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ABSTRACT 

 

 

Almost everything that happens in classical mechanics also shows up in quantum mechanics 

when we know where to look for it.  A phenomenon in classical mechanics involves topological 

changes in action-angle loops as a result of passage around a “monodromy circuit”.  This 

phenomenon is known by the short name “Hamiltonian monodromy” (or, more ponderously, 

“nontrivial monodromy of action and angle variables in integrable Hamiltonian systems”).  In 

this paper, we show a corresponding change in quantum wave functions:  these wave functions 

change their topological structure in the same way that the corresponding classical action-angle 

loops change. 
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I. Introduction 
  “Monodromy” means “once around a closed path”; a system exhibits “nontrivial monodromy” 

if when we go around a closed path, the system does not come back to its original state.  The simplest 

example is the square root function in the complex plane – upon one circuit around the origin, the 

square root changes sign.  “Hamiltonian monodromy” refers specifically to multivaluedness of action-

angle variables.  This phenomenon occurs in a variety of classical and quantum systems:  any 

cylindrically symmetric system with a quadratic barrier, the spherical pendulum, dipolar molecules in 

fields, the hydrogen atom in crossed fields, nearly linear molecules, elliptical billiards, and atoms in 

traps.  [1--18] 

  As a representative case, let us consider particles moving in two dimensions in a circularly 

symmetric “champagne bottle” or “Mexican hat” potential energy: 

    (1) 

  

There are two conserved quantities, angular momentum  with conserved value 

and energy (the Hamiltonian function itself), having conserved value .  A “level set” is the set of 

points  in phase space corresponding to fixed values of angular momentum and energy.  For the 

Mexican hat system, by general theorems in classical mechanics  [19], every level set except one is a 

torus, and the shape in phase space of these tori, and the motion on them as well, can be described by 

action-angle variables.   The values of action variables specify the torus on which the motion occurs, 

and the values of angle variables specify the position on each torus. As each angle variable is varied 

between  and  (holding the other fixed), the phase-space point traces out a fundamental loop on 

the torus. 

 The exceptional level set is the one having  and .  That set (like all the others) is 

cylindrically symmetric, but it is a “pinched torus”, like the  symbol rotated about a vertical axis in 

the plane of the paper.  This seeming violation of general theorems occurs because the gradients of 
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 and  of  both vanish at ;  accordingly the origin in phase space  

 is called a “singular point”.  Connecting with the language of quantum mechanics, we 

call the two-dimensional space of values of conserved quantities  “spectrum space” (also called 

(angular momentum, energy space)).  The origin in phase space corresponds to the origin 

in spectrum space, , and this point is called a “singular value”, which we call the 

“monodromy center”. 

 Action-angle variables are not defined on this level set and the remaining set of non-singular 

values in spectrum space is not simply connected. A consequence is that action-angle variables can, 

and in fact do,  become multi-valued functions of . When we examine the changes of action and 

angle loops as we travel around any closed circuit surrounding the monodromy center, the initial and 

final tori are the same, However, the loop traced out by one of the angle variables smoothly changes 

into a different fundamental loop on the torus (Fig. 1). This is called a “static” manifestation of 

monodromy.  

 

 

 

Fig.1 In each figure is a torus in phase space specified by  and its projection onto 
the x-y plane. The two tori are exactly the same two-dimensional manifold in four-dimensional phase 
space, but with different coordinate systems on them, defined by angle variables . The bold 

black (online) loop is a selected action-angle loop, defined by , . On the left it 
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is a poloidal loop, and other poloidal loops are shown at different fixed values of  (blue online). 

Toroidal loops (green online) have , Initially, the bold black (online) action-

angle loop stays on one side of the central forbidden region. When  change smoothly on a 
monodromy circuit, the corresponding torus also changes smoothly, and so does the action-angle 
loop. After traversing a monodromy circuit, when  return to their initial values , 
the torus returns to the original torus but the action-angle loop has changed into a topologically 
different loop, shown in the figure on the right. These loops are used for calculating action variables, 
so the value of the corresponding action can also change on a monodromy circuit. 

 

 In Refs. [20,21] it was pointed out that this static manifestation of monodromy must have 

dynamical consequences: if a collection of noninteracting particles is given initial conditions 

corresponding to an initial angle loop on a torus, and those particles are driven continuously by an ideal 

Hamiltonian flow around a monodromy circuit, then the loop of particles undergoes the same 

topological change that is seen in the angle loop.  In Ref. [22], simulations showed that this 

phenomenon can be observed under a relatively simple time-dependent Hamilton when the appropriate 

torque is applied.  Furthermore, the topological change also occurs under less-than-ideal conditions, 

with particles having a distribution of energies and angular momenta.  

 The question we address in this paper is: can we construct quantum wave functions that have 

the same topological change that is seen in the action-angle loops?  The answer is yes.  In this paper, 

we will show: (1) a new static quantum manifestation of monodromy -- we define a superposition of 

eigenfunctions of  which has the appearance of an initial action-angle loop, confined to one side of a 

classically-forbidden region; when we carry this superposition around a monodromy circuit in spectrum 

space, the wave function changes its structure to a loop that surrounds the classically-forbidden region.  

We show also: (2) an analogous “ideal” dynamical quantum manifestation of monodromy: we define a 

continuous time-dependent unitary transformation, which drives the expectation values of angular 

momentum and energy around a monodromy circuit, and which causes the wave function to make the 

same topological change.  Finally we show: (3) a realizable manifestation -- this topological change can 

be implemented by a time-dependent Hamiltonian with an appropriate radiation field.  
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Fig.2  Monodromy of wave functions.  Initially we make a superposition with expectation value of 
angular momentum , and expectation value of energy , shown in (a).  This 

superposition is localized on one side of the classically forbidden region.  The contour plot 
corresponds with the black angle loop specified by .  After  

are carried smoothly around the monodromy circuit and return to their original values
, the wave function smoothly changes into a topologically different wave 

function, corresponding with the topologically changed angle loop (d). (b) and (c) are superpositions 
whose expectation values of angular momentum and energy correspond respectively to the  
point on the upper right corner of the mondromy circuit in Fig. 3 ( ) and the 

point on the upper left corner of that monodromy circuit ( ). The quantum 

numbers  and  are defined later in section III. 

 

 One result is shown in Fig. 2.  Before being carried around the monodromy circuit, the wave 

function is localized on one side of the origin.  Afterwards it surrounds the origin. (Spreading of a wave 

packet cannot produce the change shown here.  In our case, spreading occurs on a longer time scale, 

and produces a different density.)    

 Everything in this introduction will be explained in detail in the following sections. 

 

II. Relationship to other work 
  This work is connected with the theory of torus quantization (the modern version of the Old 

Quantum Theory) which has been used to study an immense variety of systems, including simple 

nonlinear oscillators, molecular vibrations and rotations, excited states of hydrogen in electric and 

magnetic fields, doubly-excited states of helium, spin-orbit coupling, and excited states of nuclei  [23--

31].  For the Mexican Hat system, Duistermaat, following a suggestion by Cushman, constructed 

action-angle variables, and showed that smoothly-defined action-angle variables cannot be single-

valued.  Subsequently, Cushman and Duistermaat described the quantum implications of multivalued 

action variables: the lattice of allowed semiclassical eigenvalues, defined by quantization of these 

multivalued action variables, has a defect  [32--34].  In Fig. 3, we see that a unit cell carried around a 

monodromy circuit does not return to itself. 
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  As mentioned earlier, many classical and quantum systems display Hamiltonian monodromy 

and its associated spectral defects. This seemingly abstract geometry in phase space leads to interesting 

dynamical consequences:  in a system like the Mexican Hat, if the system is subjected to appropriate 

perturbations, a loop of particles can evolve smoothly in time into a topologically different loop [20--

22].   

 

  Monodromy is the simplest and most accessible example of a class of recently uncovered 

phenomena  (bidromy and fractional monodromy), and it also shows up in attractors in field theory  

[35--39].  It was discovered because of new ways of thinking about classical Hamiltonian systems (the 

global perspective – how tori fit together in phase space)  [40,41].  As stated earlier, the topological 

change in wave functions shown in Fig.2 is a quantum analogue of the topological change in action-

angle loops. 

 

 Finally, topological quantum states receive much attention because they are connected with the 

integer or fractional quantum Hall effect, because certain atom transport schemes use topological 

methods, and because of speculations that they can be used to implement schemes for topological 

quantum computing [42--54].  Indeed, 57 presentations at the 2017 DAMOP meeting and 958 

presentations at the 2017 APS March meeting dealt with topological changes in quantum and classical 

states, mainly in many-body systems.  In Fig.2, we have shown by computation that quantum states of 

very simple two-dimensional systems also can display interesting topological changes.   

 

 

III. Smooth Action Variables and their Associated Quantum Numbers 
 

 Action variables are defined as integrals around fundamental loops on the tori:  

           (2)  

refers to one of the fundamental loops of the torus. In a naïve application of this formula to circularly 

symmetric systems, one might presume that the two fundamental loops are radial and angular 

             (3) 
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   (4) 

 

 is a loop at fixed  and  is a loop at fixed (Fig. 1a).  is a good action variable, but is 

not: one can show that is discontinuous at  and  . We need action variables that are 

differentiable functions. Many earlier references have shown that this action can only be a smooth 

function of  if it is multivalued, with a branch point at the monodromy center . 

 There are many ways to choose the second action variable so that it is smooth (see Fig. 4 of 

Ref. [21]). We choose the following. Define the effective Hamiltonian 

     (5) 

Here   is the angular velocity averaged over a cycle of radial motion --  

 is the radial period (time for return to the original value of  with the original value of ), 

and	  is the azimuthal angle subtended in one radial period.  Both quantities are obtained from 

trajectories of , and they must be defined so that they are differentiable functions of 

everywhere except at the monodromy center.  It follows that  must be a multivalued function. 

We take the convention that we begin with  , where  . Upon passage around a 

counterclockwise monodromy circuit,  increases by .(See Fig.9 of Ref[21]).  Trajectories 

under  are obtained by treating as fixed parameters, and obtaining Hamiltonian 

equations of motion from the dependence of .  These trajectories have the form of trajectories 

under  as seen in a frame of reference rotating counter-clockwise with angular velocity

 .  Hence in one radial cycle, every orbit closes.  Any trajectory of  is an action-

angle loop. The canonical angle variable associated with this loop increases linearly with time from 

zero to  as the trajectory under goes around the loop, and the action variable is given 

by the integral     

            (6) 
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around the loop. We call  the “smooth action variable”; it is a multivalued differentiable 

function of  everywhere except at the monodromy center. 

 

 In supplemental material for this paper  [55], we showed pictures of the two families of action-angle 

loops for this system.  These action-angle loops define a coordinate system on each torus. In our 

pictures, such as Fig.1, we represent the tori using  as coordinates. Initially (Fig.1a), with 

, , , the  loop is poloidal.   The relationship between those coordinates on one 

torus and on another constitutes a connection between coordinates on the different tori.  As we change 

, moving from one torus to another, these action-angle loops obtained from the effective 

Hamiltonian, and the associated coordinate systems on the tori, change gradually and smoothly, 

provided that we make change smoothly.  A “monodromy circuit” is any continuous closed 

path in spectrum space surrounding the monodromy center (Fig. 3).  If we carry the system around such 

a path, when the system returns to its original , the topological structure of the family of loops 

is different (Fig.1).  The poloidal loop changes to a combination of toroidal and poloidal loops.  This 

happens because  changes from zero to on traversing the monodromy circuit.  When we 

calculate  using (6), we must follow this angle loop with its topological change.   

 

 The multivalued nature of  follows from the change of structure of the loop. We begin by 

using Eq. (4) for  ; then if we cross to  below the monodromy center ( ), the simple 

radial integral Eq. (4) gives an analytic continuation to negative , and  

                         (7)  

However, if we cross to  above the monodromy center ( ), this smooth action  is given by  

         (8) 

 With continuing counterclockwise circuits about the monodromy center, every time we cross  

with ,  is subtracted, giving a multivalued but smooth action. 

 Quantum eigenenergies can be calculated with good accuracy using a semiclassical 

approximation, by quantization of the action variables:   

               (9) 
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                (10) 

Alternatively, we may label quantum states using the smooth action variable  

     (11) 

 is the angular momentum quantum number.  is the familiar radial 

quantum number. It is uniquely defined for each quantum state, but corresponds to an unsmooth action 

variable.  In contrast,  is a quantum number associated with the smooth but multivalued action, , 

and it is therefore also multivalued. 

 Equivalently, any quantum state has definite values of   and , but it has many possible 

assignments of . If we begin with  with  , then upon crossing to    with ,  

becomes .  (This may seem like a reason to avoid its use, but there are dynamical processes in 

which the classical system follows the smooth action variable , and the quantum system follows the 

corresponding quantum number .)  

 Fig. 3 shows the spectrum of quantum energy levels. On this scale there is no visible difference 

between semiclassical and exact quantum eigenvalues. Contours of smooth action are also shown. 
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Fig.3 Monodromy circuits.  Coordinates of spectrum space for this system are angular momentum 

and energy.  The grey dots represent quantized eigenvalues  for the Mexican Hat system 

defined in Eq.(1). The grey (online) curves link states of the same “quantized smooth action variable”.  
The origin, marked by a large red (online) dot, is a singular value, also called a “monodromy center”.  
Any closed circuit (such as the elliptical blue (online) curve) around this point is a classical monodromy 
circuit.  The bold red (online) circuit is the quantum monodromy circuit that we often follow.  The defect 
in the spectrum is shown by transport of a unit cell around the monodromy circuit, where it returns to a 
different unit cell (green online, light grey in print). 

 

 

  IV Construction of wave functions with topological changes 
  In the introduction we have shown a quantum manifestation of monodromy in superpositions of 

eigenfunctions: a topological change in the structure of the superposition. Here we define the 

superpositions which give that topological change.  The motivations for the methods presented in this 
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section come from classical and semiclassical mechanics, and from study of simpler systems. Those are 

discussed in section V. 

 

1. Eigenfunctions and eigenvalues of the Mexican Hat system 

 
  With the quantum Hamiltonian from Eq.(1) 

   (12) 

we define for  only 

 

                (13) 

with the following conventions. For each ,  labels the eigenvalues and eigenfunctions in order 

of energy, starting at . Like Bessel functions,   approaches  as  approaches the 

origin; i.e.  is positive near the origin. As  increases,  oscillates, with  zeros, and 

then decays exponentially at large .  is a real and positive normalizing constant. These 

eigenfunctions for   were computed by expansion in a Bessel function basis. 

 

 The spectrum of energy levels can be extended to  by the rule . In this way 

we are again labeling states with fixed  in order of their energies, again starting with  for 

each . For  small, the eigenvalues  for fixed  lie close to a parabola when  , but 

close to a line with discontinuous slope,  when .   

 

2. Phases of Eigenfunctions 
 To make later formulas as simple as possible, the phases of the eigenfunctions should be 

defined so that they have a nontrivial monodromy of their own. To define the phases, we use the 

following process. For all  we define 

         (14) 
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       (15) 

 is a phase which is a multivalued function of . It is defined by following paths in 

quantum spectrum space. 

   

 A quantum path in quantum spectrum space is a sequence of discrete steps, with each step 

connecting a state to a neighboring state. States  and  are neighbors if  

or , and  or  . To define the phase, let us take our paths to begin at any fixed  , with 

 . Then at the beginning of a path, we choose . If the path crosses the line  at a 

value of  such that , the phase becomes 

   (16) 

The same holds if it crosses back to positive  if . However, if the path crosses the line 

 in either direction when , then 

   (17) 

A consequence is that the phase is path-dependent. Furthermore, if we follow a closed path in spectrum 

space that encloses the monodromy center once, then the final phase differs from the initial phase  

   (18) 

After two such circuits, . Eq.(16) and (17) correspond respectively to 

symmetry relationships of Bessel functions  or . 
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Fig.4 Path dependence of phase. The phase  can be defined either by path A 

(blue online, dark grey in print) or path B (green online, light grey in print). The starting point of the two 
paths is , , with  . If the phase  is defined along 

path A, according to the rule in Eq. (17), . If the phase  is 

defined along path B, according to the rule in Eq. (16), since the path crosses the  axis with 
 , . 

 

3. Quantum Monodromy Circuits 
 A quantum monodromy circuit is a closed quantum path in quantized spectrum space following 

quantized smooth action variables in a circuit around the monodromy center.   and  are 

smooth actions, so  and  are quantized smooth action variables. Thus a quantum monodromy 
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circuit is a sequence of steps connecting neighbors as defined above, but with the restriction that we 

follow quantum numbers associated with smooth action variables. The selected quantum monodromy 

circuit shown in red in Fig. 3 starts with  and  ; it goes to  holding at 13, 

then increases to 28 with  fixed, then decreases  with fixed as long as  . Upon crossing 

the  axis, since , it follows the smooth action variable ; hence each time 

 is reduced by 1,  is reduced by 1. The upper left corner of the circuit still has  but , 

since  .    The lower left corner has  , therefore . (Here is the multivaluedness of 

this quantum number; if we had followed a negative-energy path from positive  to this state (

 ), then its smooth quantum number would be instead of 13). Coming back to 

 , the contours of constant smooth action slope steeply upwards, and we arrive at  with 

 , as in the initial state. 

 

4. Superposition states 
 Here we define a set of nonstationary superposition states which display the topological change 

similar to that of the action loops as in Fig.1. That topological change is robust, so there are many ways 

to choose such superpositions.  

 Each superposition that we construct has a fixed value of , and a range of  about a central 

value, called .  The subscript  means that for each , there is one and only one value of 

; it is the value such that  is the same in every term. The radial eigenfunctions  are uniquely 

labelled by quantum numbers  and , except for their phases, which are path dependent. The path 

used to define the phase  is specified as the path to reach  together with a few steps in 

 at fixed . We choose a superposition 

   (19) 

The coefficients   are a Gaussian function centered at  with a fixed value of   

          (20) 
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5.Static monodromy in the Mexican Hat system 

 
 

Fig.5 For the Mexican Hat system, a 3D plot of coefficients  versus  and . As described in 

Fig.3, the grey dots are eigenvalues for the Mexican Hat, and the selected monodromy circuit,  (bold, 
red online) starts from , moves in a counterclockwise direction, and returns to 

the starting point.  Initially, we construct a superposition with , centered at . All the 
eigenstates included in this superposition have quantized smooth action=12.5 . The coefficients 

(Eq. (20)) are represented by the light grey (green online) Gaussian curve centered at . 

Then we take the center of this Gaussian distribution around the monodromy circuit as described in 
the text. Finally, when we return to the initial point , where the coefficients are shown in black 
(blue online), the eigenstates included in the superposition are different from that in the initial 
superposition, because the contour of smooth action =12.5 is different from the initial contour. 
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             Now we carry this superposition around a monodromy circuit.  (i) We start with all coefficients 

zero except for those at one fixed ,  and with  having a Gaussian distribution centered at 

, . (See Fig.5).  The value of  is chosen such that the energy is well 

below zero.  (ii) Holding  fixed, we increase , and keep the Gaussian distribution of coefficients, 

. When  is sufficiently large, coefficients having  are negligible, and we 

set them to zero.  (iii) Now at each , we increase  in integer steps until the energy is well above 

zero. We stop at . At this point the action-angle loop is plainly manifested in the quantum 

wave function, and it lies on one side of the classically forbidden region.  (iv) Now we decrease , 

moving the Gaussian distribution to smaller . When the value of  in any term in the superposition 

becomes negative, we keep the value of  constant by taking . Thus we are 

following a quantum monodromy circuit as defined in section IV.3:  is adjusted so that the smooth 

action variable is constant. Also as we follow this path we must adjust the (path-dependent) phase, as 

specified in section IV.2.  Now the action-angle loop surrounds the origin, and the wave function does 

also. The upper left corner of this monodromy circuit has .  (v) When  is 

sufficiently negative, then the coefficients for are negligible, and we set them to zero. Then we 

reduce each value of  in steps of 1. The superposition now has a range of both  and , and at 

each step .  When we have reduced such that that constant equals the initial 

value of , we stop reducing .  (vi) Finally we increase  (the center of the distribution) 

always keeping  constant. This holds also for , and we give attention to the monodromy of the 

phases. We stop at .  For the basis functions having , we have crossed the  line below 

the mondromy center, so we use the symmetry relationship (17).  At this final point, we have a new 

superposition of eigenfunctions.  For each , the radial quantum number  has changed, and the signs 

of the basis functions have changed according to Eqs.(16) and (17).    

 The final superposition surrounds the classically forbidden region (Fig.2(d)).  We have 

obtained static monodromy of superpositions of eigenfunctions.  This is a fully quantum-mechanical 

monodromy, with little reference to classical or semiclassical mechanics. (We defined  to be the 

quantum number associated with a smooth classical action, but it could have been defined by study of 
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the defect in the spectrum.)  If this monodromy process sounds complicated (and perhaps artificial), we 

emphasize that there are dynamical processes that follow monodromy circuits. A classical process was 

shown in Ref. [22], and a quantum process will be shown in section VI. 

  

 

6. The probability current under effective Hamiltonian   
 

 In Fig.2, we showed that the superposition defined in (19) has the shape of the angle loop. In 

this section, we show that not only the shape, but also the density flux follows the corresponding angle 

loop. The probability current or flux density  is the flow of probability density such that: 

  

   (21) 

  

Under the effective Hamiltonian (5) which generates the angle loop, we get an unusual form for the 

flux density:  

  

   

    

    

It follows that the flux density is  

  (22) 

The term containing   is unusual but important. If time-dependent phases  are 

incorporated, then the wave function rotates about the center. The flux density (22) refers to a frame 

rotating at the classical rotation rate. 
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In Fig.6, two superpositions along with their probability current are plotted. The one labelled (a) 

is before the monodromy circuit, and the one labelled (b) is after. They have the same expectation 

value of  and . But they have different topological structures and the flux densities have 

different winding number about the origin. 

  
 

    (a) 

l< > E< >
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     (b) 
 Fig.6 The surfaces represent the absolute value of wave functions versus Cartesian coordinates 

.  Below each is the corresponding contour plot, and the probability current (black arrows).  The 
cross markers in the center of the lower planes mark the origin of the planes.  Those origins are 
surrounded by classically forbidden regions.  The wave function in (a) is described in Eq. (19) with 

.  The one in (b) is the state after once around a monodromy circuit starting from the 

state in (a).  It also has , and the central value of . It is evident that these wave 

( , )x y
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functions have different winding numbers around the classically forbidden regions.  The flux density 
was computed based on the Hamiltonian ; it is the same as the flux density under the Hamiltonian 

as seen in a frame of reference rotating about the origin with angular velocity .  These are 
nonstationary states of the Hamiltonian ; if we included time factors, they rotate about the origin. 
The bold black loops in the planes are classical action-angle loops projected into the plane.   
 

 

 

V. Insights from the Circular Box System 

 
 We arrived at the results given in the preceding section by studying a simpler system, a particle 

in a circular box. In so doing, we obtained two results of general interest: (1) we show the relationship 

between the topological changes in the action loops and those in the superposition states using a 

semiclassical approximation; (2) we show that even for a circular box system, which does not have 

monodromy, when we examine action loops and wave functions in configuration space, they display 

topological changes similar to those shown in Figs.1 and 2. 

                                                                                                                                 

 

1. Classical and quantum behavior or the circular box system 

 
  Let us consider a circular box with  

   .  (23) 

   

(There is nothing special about this value of .)  We can calculate action-angle loops for this 

system by integrating trajectories of the effective Hamiltonian, Eq.(5), with this circular box potential, 

Eq.(23) .    is, as before, the average angular velocity in a radial cycle of motion, 

.  We must choose   to be smooth through , and this can be done if 

 , , where  and  are the maximum and minimum possible values 

for  at the given energy .  Then 
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     (24) 

 We show in Fig.7 trajectories under  for our selected  and .  This 

corresponds to radial quantum number , and the value of the smooth action variable .  

We reduce continuously until .  When passes through zero, increases smoothly 

through .  The result is that the action loop defining  changes its topological structure relative to 

the classically forbidden region surrounding the origin:  it changes from a loop on one side of the 

forbidden region to a loop that surrounds that region.  As a result, the smooth action variable has the 

behavior given that in Eq. (8) 

      

We follow a path similar to the top portion of a monodromy circuit by choosing such that is 

held constant at while we reduce .    As we see in Fig. 7(a), the resulting action loops have the 

same topological change as was obtained for the Mexican Hat potential. 
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    (a) 
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    (b) 

 

 

Fig.7.  A topological change of angle variable in the circular box system.  This system does not have a 
complete monodromy circuit, because it does not have negative energies.  However, the angle loops 
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have a topological change similar to what occurs on the upper portion of a monodromy circuit in the 
Mexican Hat system.  Thus, we compare two tori specified by two points on the incomplete 
monodromy circuit. (a) is the torus in phase space specified by  and its projection 
onto the x-y plane. (b) is the torus in phase space specified by  and its projection 
onto the x-y plane. Due to reflection at the outer hard wall, the “loops” and “tori” jump from positive to 
negative . The coordinate systems, marked by the dark grey (blue online) and light grey (green 

online) loops, are defined by angle variables . The bold black loop is one of the angle loops, 

defined by , . In figure (a), the black angle loop stays on one side of the 

central forbidden region. When  change smoothly, the torus changes smoothly, as do the angle 
loops associated with  . When  , the angle loop changes into a topologically different loop, 
shown in figure (b).  
 

 

 

 For a quantum particle in a circular box, the radial factors in the eigenfunctions of and of 

are Bessel functions 

     (25) 

where  is the integer angular momentum quantum number, and { } are values such that 

 .  The eigenvalues of  are given by  

      (26) 

The quantum number represents the number of radial nodes in the eigenfunction, including 

the node at  but not the node at  (when ).  We show in Fig. 8 the grid of eigenvalues 

.   Every eigenfunction of   is also an eigenfunction of  , but the 

eigenvalues of  are different from those of : 

     (27) 

If we use a semiclassical approximation to calculate the eigenvalues, the quantization condition for the 

radial eigenfunctions is  . States can also be labelled by quantum 

numbers associated with smooth action variables. If we use  for  , then  
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if  , but  for . In this case, quantum states and their energies are uniquely 

labelled by either  or . 

 

2. Semiclassical approximation 

 
 In this section and the next we construct semiclassical wave functions that are localized near a 

selected action-angle loop. There are two steps. (i) Construct semiclassical approximations to 

.  (ii) Construct superpositions that are localized in angle. 

  A two-dimensional semiclassical approximation to these eigenfunctions of the circular box, 

 can be constructed by the usual rules. However, we use  as the Hamiltonian instead of 

. In this relatively simple system, analytical results can be given. 

 

(a)  Specify the quantum numbers of the target eigenfunction. The eigenvalues of angular 

momentum and energy  are respectively .  (b) Choose an initial curve in   space 

(we take ), and specify the value of  on that curve. We take it to be 

, and temporarily .  (c)  Define the initial classical 

momentum on that curve such that  

      (28) 

and     

       (29) 

which is equivalent to   
      (30)  

(d)  Starting at , for each initial , integrate the equations of motion under  to obtain 

, and . The phase of the wave function is constructed by integrating one more equation 

to obtain the action function  using 
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      (31) 

with initial condition .  In the present case, the trajectories are given by 

             (32) 

   (33) 

   (34) 

   (35) 

        

 (e)  Invert the relationship  [Eqs.(32) - (33)] to obtain  and express the action as 

a function of .  That inversion gives for each  two pairs of values , corresponding to 

the incoming and outgoing waves.  (f)  The amplitude is found from 

     (36) 

which also must be expressed as a function of .   is the Jacobian matrix defined as 

 .    

(g) The semiclassical approximation to  is then 

   (37) 

 

In the present case, the amplitude and the phase can be written analytically, and the result is:  

for the incoming wave,  
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   (39) 

 

   (40) 

where  . 

 

 
Fig.8 For the circular box, 3D plot of coefficients versus  and . As described in Fig.3, the grey dots 
are eigenvalues for the circular box. The heavy black (red online) line is a line of constant smooth 
action, which starts from  and links states of quantized smooth 
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action=24.5.  The radial quantum number  is 25 for ,  but  for  . The line 

ends at .  For the initial superposition, the coefficient of each 

eigenstate  is plotted as the right-hand light grey (green online) curve: the only nonzero 

coefficients are those for the eigenstates of quantized smooth action=24.5 and with  between 4 and 
16.  We find numerically that these coefficients have approximately a Gaussian distribution along the 
contour of smooth action=24.5, centered at .    Then we push that Gaussian distribution along 

the black (red online) path, keeping smooth action = 24.5, until the final point , where  

ranges from -15 to -3.  
 

 

3. Initial condition localized in   

 We now want to construct wave functions that are not eigenfunctions of or of , but instead 

are localized near one action-angle loop.  For this purpose we take . This 

weighting factor makes only one action-angle loop and its neighbors play an important role in the 

construction of semiclassical wave function.  Just as above, for each , we must find , and 

that value of  is used in .  Since the resulting function is localized in , it no longer has a 

definite value of angular momentum quantum number , and if , it no longer has a unique 

value of . Accordingly, we now label the wave functions and energies by , . 

 Two such wave functions are shown in Fig.9.  One has  and ,   for which 

.  The other has , , , for which  .  These 

two wave functions display the topological change that corresponds to the topological change in the 

action-angle loops.  
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     (a) 
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     (b) 
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 Fig.9 Topological change of semiclassical wave functions.  These two wave functions are 

localized near the emphasized angle loops on the tori shown in Fig.7, so they have the same 

topological change.  They were calculated from trajectories having angular momentum and energy (a) 

 and (b) , the same as the values in Fig.7.   

                                         

 

4. Repair of divergence 

 
 Like all semiclassical approximations, these wave functions diverge at caustics, which in our 

case are radial turning points, where . We can repair the divergences by expanding 

in a small set of eigenfunctions of :  

        (41) 

  Evaluation of coefficients shows that the expansion is dominated by a small number of terms. If  is 

substantially greater than zero, then only terms of fixed have large coefficients, and 

computation shows that those coefficients are distributed in  approximately as a Gaussian function 

(Fig.8).  On the other hand, if  is substantially less than zero, then the only large coefficients have 

, and the distribution in  is again approximately Gaussian (Fig.8).  Two such 

superpositions of eigenfunctions are shown together in Fig.10 with the corresponding semiclassical 

approximations in Fig.9.   The divergences have been repaired, and the topological change remains. 

 

 These superpositions are nonstationary states.  If we incorporate the phase factors associated 

with , , these wave functions revolve around the origin at a rate close to 

.   
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       (a) 
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             (b) 

 
Fig.10 The wave function in (a) is a superposition of eigenstates of the circular box and has 
expectation value of angular momentum and energy . The wave function is 10 , 31.58l E< >= < >! "
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large near the corresponding action-angle loop, on one side of the origin. The function in (b) is a 
superposition with expectation value of angular momentum and energy . It is 
large near the topologically changed action-angle loop, which surrounds the origin.  
 
 As stated above, although the circular box does not have monodromy, when we focus on 

configuration space, action-angle loops and corresponding wave functions have the topological change 

that was seen in the Mexican Hat system. This calculation also provides the motivation for the 

superpositions that we used in the Mexican Hat system (Fig.5 and Eq. (20)).  

 

 

   VI. Dynamical manifestation of monodromy 

 
1. Dynamical monodromy of wave functions:  ideal evolution 

  

 We may define ideal evolution leading to dynamical monodromy of superpositions of 

eigenfunctions by (1) making the coefficients in the superposition (19) or (41) time dependent, then (2) 

creating a unitary matrix that continuously changes the coefficients  such that they are given by a 

Gaussian function that continuously follows the monodromy circuit, as in Fig. 5.  On the steps with 

changing angular momentum, we fix  and move the center value . The coefficients  of    

are:   

   (42)  

goes continuously from 0 to 12 on the first step, 12 to -6 on the second and -6 back to zero on the 

third.  

 On each energy-changing step, the basis functions included in the superposition are from  to 

. When energy is increasing, we switch the coefficients continuously between   and  as 

indicated in Fig.11, using the formulas 
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         (43) 

Similarly on energy decreasing steps, we go from  to .  The complete wave function on the 

energy-changing steps is a linear combination of sums over  for and for . The time-

dependent weight for each is shown in Fig.11 along with the time dependence of  .  

 

 This process produces a kind of ideal evolution, in which the wave function changes its 

topological structure as in Fig. 2. This ideal quantum evolution is analogous to the ideal classical 

evolution described in Ref. [21]. (Ideal classical evolution of a family of particles was defined so that 

all particles evolve continuously and simultaneously from one torus to another.) 
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      (a) 
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     (b) 

 

 

Fig.11 The unitary transformation. (a) The heaviest black line, varying from 0 to 12 to -6 and 
back to 0, shows how the center angular momentum number  changes with time during 
the transformation. Each of the other (colored online) curves represents a weighting factor 

. Two weighting factors for  and  are magnified in (b). The begins 
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equal to 1, and at , it begins to decrease, reaching zero at , where has 
increased to 1. Subsequently, each  for  between   and  rises and falls. The 
sequence is represented by the ellipses (…) in the figure.   
 

2. Dynamical monodromy of wave functions:  physical evolution 
 

  Finally, let us go back to the circular box, and show that the topological change in the wave 

function that we saw above can be produced by physical evolution under a time-dependent Hamiltonian.   

This is analogous to our work in Ref.  [22], where we showed that classical evolution under a time-

dependent Hamiltonian gives the topological change in a loop of classical particles.   

 

 Since for the circular box, the energy cannot be negative, a complete monodromy circuit does 

not exist. However, we may drive the expectation values of angular momentum and energy along paths 

of constant smooth action, like the one in Fig. 8.  A time-dependent Hamiltonian which accomplishes 

that is 

     (44) 

where 𝐻#(𝒒,−𝑖ℏ𝛁) is exactly the Hamiltonian in Eq.(1), with the circular box potential.  is a 

perturbation produced by a counterclockwise rotating uniform force with a direction and 

rotation rate designed to decrease the expectation value of angular momentum 𝑙.̅  For those who may 

wish to reproduce our results, the azimuthal angle defining the direction of the force was taken to be 

   (45) 

The initial superposition is similar to that as shown in Fig. 10, but with a lower energy. Coefficients are 

nonzero only for ; the coefficient distribution is Gaussian, centered at , 

      (46) 

 With the time-dependent Hamiltonian (44), we solve the Schrödinger equation in a basis set 

including  from  to  and  from 1 to 13.  Remarkably, it turns out that the dominant 
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coefficients are always those with ( i.e. when ,  or when , ).  

Furthermore, the distribution in  remains approximately Gaussian, with   

   (47) 

As the expectation value of  decreases, the expectation value of  also decreases so that the path 

traced out by  is similar to the path shown in Fig. 8. Those paths have constant values of the 

smooth action variable .  They are in effect the upper portion of a monodromy circuit. Thus we 

have shown that this simplest of all possible quantum dynamical processes follows the states associated 

with the smooth action variable. 

 

 Two movies are included in the supplementary materials  [56]. One shows the topological change 

of the time-dependent wave function and the other shows absolute values of the coefficients , 

changing with time. 

 

 It is pleasing to see that the mode of the wave function  shows the desired topological 

change during this process. Thus we have shown that the topological change in wave functions can be 

made to occur using an ordinary Hamiltonian with a rotating force. 

 

 

 

VII.  Conclusion 

 
 As stated in the abstract, and displayed in section I, we have shown that simple two-

dimensional systems can show topological changes in wave functions, changes that are analogous to 

the topological changes in action-angle loops. The shape of the superposition and the probability 

current follow the shape and current of the corresponding action-angle loop. 
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  In section III, we introduced single-valued radial action variables   and multi-valued 

smooth action variables , and their corresponding quantum numbers and .  Because smooth 

action variables are multivalued, their corresponding quantum numbers are multivalued (there is no 

unique assignments of a smooth quantum number to each quantum state). In section IV, we defined a 

superposition of eigenfunctions of the Mexican hat system, and showed that when this superposition is 

carried around a monodromy circuit, a topological change in the structure of the wave function is found. 

To define the superposition, careful attention to the phase of the basis function is required; we define 

those phases so that they have a monodromy of their own. The topological change in the wave function  

is robust, and will occur with many different superpositions; we presented a simple case in which the 

coefficients involve a single smooth-action quantum number and a Gaussian distribution in 

(Fig. 5).   Section V shows how we arrived at these results by study of the simpler circular-box system.   

  

 The next section shows time-dependent dynamical processes leading to the topological change. 

One is an ideal unitary transformation, in which time dependent coefficients for the superposition are 

defined such that they carry the expectation values of angular momentum and energy around the 

monodromy circuit. The other is evolution under a time dependent Hamiltonian having a rotating force. 

This evolution shows that, just as classical dynamical processes may follow the behavior of smooth 

action and angle variables, producing a topological change in a loop of particles [22], quantum 

dynamical processes may follow the quantum states corresponding to smooth action variables, and 

produce a topological change in a quantum wave function. 
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