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Online social networks strongly impact our daily lives. An Internet user (a “Netizen”) wants

messages to be efficiently disseminated. The SIR dissemination model is the traditional tool

for exploring the spreading mechanism of information diffusion. We here test our SIR-based

dissemination model on open and real-world data collected from Twitter. We locate and identify

phase transitions in the message dissemination process. We find that message content is a stronger

factor than the popularity of the sender. We also find that the probability that a message will be

forwarded has a threshold that affects its ability to spread, and when the probability is above the

threshold the message quickly achieves mass dissemination.
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I. INTRODUCTION

Online social networks (OSNs), such as Facebook and

Twitter, have a large presence on the modern information

media platform [1]. OSNs transmit a huge amount of

information, and traditional media sources now make

widespread use of them to deliver their messages. The

rapid recent development of OSNs has also lowered the

threshold for the compilation of news and has blurred

the boundary between media sources and users [2, 3].

This instant release of information is both more rapid

and more interactive than that achieved by traditional

media [4, 5]. Portals such as microblog quickly deliver

information to target users. Online social media now

∗ corresponding email:fuyang@sia.cn

play an important role in information dissemination, and

examples range from targeted advertising [6], commodity

recommendation systems [7], political propaganda [8] to

networks of public opinion [9]. For example, using a

Facetime transmission the Turkish president Erdogan

called on Turkish citizens to actively oppose the coup

[10]. During the United States presidential election, the

Republican candidate Donald Trump tweeted frequently

to quickly spread his ideas [11, 12]. The rapid spread

of information via OSNs has greatly changed our way of

life.

Because the impact of OSNs on society is increasing,

there is much interest focused on the dissemination

mechanisms in social networks. To understand the

mechanism underlying information diffusion, many

previous studies either analyzed large amounts of
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empirical data, or predicted how popular a particular

piece of information would become in the future [13–18].

For instance, Goel et al.(2012) discussed the diffusion

patterns in different network and got the same results

which explained in detail from the network structure

level[19]. Network structure influence propagation mode,

and information can also affect the dissemination during

information explosion[20]. And there are a lot of models

built up based on the topology[21, 22]. An extension

of the susceptible-infected-recovered (SIR) model of

epidemics is frequently used to describe the dissemination

of information[23–26]. Analyzing the communication

mechanism of the spreading process is important if we

are to improve our ability to disseminate our message. So

long as we can make the information transmission ability

exceed the threshold value accounting for the spreading

of an epidemics[27], the scale-free property of social

networks makes this possible [28, 29]. Using a network of

friend relationships among Internet users, we use the SIR

model in our message spreading experiment. In disease

spreading, every person who comes in contact with an

infected individual has the same probability of being

infected, and an infected individual continues to infect

others until they recover. The information dissemination

process in OSNs is similar to that of epidemic spreading

and also to binary-choice opinion models, but the details

of the mechanism can differ.

II. DATA AND METHODS

a. Data source Twitter is an online news and social

networking website on which users post and interact

through messages, “tweets,” restricted to 140 characters.

By the beginning of 2016,Twitter had more than 319

million monthly users. On the day of the 2016 U.S.

presidential election, Twitter was the largest source of

breaking news, with 40 million tweets sent by 10 p.m.

(Eastern Time). The short, adaptable, rapid release of

information through Twitter allowed the quick spread of

information [30].

We use the opening and real-name data from Twitter

provided by the Stanford Network Analysis Project

(SNAP) to build our network [31]. Our network is of

the relationships among Twitter users and has over

80,000 nodes, over 1,300,000 edges, and a network

average degree 〈k〉 of approximately 33. We run our

simulation tests on the simple undirected graph obtained

by simplifying Twitter network data.

b. SIR model We model mathematically the

dissemination process of a message spread on OSNs

using differential equations. In recent years extensions

of the applied Susceptible-Infected-Recovered (SIR)

epidemic model have been widely used in complex

network research in various domains [32–37].

We use the SIR model to divide OSN Netizens into

three categories.

(i) Suceptible: a Netizen who is likely to retweet

a message once they receive it, and whose total

number is denoted S(t).

(ii) Infected: Netizens who are randomly generated

from Susceptibles, who retweet the message, and

whose total number is denoted I(t).

(iii) Recovered: a Netizen who retweets the message

once, does not retweet it again, and whose total

number is denoted R(t).

The total number of Netizens is denoted N(t). This gives

us

N(t) = I(t) + S(t) +R(t) (1)

I(t) =p ∗ S(t− 1)− µI(t− 1) (2)

R(t) = R(t− 1) + µI(t) (3)

A Netizen becomes an Infected (I) when they deliver

a message. All users linked with that Netizen become

Susceptibles (S) and can read the message. Susceptibles

retweet the message and become Infected with a
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probability p
p∼ I(t)

S(t) . All Infecteds eventually become

Recovereds and no longer retweet the message.

We define one retweeting step to be when a user

retweets a message with probability p after receiving

it. Within a few steps there is a sufficient number of

Infecteds to spread the message throughout the network.

We here simplify the SIR model by fixing some paraments

to simulate the spreading process and lowering the

impact of little factors. Reference [38] indicates most

messages Twitter users share are also the most they

receive, irrespective of differences between the number

of users they follow and the number of users who follow

them. Thus the most suitable approximation of message

flow in a social network is undirected network.

We define a message to be “widely spread” when it

has been viewed by greater than 80% of network users.

When comparing the effects of different factors on the

propagation results, we randomly select the message

senders to reduce the impact of other factors on the

results. When there are sufficient experimental users in

our sample, the experimental environment provides all

possible irrelevant factors and differ only in the variable

we control.

c. kernel density estimation We apply the Gaussian

kernel density estimation method to determine the

bandwidth for univariate observations. The calculation

of kernel density is to display the distribution of data and

to observe the possibility of the data falling on different

values more smoothly. This enable us to better observe

the distribution of, e.g., page views or user degree [39, 40].

We also can calculate the probability distribution of X

(i.e., the variable) using N univariate observations (i.e.,

X1 ˜ Xn)

Pn(x) =
1√
2πnh

n∑

j=1

e−(
x−Xj

2h2
). (4)

Here the h is the smoothing bandwidth. We scale the

kernels using the standard deviation of the smoothing

kernel.

III. RESULTS

In our simulation experiments we randomly select 1000

users to send the initial message, and we set the

probability that the message is forwarded at 0.1. Then

we record the views of the 1000 messages at the end of

each retweet step. Figure 1(a) shows the 1000 curves of

the viewing process. Note that some of the final views

approach 0, implying that some messages are almost

unseen. Most other curves rapidly increase and resemble

an S shape. They rapidly grow during 3 ˜10 retweet-

steps, and cease growing and stabilize after 10 retweet

steps. We use all of the curves in Fig. 1(a) to plot the

fitting curve (heavy black line) in Fig. 1(b) applying the

Loess method. Figure 1(b) shows the fitting standard

error band (light gray), and also the trend of overall

growth.

We determine the number of final page views and

retweets and plot the scatter in ascending order by page

view. Figure 1(c) shows the maximum number of page

views of the 1000 messages (blue triangles) and the

maximum number of retweets (green diamonds). The

plot indicates that the page views and retweets of more

than one-third of the messages approach zero, indicating

that these messages have not spread. The numerical

values of rest points suddenly increase up to maximum

values, which approximately equal each other. The

portion of the slope of the scatter plot curve that is very

gentle indicates that when the message spreads it spreads

across the entire network. It indicates the presence of a

networks communicative ability threshold below which

the message will not widely spread and above which

it will. Because from the morphology of the scatter

plot we find that the number of retweets agree with the

number of page views, we can use just the message page

views and not lose rigor. We calculate the distribution

of the maximum number of the 1000 messages using a

Gauss kernel density distribution. Figure 1(d) shows

the probability density distribution curve. The higher
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FIG. 1. Phase transition of page views and their disturbution

universally exist in the message dissemination (a)Most of 1000

experiments rapidly rise within 8 retweet steps (b)Heavy line

shows the fitting curve of page views which the page views

rise quickly at the beginning, then start to level off. The

light color interval is the standard error band of the fitting

curves. (c) The green diamond shows the number of retweets

while the blue triangle indicates page views, and they change

synchronously. There are phase transitions exist in number

of retweets and page views. More than 60% of messages can

be spread widely. And others are hardly seen. (d) There are

two distant peaks in the distribution of page views. Nearly

2/5 of the messages are hardly seen, and more than 3/5 of

the messages could be spread across the network.

the crest, the greater the probability that the variable

falls within the range corresponding to the value of

the abscissa. Note that there are two peaks, one in

the vicinity of 0 and the other above 75%. Note that

messages tend to either be widely viewed or almost

entirely ignored. The middle part of the trough is wide

and values approach 0, verifying the presence of a phase

transition.

We analyze the data that fall around different peaks

to determine the main factors that affect the ranges of

infection. We first consider the message sender effect.

We examine the messages sent from all users to locate

“hot users,” the 100 users with the highest degree, and

100 normal users that retweet a message with probability

p to serve as a control group. The spreading process is

random. Hot users and normal users spread the same
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FIG. 2. Impact of message’s degree distribution on infection

range is very little (a) Degree distributions between hot

users and normal users differ greatly. The average degree

of hot users is more than 20 times beyond the average of

normal users. (b) The probability density distributions of the

infection ranges between the hot users and the normal users

is not very different. Nearly two thirds of the messages sent

by normal users get widely spread while all the messages sent

by hot users spread well. So hot users cost a lot but gain less.

messages. Figure 2 shows user degree distributions and

probability densities of the message infection ranges.

Figure 2(a) shows the contrasting curves of the two

types of user degree distributions. The data are

concentrated at a wave crest. The degree distribution

curve of normal users (blue dotted line) shows a peak at

approximately 30, i.e., on average they have 30 friends.

The degree distribution curve of hot users (red solid line)

shows their degree is greater than than 800, more than

20 times that of normal users. High degree users with

many neighbors are the primary message spreaders.

Figure 2(b) shows probability distribution density of

the total message views sent by regular users (green

dotted line), and the probability distribution density of
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the total message views sent by hot users (blue line).

The infection range distribution curve of messages sent

by regular users has peaks at 0 and 65000, and the ratio

of the area is 1 : 2, implying that one-third of common

user messages do not spread, but two-thirds do. The

distribution of the message views sent by the hot users

has only one peak, at 72000, implying that all messages

sent by hot users spread widely. Thus the communication

effect of hot users is approximately 50% higher than that

of normal users. Comparing Fig. 2(a) and Fig. 2(b),

the degree distributions indicate that hot users have

approximatelly 20 times more friends than regular users,

but this yields only an additional 50% payback. Hence

the cost-effectiveness ratio is y = 50%/20 = 2.5%.

The impact of retweet probability on the dissemination

of a message is much stronger than the impact of user

degree. Figure 3 shows the distribution of page message

views for different retweet probability p values. Here we

set the p values at 0.05, 0.1, and 0.15 to test three groups.

Apart from this p value, all other parameters are fixed.

Figure 3(a) shows the three spreading process curves.

Note that the message page views increase and the p

values increase, and they reach the turning point sooner.

Figure 3(b) shows that the slope of the curve is very high

between p = 0 and p = 0.1, and then markedly slows after

p = 0.1. Applying double devotion when p is less than

0.1 yields double revenue. The cost-effectiveness ratio is

y = 100%. Applying double devotion when p is greater

than 0.1 yields one-half revenue. The cost-effectiveness

ratio is y = 50%/1 = 50%. The average cost-effectivenee

ratio is greater than 20 times higher then that provided

by message sender degree.

We classify a message “hot” when it reaches 80% of

the users. Figure 4(a) shows the relationship between

the number of retweet steps and the retweet probability

p required to make a message hot. Figure 4(b) shows a

log-log curve of two regimes with differing slopes. The

slope of the second regime is smaller than the slope

of the first regime, indicating that the dissemination
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FIG. 3. The effect on message propagation is getting bigger

with retweet-probability p rising. (a) It shows the page views

curves of the spread process under three different retweet-

probability. Each curve has a turning point that the curve’s

slope has decreased after the turning point. The bigger the p

is, the earlier the turning points appear. (b) It indicates that

the total page views of messages increase while the retweet

probability p is increasing. The effect under different p values

on the total page views is not linear. In general, the bigger

the p value is, the smaller the influence on the infection range

will be.

slows after reaching the turning point. The turning

point in the graph is close to the one we obtained in

the previous experiment. When the retweet-probability

increases beyond a threshold, the page views increase

more slowly. In the process of information propagation,

the maximum repetition number (i.e. the number of users

who receive the message more than once in the spread

process ) increases with the retweet-probability p, and

then decreases slightly (Fig. 5). After the experiment

on twitter data, we repeat the experiment based on the

Facebook and Wiki-vote data. We carried out several

groups of experiments under different thresholds of
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from different users have a great overlap, so that the page

views increase more slowly.
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FIG. 5. The relationship between the maximum repetition

number and the retweet-probability p.

”widely spread” to verify the relationship between log(p)

and log(steps) under different scales of the network. The

results show that the larger the network, the smaller

the p at turning point. Also turning points get bigger

with arising of thresholds. It is a universal phenomenon

that there are turning points at the curve of log(steps)

and log(p). The slopes of the curves change around

the turning points. The slopes of the curves imply the

resistance of the network to the propagation of message

(Fig. 6).

IV. CONCLUSION

We have simulated the process of message

dissemination on OSNs, and we find a phase transition

in the distribution magnitude. In the two experiments,

we find that the main factor that influences the infection

range of a message is the quality of the message itself

(i.e., the message propagation coefficient p, which is

the probability that the message is retweeted). The

influence of the message sender is relatively small, less

than 5% of the influence of the quality of the message.

Thus to be effectively communicated a message must

encourage users to retweet, increase the probability of

its being forwarded, and eventually become “hot”. One

outstanding example was the immensely popular but

short-lived “Gangnam Style” music video that quickly

spread around the world—receiving more than one

billion views on YouTube. There are many other current

examples in pop culture and on the Internet—subjects

that quickly become known world-wide. The ability of

hot users to guide public opinion through the network

is also becoming progressively weaker, and the social

network is becoming multipolar. Thus normal users can

draw attention to themselves as long as they are able to

release content that attracts people.

Our results indicate that the retweet-probability p =

0.1 is a turning point that may be related to network

structure[41–43]. Figure 5 shows the resistance to

the spread of information. The resistance to message

spreading differs according to differences in network

density [44]. Thus we can achieve a good communication

effect with a small investment if we can find a better

critical p-views point.
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