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The Random Coupling Model (RCM) predicts the statistical properties of waves inside a ray-
chaotic enclosure in the semi-classical regime by using Random Matrix Theory, combined with
system-specific information. Experiments on single cavities are in general agreement with the pre-
dictions of the RCM. It is now desired to test the RCM on more complex structures, such as a
cascade or network of coupled cavities, that represent realistic situations, but which are difficult to
test due to the large size of the structures of interest. This paper presents a novel experimental
setup that replaces a cubic-meter-scale microwave cavity with a miniaturized cavity, scaled down
by a factor of 20 in each dimension, operated at a frequency scaled up by a factor of 20 and having
wall conductivity appropriately scaled up by a factor of 20. We demonstrate experimentally that
the miniaturized cavity maintains the statistical wave properties of the larger cavity. This scaled
setup opens the opportunity to study wave properties in large structures such as the floor of an
office building, a ship, or an aircraft, in a controlled laboratory setting.

I. INTRODUCTION

Consider a partially open complex electrically-large en-
closure being subjected to an incoming electromagnetic
wave. A common problem of interest for electromagnetic
compatibility and telecommunications is that of finding
the induced voltage on an object at an arbitrary loca-
tion inside the enclosure. Complex enclosures, such as
computer cases with circuitry inside, or offices filled with
desks, chairs, and electronics, are examples of ray-chaotic
systems. To define what we mean by ray-chaotic, con-
sider the case where the wavelength is short, two rays
starting from the same location in such an enclosure but
with slightly different directions. As the rays propagate
reflecting from either curved surfaces or the interior fea-
tures of the enclosure, their separation will tend to in-
crease exponentially in time, and we call such situations
ray-chaotic. Ray chaos leads to an extreme sensitivity to
initial conditions for the rays [1]. For waves propagating
in highly over-moded ray-chaotic structures, the exact
solution for the fields depends strongly on the geomet-
ric details of the structure and is very sensitive to small
changes in frequency or geometry. Thus, in the presence
of even small uncertainties in structure or frequency, a
statistical approach may be more appropriate than try-
ing to obtain an exact solution for field quantities inside
the structure [2]. The Random Coupling Model (RCM)
is one such method to predict the statistical properties of
the waves inside a ray-chaotic enclosure [3, 4]. The RCM
has been widely discussed and tested over the years, with
good agreement between theory and experimental results
on individual complex structures [5–11].

There is interest in using the RCM to understand the
wave properties of more complex structures, such as a
cascade or a network of coupled cavities [12, 13]. It be-

comes increasingly difficult to experimentally test these
structures due to their large size and the difficulty in
managing and reconfiguring them in a typical labora-
tory environment. To solve this problem, we propose
miniaturizing the complex structure while maintaining
the statistical properties of the waves by carefully scal-
ing the frequency and the quality factor of the system.
Electromagnetic geometric scale modeling has been used
extensively in simulations and modeling of large struc-
tures for decades [14–16]. The idea of scaling down the
geometric size is not new in modeling, but the challenge is
to make other electromagnetic properties scale appropri-
ately as well. In this paper, we demonstrate the process
by scaling down in size a cubic meter box, which is well
studied in [10, 17], and we experimentally demonstrate
that the appropriately miniaturized enclosure has elec-
tromagnetic properties that are statistically identical to
the full-scale enclosure. A key point in our scaling imple-
mentation is that, along with the straightforward scaling
of size and frequency, it is also crucial to appropriately
scale the conductivity of the metallic walls. This sets
the stage for future investigations of complex structures.
As part of this process we also demonstrate that a wave
chaotic enclosure can be interrogated remotely to assess
and fully characterize its statistical properties.

II. RANDOM COUPLING MODEL (RCM)

The RCM is based on Random Matrix Theory (RMT),
originally proposed to model the energy level statistics of
heavy nuclei [18]. The idea is that if the wave system is
sufficiently complex then its fluctuating properties have
the same statistics as those of a suitable ensemble of ran-
dom matrices [19]. Certain statistical properties, such as
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the distribution of the normalized spacings between near-
est neighbor eigenfrequencies, follow a universal behavior
regardless of the system details. It is difficult to identify
these universal statistical properties in experimentally
measured data because it inevitably contains system-
specific features like the coupling between the ports and
the cavity modes and short orbits [20–22]. The RCM
introduces a framework to incorporate the non-universal
features with the universal statistical properties of ap-
propriate random matrices to reproduce in the statisti-
cal sense the experimentally measured cavity impedance
matrices. The effect of uniformly distributed loss in the
system is to create a sub-unitary scattering system [23],
and this effect is captured to very good approximation by
a single loss parameter α [3, 4]. The RCM is formulated
in terms of the impedance matrix Z of an N -port system
in analogy to the reaction matrix in nuclear scattering
theory [24–29]. The ports represent sources or sinks of
radiation that introduce or absorb energy in the enclo-
sure. The impedance relates the voltage induced on one
port to the currents at all of the N ports, and is simply
related to the N × N scattering matrix S through a bi-

linear transformation S = Z
1/2
0 (Z+Z0)−1(Z−Z0)Z

−1/2
0 ,

where Z0 is a diagonal real matrix whose elements are the
characteristic impedance of the transmission line modes
connected to each port.

The loss parameter α is the ratio of the typical 3-dB
bandwidth of the resonance divided by the mean spacing
between modes. For a given system, α can be estimated
in different ways, depending on what is known about the
cavity. If the volume, V , and the typical quality factor,
Q, are known, then α can be computed directly from its
definition α = k3V/(2π2Q), where k is the wave num-
ber. Otherwise, one can adopt the RCM normalization
prescription, [6, 10] (summarized in the Appendix A),
which estimates α by fitting the RCM prediction to the
measured probability distribution functions of the cavity
impedance.

III. SCALING OF THE CAVITY

Our objective is to take a full scale complex enclosure
of volume V ≈ 1 m3 and create a scaled-down-in-size ver-
sion with the same statistical electromagnetic properties.
Note that each individual mode in the full scale enclosure
will not be reproduced precisely in the miniature version.
Instead, the statistical properties should be identical be-
fore and after the scaling. To reduce the cavity length
scale by a factor of 20 and increase the frequency com-
mensurately is straight forward. However, the challenge
is to maintain the same loss parameter (α) value (hence
the same statistical properties). If a cavity of volume V
is scaled down by a factor of s in each dimension, giv-
ing a new volume of V ′ = V/s3, then the wavelength
and wavenumber scale as λ′ = λ/s and k′ = ks. Ex-
perimentally, frequency scaling can be achieved by using
frequency extenders, which are frequency multipliers that

convert signals from 0 ∼ 10 GHz (microwave) to the sev-
eral hundred GHz range (mm-wave). The signals are re-
ceived and then mixed down to 0 ∼ 10 GHz so that they
can be measured by a microwave Vector Network Ana-
lyzer (VNA). Since α ∝ k3V/Q must remain unchanged,
the quality factor Q must be the same as the full-scale
cavity. For an empty metallic enclosure with loss domi-
nated by ohmic loss in the walls, the quality factor can be
estimated as Q ≈ 3V/(2Sδ) where S is the wall surface

area, δ =
√

2/(ωµσ) is the skin depth in the local limit,
and σ is the electrical conductivity. After the scaling,
setting Q′ = Q leads to δ′ = δ/s, and thus σ′ = σs. Con-
ductivity scaling can be achieved by changing the cavity
material to a better conductor and by cooling the cavity
down to low temperatures using a cryostat.

IV. EXPERIMENTAL SETUP

In our setup, we scale down a 66 cm by 122.5 cm by
127.5 cm aluminum “full-scale” cavity designed for the
3.7 ∼ 5.5 GHz range (WR187 band) by a factor of 20 in
each dimension, i.e. s = 20. The cavity is a rectangu-
lar box (6.375 cm X 6.125 cm X 3.300 cm with rounded
corners) containing a perturber of irregular shape that
can be rotated by motor control. The new frequency
range becomes 75 ∼ 110 GHz (WR10 band), which can
be measured by using a Keysight network analyzer (KT-
N5242A 10 MHz to 26.5 GHz PNA-X ) working together
with two VDI frequency extenders (Tx/Rx WR10 mod-
ule). To achieve higher Q, the miniature cavity is made
of oxygen-free high-conductivity (OFHC) copper, with
mechanically polished inner wall surface to reduce the
surface resistance [30, 31]. We then use a custom-built
BlueFors BF-XLD400 cryogen-free dilution refrigerator
system, which can reach a base temperature of 10 mK
under minimum heat-load conditions, to cool the cavity
and further increase Q. The available volume for samples
is a cylinder of 50 cm in diameter and 50 cm in height,
that has a total volume of V ≈ (150λ)3 at 100 GHz,
providing abundant space for larger structures.

Since the miniature cavity is sitting inside the evac-
uated cryostat at low temperature, it is not possible to
employ an input connection from the signal source to the
cavity via a coaxial cable or waveguide. Accordingly, we
use a quasi-optical free-space propagation path similar to
that of a collimated beam in an optical experiment. As
shown in Fig.1, the high frequency electromagnetic wave
emerging from the frequency extender is launched into
air by a horn antenna, and then collimated by a teflon
lens. The output is a collimated beam propagating in
free-space like a plane wave. The receiving end has a fo-
cusing lens, identical to the one on the source side, and a
receiving horn antenna which is mounted on the wall of
the cavity to transmit the received wave into the cavity.
Two such free-space propagation paths are used for the
two cavity ports, one path for each port. Figure 1 shows
the experimental setup highlighting the free-space propa-



3

FIG. 1. (a) Schematic diagram and (b) picture of the exper-
imental setup. High frequency waves propagate in free-space
from the frequency extender to the cavity, and from the cav-
ity to the receiving frequency extender. The horn antenna
launches the electromagnetic waves into space and the Teflon
lens collimates the waves into a parallel beam. The signal then
goes through a focusing lens and enters the cavity through a
receiving horn antenna. The outgoing waves follow a similar
path to reach the second frequency extender.

gation path, the frequency extenders, the horn antennas,
and the lenses.

Since the RCM is a statistical theory, an ensemble of
scattering systems is required to determine the system-
specific features and the statistical properties of the en-
closures. Consequently, we need to perturb the cavity
modes while maintaining the volume of the cavity such
that each measurement is a unique realization of the cav-
ity with the same loss parameter. A typical method
to create many realizations is to rotate a large metal
panel inside the cavity (a “mode stirrer”), as used in
Refs.[6, 10, 32, 33]. For this purpose, we designed a mag-
netically coupled mode stirrer powered by a cryogenic
stepper motor (Phytron VSS 52.200.2.5UHVC suitable
for space applications), as shown in Fig.2 (a). The mo-
tor rotates a magnetic strip outside the cavity which is
magnetically coupled to another magnetic strip inside
the cavity, thus eliminating the need for an opening on
the wall or direct mechanical contact. The metal mode-
stirring panel is attached to the inside magnetic strip and
rotates when the stepper motor rotates.

In experiments, the motor rotates a small step then
waits for the Vector Network Analyser (VNA) to measure
the S-parameters of the cavity in the current realization.
When the VNA measurement is complete, the motor ro-
tates again, and this process is repeated. Representative
S-parameter measurements for two nearby realizations of
the cavity and perturber are shown in Fig. 2 (b). In this
way, data for 200 highly uncorrelated realizations of the
full-scale cavity is collected and used to obtain statistics
of the electromagnetic properties, and to calculate the
ensemble average required by the RCM to characterize
system-specific properties. After collecting the ensem-
ble S-parameter data, we check to see if each realization
is statistically independent to a significant degree from
all the others by looking at their correlation coefficient.
The Matlab function “corrcoef” is used for this purpose.
We then construct the impedance matrix for the cavity

FIG. 2. (a) Magnetically coupled mode stirrer powered by
a cryogenic stepper motor. The magnetic strip outside the
cavity (lower yellow bar) is coupled by its static magnetic field
to the magnetic strip inside the cavity (upper yellow bar),
eliminating the need for any opening on the wall or direct
mechanical contact. The mode stirrer panel is a copper foil of
irregular shape. (b) Two consecutive measurements of |S21|
of the miniature enclosure between 90 and 90.5 GHz, where
the stepper motor rotates once to perturb the cavity modes.

data Zcav as described in Section II. The ensemble av-
eraged impedance is obtained as Zavg = 〈Zcav〉realizations

for each measured frequency point. A histogram of the
impedance values is constructed by taking the real or
imaginary part of a matrix element of the Z-matrix over
the entire ensemble (9 realizations for the miniature cav-
ity or 200 realizations for the full-scale cavity) and over
the whole frequency range (75 - 110 GHz for the minia-
ture cavity or 3.7 - 5.5 GHz for the full-scale cavity).
For the miniature cavity, since the cavity is gradually
changing temperature, also changing the cavity loss, we
can only measure 9 realizations in a half hour window
before the loss between the first and last measurement
differ significantly. It turns out that the large number of
data points for many modes within the broad frequency
bandwidth compensates the lack of realizations and we
still get good statistics.

V. FINDING THE LOSS PARAMETER α

In this section, we discuss two methods for deter-
mining the value of the loss parameter α of the enclo-
sure, which governs the statistics of the universal fluctu-
ations: (a) measuring Q and using the direct definition
α = k3V/(2π2Q) and (b) measuring the fluctuations of
impedance, and using the RCM normalization process to
deduce α by fitting these fluctuations to the prediction of
RMT. For a single cavity the loss parameter α uniquely
predicts the statistics of the normalized impedance, offer-
ing a concise summary of the system statistical proper-
ties. However, since we used the remote injection setup
shown in Fig.1, the data analysis must be modified to
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FIG. 3. The inverse Fourier transform of the measured S-
parameters give the value of τ from each fit in log-scale versus
time. a) For the case of transmission and b) for the case of
reflection of the s = 20 scaled enclosure measured through re-
mote injection. Data from 9 realizations at room temperature
are plotted with different colors. The purple line is the aver-
age, and the green line is the linear fit for the energy decay
portion of the average. The slope of the fitted line is −1/2τ ,
where τ is the energy decay time of the cavity. The time
domain response inside the blue dashed box in (b), labeled
’Prompt response’, arises from the impedance mismatch be-
tween the external transmission channel and the cavity. This
information is captured in Zavg (see Section V(B))

compensate for the extra loss incurred in the free-space
propagation path. The comparison between the value of
α calculated from α = k3V/(2π2Q) and that from the
modified RCM analysis verifies the validity of the remote
injection method.

A. Obtaining α from enclosure Q

The quality factor can be calculated according to Q =
ωτ where τ is the characteristic energy decay time. To
estimate τ over a given frequency range, we plot the in-
verse Fourier transform of the measured S-parameters
(from 75 GHz to 110 GHz) on a logarithmic scale versus
time for an ensemble of 9 realizations, as shown in Fig.3.
These plots are equivalent to bandwidth-limited impulse
responses in the time domain. The plots for transmis-
sion (|S12| = |S21|, Fig.3 (a)) start with a short delay
followed by a exponential decay with a slope of −1/(2τ).
The factor of 2 comes in because τ is the decay time
for energy but the y-axis is proportional to the mag-
nitude of voltage. The plots for reflection (|S11|, Fig.3
(b)) show an initial prompt response from the antenna,
which contains information about the antenna’s radia-
tion impedance Zrad [11, 34, 35], followed by the same
exponential decay. Notice that, even though the 9 curves
are somewhat different from each other, their average is
very well approximated by a straight line on this log-
linear plot. The fluctuations in each curve represent the
cavity modes, which are randomly perturbed. Note that
this Q is an average over all the modes in the 75 - 110
GHz frequency range.

The center frequency for this range used in Fig. 3 is
f = 92.5 GHz, the cavity volume is V = 1.289×10−4 m3,

FIG. 4. Cycling of the scaled cavity experiment from room
temperature to 15 Kelvin and back again, a comparison be-
tween resultant α values calculated from different methods.
Blue solid line: αQ calculated from time domain energy de-
cay time method; red dotted line: αfitcalculated from the best
fit of η11 and η22 to the RCM prediction at room temperature.

and the quality factor obtained at room temperature
from the measured decay time is about Q = 8450, giving
a loss parameter of αQ = k3V/(2π2Q) = 5.6 (αQ denotes
calculated from the quality factor). The same technique
is applied to the thousands of S-parameter data sets col-
lected during a cool-down/warm-up temperature cycle,
which ranges from room temperature to 15 Kelvin to
room temperature, as shown in Fig.4 by the blue solid
line. It is seen that by choosing a temperature, we can
set the cavity α to any value between 3.3 and 5.6. Note
that this determination of αQ is independent of the loss
introduced by the free-space propagation paths.

B. Obtaining α from fits to universal impedance
fluctuations

To determine α using the RCM normalization process,
we first note the following expression for the normalized
impedance ξ that was obtained in Refs. [6, 10],

ξ = (Re[Zavg])−1/2(Zcav−jIm[Zavg])(Re[Zavg])−1/2 (1)

where Zcav is the measured cavity impedance, Zavg is
the ensemble average of Zcav over many stirrer positions.
Zavg represents the system-specific information, such as
the coupling between the ports and the cavity, that the
RCM captures and removes from the data to reveal the
underlying universal fluctuations of the impedance. Prior
work has established that the cavity statistical properties
are independent of port location and type [10] and the
RCM normalization process works well even for super-
conducting cavities [36]. However, we note that in Refs.
[6, 10], Eq. (1) was derived assuming lossless ports, hence
for our remote injection setup we first need to modify the
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FIG. 5. Comparison between the normalized impedance PDF
for a 2-port system from a RCM Monte Carlo simulation with
α = 5.6, in solid lines, and that from a normalization process
of experimental data with η11 = 0.14 and η22 = 0.19, in
dotted lines.

normalization Eq.(1) to compensate for the loss during
the free-space propagation path. In the case of a high
loss one-port system with a lossy port (antenna), Ref.
[11] shows that

ξ = (Zcav − Zavg)/(ηRe [Zavg]) + 1, (2)

where η is the radiation efficiency of the antenna, 1 ≥
η ≥ 0, defined as the ratio of the power radiated to the
power delivered to the antenna.

In summary, there are two distinct loss contributions in
our experiment. The first is that intrinsic to the complex
enclosure, described by the loss parameter α, which dic-
tates the RMT distribution of impedance fluctuations.
The second is due to the power lost in the extended
”ports” in our experiment - namely the free-space propa-
gation paths between the mm-wave transceivers and the
entrances to the cavity. This latter loss mechanism has no
influence on the statistical fluctuations of the enclosure,
and is parameterized by η. A proper and consistent par-
titioning of these losses is required to correctly describe
the measured impedance fluctuations over the entire fre-
quency and temperature range of the measurements.

Extending the treatment of highly lossy ports in Ref.
[11] to N -port systems, we obtain (analogous to Eq. 2),

ξ = R−1/2(Zcav − Zavg)R−1/2 + I

R = η1/2Re[Zavg]η1/2,
(3)

where R, Zcav and Zavg are N × N matrices, I is the
N ×N identity matrix, and η is

η =


η11 0 . . . 0
0 η22 . . . 0
...

...
. . .

...
0 0 . . . ηNN

 ,
where ηii is the radiation efficiency for the ith port. It is
assumed that the N -port cavity is in the high-loss limit
(α� 1).

We now discuss how the values of η are determined
from the data. In our 2-port setup, the radiation effi-
ciency η =

[ η11 0
0 η22

]
cannot be measured directly. In-

stead, we utilize the knowledge of the loss parameter

from the direct definition method αQ and a fitting pro-
cess to deduce the radiation efficiency. We already know
that the enclosure is characterized by αQ = 5.6 at room
temperature. Thus, by using an RCM Monte Carlo sim-
ulation, we can obtain a prediction for the universally
fluctuating impedance PDFs (Eq. 1) of a 2-port sys-
tem’s normalized impedance with α = 5.6, as shown in
Fig.5 with the solid lines. Then we find the best η11 and
η22 values such that the normalized impedances, calcu-
lated with η according to Eq.(3) using the remote in-
jection experimental data, best approximate the PDFs
produced by the RCM simulation results. The best fit
values are η11 = 0.14, η22 = 0.19 and the resulting nor-
malized impedance PDFs are plotted in Fig.5 as dotted
lines. The agreement is good, but not perfect. We believe
that the deviations in Re[ξ11] and Re[ξ22] statistics (Fig.5
(a)) are because Eq.(3) only works for high loss cavities
(α � 1) [11], and α = 5.6 in our case is barely in this
limit. Applying the η correction changes the variance of
Re[ξ11] and Re[ξ22], but does not change their PDF peak
location. Before applying the η correction, the fluctua-
tions of Re[ξ11] and Re[ξ22] are narrowly centered around
1 and remain so afterwards, deviating from the peak loca-
tion in the simulation. (Efforts are underway to further
generalize the treatment of lossy ports in the RCM to
accommodate lower loss cavities.) Appendix B discusses
in detail the relationship between the loss parameter α
and the radiation efficiency η, and what happens if the
estimated η deviates from the actual value.

The other solid and dotted lines in Fig.5 (b) lie right
on top of each other, as well as the curves for the real and
imaginary parts of ξ12 and ξ21 (omitted in Fig.5 for clar-
ity), proving that the fitted η successfully separates the
effects of the lossy free-space path from the cavity losses.
We have applied this η correction to all other data sets
in the same experiment, assuming that the propagation
paths are not perturbed as the temperature varies. The
resultant αfit deduced in this manner is plotted in Fig.4
as the red dotted line, which agrees well with the αQ
curve calculated from the first method.

To maximize the tunable range of the α values, we
also vary the cavity wall material in order to vary ohmic
loss. We performed the cool-down experiment with the
same miniature cavity with three different wall material
conditions: copper wall (α results shown in Fig.4), me-
chanically polished copper wall, and wall covered with
aluminum foil. The polishing reduces the surface rough-
ness and thus reduces surface losses [30, 31]. The overall
range of achievable α values are shown in Fig.6.

VI. COMPARISON WITH FULL-SCALE
CAVITY

The full-scale cavity is a nearly exact scaled-up version
of the miniature cavity, with a scaling of s = 20 in each
dimension. It has an α value of 3.0 in the full scale fre-
quency range (3.75 - 5.5 GHz), which is within the range



6

FIG. 6. The tunable range of α values of the s = 20 scaled
cavity using different wall material and varying temperature.
The least lossy case is with polished copper walls, and has a
range of 2.6 ≤ α ≤ 4.2. The overall range is 2.6 ≤ α ≤ 6.4.

FIG. 7. Comparison of the probability density function for the
imaginary part of the normalized impedance ξ21 for the full-
scale cavity (blue diamond dots based on data), the miniature
cavity (red cross dots based on data) and the RCM Monte
Carlo simulation with α = 3.0 (yellow solid line) for the entire
frequency range of either 3.75 - 5.5 GHz or 75 - 110 GHz.

of the miniaturized cavity’s α values in the cool-down ex-
periment (see Fig.6). To directly compare the PDF of the
normalized impedance, we choose the collected ensemble
of data for the miniature cavity with polished copper
wall measured around 103 Kelvin, and plot it with the
full-scale experimental result, as well as the RCM Monte
Carlo simulation result, in Fig.7. In order to show the
comparison between the three results, only the imagi-
nary part of ξ21 is plotted here, but we analyzed all eight
curves (real and imaginary part of ξ11, ξ12, ξ21 and ξ22)
with the same conclusion. We see that all three results
agree with each other, confirming that the scaled-down
cavity at a particular temperature can reproduce the nor-
malized impedance statistics of the full-scale cavity.

Notice that all analysis presented so far was done using
the data for the entire frequency range, 75 - 110 GHz for
the miniature cavity and 3.75 - 5.5 GHz for the full-scale

FIG. 8. (a) Comparison of the loss parameter α at room
temperature and at base temperature (15 Kelvin in this ex-
periment) in the corresponding 10 frequency bands, and (b)
radiation efficienty η calculated for 10 frequency bands.

cavity. Hence the α values used in the statistics are aver-
aged over a wide frequency range. To see the frequency
dependence of η and α, we divide the entire frequency
range into 10 sections, 175 MHz wide (3.5 GHz wide in
the miniature cavity case) for each section, and carry out
the same analysis. The frequency dependence is shown
in Fig. 8, where η is increasing with frequency mostly
due to the increasing antenna gain at higher frequencies
[37]. As for the ξ statistics, we find that we are able to
match the normalized impedance statistics by choosing
the data recorded at an appropriate temperature such
that both cavities had the same α; several examples are
shown in Fig.9 with almost identical curves for full-scale
and miniature cavity statistics. Indeed, a recent study
[38] shows that averaging over a range with variable α
gives an impedance PDF that is well-described by the
average α value in that range, at least for α > 1, which
is the case here.

VII. CONCLUSION

To summarize, we have presented an experimental
setup that scales down a cubic meter microwave cav-
ity, while faithfully maintaining its statistical electromag-
netic properties. The setup employs two features to re-
produce the correct statistical properties in the scaled
cavity. First, it uses frequency extenders to scale up
the frequency. Second, it maintains the same wall-loss
quality factor by using better electrical conductors as
the walls of the scaled down cavity and by cooling the
cavity in a cryostat. The experimental results show that
the miniature cavity has a wide range of tunable α values
from 2.6 to 6.4. We can match the full-scale cavity statis-
tics by choosing the appropriate wall metal and tempera-
ture. The agreement is obtained for data selected from a
large frequency range, as well as from small frequency
sections. These results also demonstrate the capabil-
ity of characterizing the statistical properties of complex
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FIG. 9. Comparison of the probability density function
(PDF) for the imaginary part of the normalized impedance
ξ12 and ξ21 between the full-scale cavity (solid line based on
data) and the miniature cavity (dotted line based on data)
for three different frequency bands (of the full-scale cavity) at
different temperatures (of the scaled cavity). Top row shows
the PDFs in linear scale while the bottom row shows the
same PDFs in log scale. (a) α = 2.83 within [4.45, 4.625]
GHz at 130 Kelvin, (b) α = 4.19 within [4.975, 5.15] GHz at
217 Kelvin and (c) α = 5.82 within [5.325, 5.5] GHz at 297
Kelvin. Notice that in each plot, all four curves collapse into
one because they match each other very well.

enclosures even under circumstances of remote injection
through free space.
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Appendix A: Obtaining loss parameter α

The loss parameter α can be obtained by two meth-
ods, depending on what is known about the cavity. If
the volume, V , and the quality factor, Q, is known,
then α can be computed directly with its definition
α = k3V/(2π2Q), where k is the wave number. Oth-
erwise one can follow the RCM normalization process
below.

1. First measure the cavity S-parameters, Scav, using
a Vector Network Analyzer (VNA), and convert it

to impedance parameters Zcav by Z = Z
1/2
0 (I +

S)(I− S)−1Z
1/2
0 , where I is an identity matrix, Z0

is a diagonal matrix whose elements, Zii, are the
characteristic impedances of the transmission line
connecting to the ith port (typically 50 or 75 Ohms
for a coaxial cable).

2. Perturb the cavity modes, usually by rotating a
large metal panel inside the enclosure, and repeat
the measurement for Zcav, collecting an ensemble
of Zcav that represent the same cavity statistically.

3. Calculate the ensemble average Zavg =
〈Zcav〉realizations that summarizes the system
specific features such as the radiation impedance
and short orbits between the ports, and then
normalize Zcav by

ξ = (Re[Zavg])−1/2(Zcav − jIm[Zavg])(Re[Zavg])−1/2

(A1)

4. Comparing the statistics, such as the probabil-
ity density function (PDF), of the normalized
impedance ξ (real and imaginary parts) with the
Monte Carlo simulation results with different α val-
ues and find the best fit. For an N -port system
there are 2N2 such statistical distributions all of
which should be fit simultaneously by a single value
of α. Figure 3 in [7] is an example of the theoretical
predictions for the PDF of normalized impedance
for various α values.

This RCM normalization process has been demon-
strated to be very effective at removing the system-
spacific features, such as the radiation impedance, from
the measurement ensemble data, and is a robust method
to obtain the loss parameter α for any sufficiently com-
plex enclosure in the highly over-moded regime.

Appendix B: Relationship between loss parameter α
and radiation efficiency η

As shown in Eq. 2, a one port lossy system (in the
high-loss α� 1 limit) has a normalized impedance given
by ξ = (Zcav − Zavg)/(ηRe [Zavg]) + 1. Notice that if
we define δξ = ξ − 1 = (Zcav − Zavg)/(ηRe [Zavg]) and
let δξ0 = (Zcav − Zavg)/(Re [Zavg]), then δξ = δξ0/η.
If the port is lossy, then η provides a simple correction
to obtain the universal fluctuations, at least in the high
cavity loss case. We can estimate α from the variance of
the fluctuating impedance ξ (Appendix B, Method 4 in
[9]) by

α = 1/(πσ2
Re[ξ]) = 1/(πσ2

Im[ξ])

= η2/(πσ2
Re[ξ0]) = η2/πσ2

Im[ξ0]

where σ2
X denotes the variance of X. Since ξ0 is indepen-

dent of the choice of α or η, its variance is a known con-
stant for a given ensemble. Hence α/η2 = 1/(πσ2

Re[ξ0]) =

1/πσ2
Im[ξ0] is a constant for a certain data set regard-

less of the choice of η. In other words, if η is estimated
higher than its true value then α will also be higher than
it really is. It makes sense that a higher η, meaning a
more efficient and less lossy antenna, leads to a higher α,
meaning a more lossy cavity, because the total lossyness
of the system is fixed for a given ensemble of data.
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[5] Y. Aurégan and V. Pagneux, Acta Acustica united with
Acustica 102, 869 (2016).

[6] S. Hemmady, T. M. Antonsen, E. Ott, and S. M. An-
lage, IEEE Transactions on Electromagnetic Compatibil-
ity 54, 758 (2012).

[7] G. Gradoni, J.-H. Yeh, B. Xiao, T. M. Antonsen, S. M.
Anlage, and E. Ott, Wave Motion 51, 606 (2014).

[8] G. Gradoni, T. M. Antonsen, and E. Ott, Phys. Rev. E
86, 046204 (2012).

[9] S. Hemmady, A Wave-Chaotic Approach To Pre-
dicting And Measuring Electromagnetic Field
Quantities In Complicated Enclosures, Ph.D. the-
sis, University of Maryland College Park (2006),
https://drum.lib.umd.edu/handle/1903/3979.

[10] Z. B. Drikas, J. Gil Gil, S. K. Hong, T. D. Andreadis, J.-
H. Yeh, B. T. Taddese, and S. M. Anlage, IEEE Transac-
tions on Electromagnetic Compatibility 56, 1480 (2014).

[11] B. D. Addissie, J. C. Rodgers, and T. M. Antonsen, in
Metrology for Aerospace (MetroAeroSpace), 2015 IEEE
(2015) pp. 214–219.

[12] X. Li, C. Meng, Y. Liu, E. Schamiloglu, and S. D. Hem-
mady, IEEE Transactions on Electromagnetic Compati-
bility 57, 448 (2015).

[13] D. A. Hill, M. T. Ma, A. R. Ondrejka, B. F. Riddle,
M. L. Crawford, and R. T. Johnk, IEEE Transactions
on Electromagnetic Compatibility 36, 169 (1994).

[14] D. A. Hill, “Electromagnetic fields in cavities: Determin-
istic and statistical theories,” (Wiley-IEEE Press, 2009)
Chap. Appendix J: Scaling, pp. 257– 260.

[15] G. Sinclair, Proceedings of the IRE 36, 1364 (1948).
[16] A. Whitson, “Electromagnetic dimen-

sional scale modeling,” (1974), http://ece-
research.unm.edu/summa/notes/In/0200.pdf.

[17] J. Gil Gil, Z. B. Drikas, T. D. Andreadis, and S. M.
Anlage, IEEE Transactions on Electromagnetic Compat-
ibility 58, 1535 (2016).

[18] E. P. Wigner, Annals of Mathematics 62, 548 (1955).
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