horseshoe bats is to produce a diversity in the views of the environment57

that bats with great biosonar bandwidth can achieve by virtue of frequency changes.58

The goal of the work presented here has hence been to compare the diversity introduced into59

views of the environment by the use of either frequency or shape dynamics in horseshoe bats (Rhi-60

nolophous ferrumequinum) through an information-theoretical (entropy) analysis of the beampat-61

terns. The analyzed beampatterns were obtained from detailed digital prototypes of the natural62

geometries of noseleaves [13, 24] & pinnae [21] as well as measurements using the biomimetic63

physical prototypes [24, 27]. These four different models were considered to ensure that the phe-64

nomena observed were robust functions of frequency or shape dynamics and not due to specific65

features in one of the model system that may not apply to bats and may be hard to reproduce in66

another experiment.67
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Figure 1. Different shape sample types used to obtain acoustic far-field (beampattern) data on the

noseleaf and pinna dynamics of greater horseshoe bat : a) Portrait of a greater horseshoe bat (BP) b)

Digital model used for computer animation of in-vivo bat noseleaf dynamics (NN), c) Exact deformable

physical replica of the bat noseleaf created through 3D printing (PN, scaled 2× BP) d) Digital pinna model

used to recreate bat pinna dynamics (NP), e) Simplified deformable physical prototype of bat pinna (PP,

scaled 2.5× BP).

II.. MATERIALS AND METHODS68

To obtain the shape data used in the present analysis, an adult greater horseshoe (Rhinolophous69

ferrumequinum) bat was taken from the caves in the vicinity of Jinan, Shandong Province, China70
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(latitude - 36◦40′05′′ N, longitude - 116◦59′49′′ E, elevation - 32 m) to serve as an experimental71

subject. The animal was housed in an indoor enclosure during the experiments and noseleaf and72

pinna motions were recorded using high-speed video cameras. In order to do the acoustic charac-73

terization of shape deformations in the study subject, four models that included both digital and74

physical prototypes of noseleaf and pinna were obtained. The models represented either the exact75

biological or biomimetic motion.76

The life-like digital models were obtained from µCT scans of the noseleaf and pinna samples.77

In order to recreate baffle dynamics observed in high-speed video recordings of the behaving bat,78

different set of techniques were used for noseleaf and pinna respectively. For the noseleaf, the79

digital model was computer-animated using skeletal animation techniques. This involved setting80

up of a skeleton with control points and joints attached to the mesh such that it approximates ob-81

served noseleaf motion in bats [24] (see Figs. 1(b), 2). For the pinna, a linear elastic finite element82

model was used to combine the static pinna geometry with the three-dimensional time trajectories83

of the landmark points (marked on pinna) extracted from video recordings of the behaving bat [21]84

(see Fig. 1(d)). The acoustic properties (beampatterns) of the baffle shape deformations were then85

numerically predicted [21, 24] (see Figs. 3, 4 ).86

Like the digital noseleaf model, the geometry for the physical noseleaf prototype came from87

µCT scan and was reproduced in full biological detail. The geometry was scaled to twice the size88

of horseshoe bat noseleaf and fabricated from an elastic material by 3D printing (Objet 3D printer).89

The geometry was scaled to ease handling and permit use of lower frequencies. The prototype was90

actuated by a simple linear actuator (Firgelli L12-1) that applied a force from behind to bend the91

lancet of the noseleaf forward mimicking the motion observed in bats [24](see Fig. 1(c)).92

However, unlike the physical noseleaf prototype, the geometry for the physical pinna prototype93
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was a simplified version (scaled 2× the horseshoe bat pinna) of the biological pinna. It was fabri-94

cated from an isobutyl rubber sheet and was actuated by a simple linear actuator (Firgelli L12-1)95

like the noseleaf prototype. A force was applied from the pinna backside to mimic the motion96

observed in bats [28] (see Fig. 1(e)).97

The acoustic properties of all four models were characterized by beampatterns that were ob-98

tained either by measurement [24, 28] or numerical prediction [21, 24]. These beampatterns were99

acquired over a range of angles that spanned 180◦ in azimuth and 120◦ in elevation with a reso-100

lution 3◦. For all models, the beampatterns were obtained for five equidistant frequencies across101

bats’ biosonar frequency broadcast range (60-80 kHz). The frequencies were adjusted inversely to102

compensate for the scaling of the respective physical models.103

To compare the variability in the sensory information encoded across changes in frequency and104

baffle shape (diversity of views), the beampatterns were characterized by kernel density estimates105

(KDE) [29] of the probability density functions (PDFs) of the beampattern amplitudes. To compute106

the KDE estimates of the amplitude PDFs, a Gaussian kernel was used. The size (bandwidth) of107

the kernel was selected automatically using a plug-in type estimator [29–31]. The amplitude PDFs108

computed by KDE to characterize the beampattern data were as follows:109

1. Two-dimensional joint amplitude PDFs combining beampatterns associated with different110

frequencies. One dimension of these PDFs was the beampattern amplitude at a reference111

frequency of 60 kHz and the other the beampattern amplitude at one of the five frequencies112

at which the bat’s main biosonar band (60-80 kHz) was sampled. The values of the PDF113

were estimated for 2501 points along each dimension. Joint PDF estimates were obtained114

for each of the shape conformation stages in the studied sample.115
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2. Two-dimensional joint amplitude PDFs combining beampatterns associated with different116

shape conformation stages (see Fig. 5). One dimension of these PDFs was the beampattern117

amplitude associated with the upright shape change stage and the other the beampattern118

amplitude associated with one of the five stages in the entire shape change cycle. The values119

of the PDF were estimated for 2501 points along each dimension. Joint PDF estimates were120

obtained for each of the frequencies analyzed.121

3. Five-dimensional joint amplitude PDFs where each dimension represented the beampattern122

amplitude for one of the five shape change stages in shape change cycle. Along each dimen-123

sion the PDF values were estimated for 2501 points. A separate five-dimensional joint PDF124

was computed for each of the analyzed frequencies.125

4. Five-dimensional joint amplitude PDFs where each dimension represented one of the five126

equidistant frequencies in the bat’s biosonar range (60-80 kHz). Along each dimension the127

PDF values were estimated for 2501 points. A separate five-dimensional joint PDF was128

computed for each of the stages in the shape change cycle represented in the sample.129

For each of the above KDE of the amplitude PDFs, differential entropy [31, 32] (Eq. 1) was com-130

puted to quantify the differences in variability in the sensory information encoded by just the use of131

frequency and shape change respectively. If X1, X2, ..., Xn
are a set of jointly distributed contin-132

uous random variables with joint probability density function f(x1, x2, ..., xn
), the nonparametric133

estimate of joint differential entropy is given by Eq. 1.134

ĥ(X1, X2, ..., Xn
) = −

1

n

∑
ln(f̂(x1, x2, ..., xn

)) (1)

where ĥ(X1, X2, ..., Xn
) is the nonparametric estimate of joint differential entropy h(X1, X2, ..., Xn

),135

9



f̂(x1, x2, ..., xn
) is the kernel density estimate (KDE) estimate of joint probability density function136

f(x1, x2, ..., xn
) and n is the number of samples.137

c)

anterior−posterior

b)a)

Links

Joints

Figure 2. Digital rigged noseleaf model of greater horseshoe bat (Rhinolophus ferrumequinum): a)

front view, b) side view, c) Lancet anterior-posterior motion recreated in digital bat noseleaf model using

skeletal animation techniques (rigging).
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Figure 3. Numerically predicted beampatterns for the bat noseleaf digital model. Each row shows

different lancet positions. Each column shows different frequencies.The gray-level coding is linear.
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Figure 4. Numerically predicted beampatterns for bat pinna digital model. Each row shows different

pinna positions. Each column shows different frequencies.The gray-level coding is linear.

III.. RESULTS138

The joint 2D probability density functions of the normalized beampattern amplitudes across139

shape change stages (Fig. 5) and across frequency (Fig. 6) were both found to deviate considerably140

from a diagonal structure which would indicate that no additional information encoding capacity141
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is created by adding frequencies or shape conformations. They were also far from uniform which142

would maximize the joint information encoding capacity, but showed intricate patterns, i.e., the143

beampattern amplitudes across different frequencies or shape conformations were found to have144

complex statistical dependencies, evident in multiple ridges in the pdfs.145

The patterns in the joint 2d pdfs differed between the shape conformations and the frequencies146

indicating that the statistical dependencies are not the same for changes in shape and changes in147

frequency.148
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Figure 5. Joint probability density function across lancet shape change. The rows show the 2D joint

probability density functions between the lancet upright stage (LR - 0o) and subsequent shape change stages

i.e. LR - 2o & LR - 6o respectively, in the shape change cycle. The columns show the joint pdfs between

lancet shape change stages for multiple frequencies in bats’ biosonar frequency broadcast range (60-80

kHz). Datasets used here are numerically predicted acoustic estimates for NN model. NN refers to the

sample shown in Fig.1. LR refers to lancet rotation.
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Figure 6. Joint probability density function across frequency. The rows show the 2D joint probability

density functions between the lowest frequency (60 kHz) and subsequent frequencies, i.e. 65 kHz & 75 kHz

respectively in bats’ biosonar frequency broadcast range (60-80 kHz). The columns show the 2D joint pdfs

between frequencies for multiple lancet shape change stages in the shape change cycle. Datasets used here

are numerically predicted acoustic estimates for NN model. NN refers to the sample shown in Fig.1. LR

refers to lancet rotation.

For changes in baffle shape, the joint entropy values estimated from the joint pdfs depended149

on the distance between the two shape conformations that were used to compute the joint entropy150
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(Fig. 7(a)). The further a tested conformation stage was separated from the upright stage that was151

used as a reference, the larger the joint entropy between these two stages. With the exception of152

the numerical noseleaf model (NN), an average increase of one bit (approx. 21%) in joint entropy153

was observed between the upright stage and the farthest conformation stage across all models154

(Fig. 7(a)).155

The joint entropy values computed by combining different frequencies did not show the same156

systematic dependence on distance between the compared beampatterns that was seen among the157

changes in shape. For the frequencies, a reference frequency of 60 kHz was compared to five158

frequencies spaced equally between 60 and 80 kHz. For all models, this comparison let to an159

average joint entropy change of 0.4 bits (approx. 12%) between the lowest and highest entropy160

values regardless of the spectral separation between the two frequencies (Fig. 7(b)).161

To compare the variability in encoded information across all five shape conformation stages and162

five frequencies, five dimensional joint pdfs were estimated for both cases, i.e., across frequency163

and shape change. The entropy estimates for the joint pdfs across all five shape change stages and164

five frequencies were found to be comparable, with an average difference in entropy of 1.2 bits165

(approx. 8%) observed across all models (Fig. 8).166

The different frequency and shape change configurations were additionally tested for a broad167

range of SNR (signal-to-noise-ratio) values (-50 to -15 dB) to test the dependence of observed168

effects on SNR. It was found that the effects of frequency and shape change were qualitatively169

similar across all tested SNR values.170
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Figure 7. Average joint entropy estimates in bits. (a) From left to right, bar height represents the joint

entropy estimate for a shape change stage with upright (reference) stage as a function of distance from

the upright (reference) stage in shape change cycle (averaged over five equidistant frequencies between

60-80 kHz). (b) From left to right, bar height represents a joint entropy estimate for a frequency with

lowest frequency (60 kHz) as a function of distance from the lowest frequency in bats’ biosonar frequency

broadcast range (60-80 kHz) divided into five equidistant frequencies (averaged over five stages in shape

change cycle). Error bars indicate the minimum and maximum values of entropy. NN, PN, NP, PP refer to

the samples shown in Fig.1.
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Figure 8. Pooled average entropy estimates in bits. Light gray bar height represents the joint entropy

estimate across all the shape change stages (averaged over five equidistant frequencies between 60-80 kHz).

Dark gray bar height represents the joint entropy estimate across all five equidistant frequency in bats’

biosonar frequency broadcast range (60-80 kHz) (averaged over five stages in shape change cycle). Error

bars indicate the minimum and maximum values of entropy. NN, PN, NP, PP refer to the samples shown in

Fig.1.

IV.. DISCUSSION171

In the results presented here, both shape change and frequency change were found to have an172

approximately equal effect on increasing the variability (entropy) of the sensory inputs.173

Since the analysis presented here has been aimed at investigating the relative merit of frequency174
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and shape changes for sensory information encoding, it did not delve into how this sensory infor-175

mation capacity could translate into performance into any given sensory task or how far such a176

performance would be from an optimum solution. Since it is well established that spectral features177

(i.e., changes over frequency) can support source localization in bats (e.g., [33]) and shape change178

and frequency were found to have a similar effect on sensory information encoding capacity, it179

can be hypothesized that the shape changes could also support the animal’s need for direction-180

dependent sensory information.181

The joint probability density function estimates obtained here indicate that neither additional182

shape conformations nor additional frequencies enhances information encoding capacity in an op-183

timum way that would be given by a uniform joint PDF. This could be due to physical constraints184

on changes that can be made to the shapes of a noseleaf or pinna, how much these changes can185

influence the beampatterns, and how different beampatterns are possible. A recent study [34] has186

shown that bat biosonar beampatterns are more variable than a random reference (irregular cones187

made from crumpled aluminum foil) in terms of beamwidth which could be seen as an indication188

that factors other than beamwidth have driven the evolution of these characteristics.189

The only difference found between altering the beampattern based on frequency or shape190

change was that whereas the differential entropy values increased with the distance between dif-191

ferent shape conformations, they remained approximately the same between frequencies, i.e.,192

regardless of the spectral distance between these frequencies. Since the change in wavelengths193

(about 1.5 millimeter over the analyzed frequency band) were substantially less than the maximum194

displacements associated with the changes in shape (several millimeters), this cannot be explained195

by the amplitude of the geometrical changes. Instead, it could be hypothesized that the difference196

is due to the local nature of the shape changes where only certain parts of the baffle being moved197
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versus the global nature of the frequency changes where the wavelength changes affect the entire198

diffraction process.199

The observed effects were found to be qualitatively similar across all four datasets despite the200

differences in either experimental approach (numerical versus physical) or biological detail repro-201

duced (life-like versus simplified). This suggests that the results are a robust function of either202

overall shape dynamics or frequency and not due to methodological peculiarities as the datasets203

have little in common in terms of experimental protocol.204

The observed similarity between the variability that has been introduced by changes in baffle205

shapes or frequency changes indicates that both types of changes could be equally well suited206

for enhancing the encoding of sensory information through the diverse sets of beampatterns they207

create. Hence, horseshoe bats could have two alternative mechanisms for increasing the amount of208

sensory information they receive via their biosonar echoes: relying on the echoes to the FM-tails209

of their biosonar pulses or changing the shape of their noseleaves and pinnae. The bats could use210

both mechanisms for pulses that contain strong FM-tails and are accompanied by noseleaf and/or211

pinna motions. They could rely on frequency diversity only for pulses that have strong FM-tails212

but are not accompanied by any dynamic shape changes changes. Finally, the bats could rely on213

shape diversity only in situations where the FM-tails are weak, but the CF-components of their214

pulses are accompanied by dynamic changes in baffle shape. Only in cases, where the bats emit215

pulses with a weak FM-tail and no shape changes would they be left with a minimum of monaural216

information related to target direction.217

The need to concentrate pulse energy in a narrow frequency band for the detection of Doppler218

shifts could have been an evolutionary driving force behind the evolution of the noseleaf and pinna219

dynamics in horseshoe bats. The narrower the frequency band of the pulses, the smaller the amount220
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of monaural, direction-related sensory information that the animals have access to. Noseleaf and221

pinna deformation could hence be seen as evolutionary innovations to break this linkage between222

bandwidth and the encoding of monaural direction information. The current findings affirm the223

importance of biosonar dynamics in the biosonar system of horseshoe bats which is in accordance224

with a host of recent studies: Dynamic changes in the shape of lancet [19], anterior leaf [20] and225

pinnae [21] have been previously reported. These motions were found to occur on timescales of226

individual pulses or echoes and have been hypothesized to have an effect on encoding of sensory227

information [19–21]. Moreover, horseshoe bats have been shown to actively adjust beam width228

during terminal stages of prey capture [26]. Furthermore, the shape changes in lancet and pinnae229

have been previously reported to help encode additional information that significantly improves230

the number of resolvable directions and accuracy of direction finding in horseshoe bats [35]. The231

present findings give further credence to the hypothesis that dynamics plays an important role in the232

encoding of sensory information. The current finding is particularly interesting as it suggests that233

baffle shape change could be a novel way evolved by CF-FM bats to generate diverse beampatterns234

to tailor the biosonar view to the task at hand in the absence of broadband biosonar signals.235
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