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We analyzed a generic relaxation oscillator under moderately strong forcing at a frequency much
greater that the natural intrinsic frequency of the oscillator. Additionally, the forcing is of the same
sign and, thus, has a nonzero average, matching neuroscience applications. We found that, first,
the transition to high frequency synchronous oscillations occurs mostly through periodic solutions
with virtually no chaotic regimes present. Second, the amplitude of the high-frequency oscillations is
large, suggesting an important role for these oscillations in applications. Third, the 1:1 synchronized
solution may loose stability, and, contrary to other cases, this occurs at smaller, but not at higher
frequency differences between intrinsic and forcing oscillations. We analytically built a map that
gives an explanation of these properties. Thus, we found a way to substantially ”overclock” the
oscillator with only a moderately strong external force. Interestingly, in application to neuroscience,
both excitatory and inhibitory inputs can force the high-frequency oscillations.

PACS numbers: 05.45.Xt, 05.45.-a, 07.05.Mh

INTRODUCTION

Oscillators under the influence of external forcing have
been studied for several decades [1]. The problem has a
very diverse list of applications, from phase locked gen-
erators [2] to complex oscillatory [3] and neural networks
[4]. Many systems display synchronization at the fre-
quency of forcing and its n : m multiples (n > m ul-
traharmonics and m > n subharmonics). Depending on
the forcing strength and the mismatch of forcing and in-
trinsic frequencies, synchronization at different frequen-
cies constitute the classical picture of Arnold’s tongues
[5]: regions of synchrony tapering down with decreas-
ing amplitude of forcing. The width of the regions is
greater if the forcing and the intrinsic frequencies are
similar. However, most of the research, especially ana-
lytical techniques, has been focused on the case of weak
forcing and small to moderate frequency mismatch (for
example, phase oscillators and integrate-and-fire neurons
[6–8] are designed for this case).

Yet, in a number of applications, forcing is not weak
but is moderately strong, and the intrinsic frequency is
very different from the forcing frequency [9, 10]. Dynam-
ics of oscillators under such forcing, and especially the
transition from low to high frequency oscillations are not
well understood, and that is the case we consider here
[12–15].

Note that the case of moderately strong periodic high
frequency input may appear in a wide class of networks,
such as multiplex networks which are sets of elements
with coupled layered topology (see, for example [12]).

Each layer of such a system may have different elements,
different topologies, or different dynamical features of
the elements. If, for example, the elements of a fast
layer transiently synchronize, they are able to provide
a strong high frequency input to a slower layer. Such
situation could be widely observed in the brain, where
often a low-frequency neuron is driven by high-frequency
input [17, 20]. One can treat multiple neuron types as
intrinsic oscillators and their electrical activity can be de-
scribed by models with periodic, limit cycle-like behavior
[19]. Simultaneously, they receive numerous inputs from
neural populations that can transiently synchronize to
produce strong pulses at a high frequency [21]. Thus in
this paper, we model a situation general for many neuron
types under external inputs.

In our previous biophyscial modeling study [17], where
interaction between two neuronal networks in the ven-
tral tegmental area was studied, we found a surprising
increase in the frequency of a slower neuron driven by
a pulsatile inhibitory input. Thus, the influence of an
inhibitory neuronal network on a neurons firing pattern
may differ significantly from the traditionally considered
decrease in the firing frequency of the target neuron. In
fact should this afferent inhibitory network synchronize,
it may untituitively lead to an increase in the target neu-
ron response. Thus, this effect depends on the tempo-
ral structure of the inhibitory afferents (their synchrony,
amplitude and frequency), but may also depend on the
intrinsic properties of the target neuron. The present pa-
per defines these properties by reproducing the increase
in the neuron response in a highly simplified model with
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only basic neural characteristics.
In that previous study, the target neuron was mod-

eled by the conductance-based Hodgkin-Huxley model
with specific currents for a particular type of neuron
(dopaminergic, DA, neuron). The DA neuron is a slow
pacemaker that cannot to be driven to high frequencies
with a tonic (constant) excitatory drive, and the model
reflects this limitation. The neuron receives inputs at
a much higher frequency than the intrinsic frequency.
These inputs are for most of the time asynchronous, re-
sulting in a near-constant input tone. Yet, during be-
haviorally relevant episodes they synchronize transiently,
resulting in sharp relatively large amplitude ”negative”
input pulses. We have found that the neuron is capable
of following this pulsatile drive. The transition to forced
oscillations is well known, but this result is surprising
because of two distinctions: First, in generic cases, the
amplitude of forced oscillations is usually small at high
forcing frequencies, which renders them insignificant for
applications. In our case, the forced oscillation ampli-
tude remains high and contributes to brain information
coding by initiation of spikes. Second, the pulsatile in-
put comes from an inhibitory population, yet it excites
the DA neuron (i.e. increases its frequency). Transition
to 1:1 synchronization occurs through a series of peri-
odic solutions with periods that are integer multiples of
the forcing period: As the forcing strength increases, the
locking number decreases by one (e.g. 4:1, 3:1, 2:1, 1:1).
Contrary to the classical results, the amplitude of these
oscillations is not decreasing, and the 1:1 synchronous
fast oscillation has a large amplitude, as in our neuron
model [17]. Once 1:1 synchronization is established, it
may lose stability in another bifurcation transition - pe-
riod doubling [18], and, contrary to intuition, the loss of
stability occurs at smaller, but not at higher frequency
differences between intrinsic and forcing oscillations. The
explanation and generalization of this regime are given
below.

MODEL

We looked for a general oscillator model which can
qualitatively describe a spiking neuron in the most gen-
eral case. We thus consider a relaxation oscillator with a
N-shaped nullcline under the influence of high-frequency
forcing. As a general example, we take the 2-dimensional
McKean system [22], which is a piecewise linear analogue
of the FitzHugh-Nagumo model:

{

du/dt = f(u)− v + ϕ(t),
dv/dt = ǫ(u− k).

(1)

f(u) =







−u, u 6 0.25,
u− 0.5, 0.25 < u 6 0.75,
1− u, u > 0.75

(2)

Here, ǫ is a small parameter that determines the low fre-
quency of the system. The function f(u) is a piecewise
linear N-shaped function. The external force ϕ(t) is a
fast periodic pulse train with an amplitude J , period T
and pulse duration τ :

ϕ(t) =

{

J, t ∈ [nT, nT + τ ], n = 0, 1, 2, . . . ,
0, t ∈ [nT + τ, (n+ 1)T ], n = 0, 1, 2, . . .

(3)

Note that here we consider a case in which the period of
the pulse train is much shorter than the intrinsic period
of system (1): T ≪ Tint.

TRANSITION TO HIGH-FREQUENCY FORCED

OSCILLATIONS

We can take advantage of the the small parameter
ǫ ≪ 1 to study dynamics of the system above using the
singular perturbation theory. Without the external force
J = 0 and for 0.25 < k < 0.75, the system (1) has only
one attractor in the phase plane - a well-studied stable
relaxation limit cycle (Fig. 1A, red trace). In short, it
consists of two slow parts along the manifold of slow mo-
tion (right and left branches of M s

0 in Fig. 1A, where the
subscript shows the absence of the external force) and
fast jumps between them.
The system displays much more complex dynamics if

the forcing is nonzero: J = J1 6= 0. Let us assume
for concreteness that forcing is negative J1 < 0 (this
corresponds to inhibitory input for the neuron). Dur-
ing an input pulse, the manifold of slow motion tran-
siently moves down M s

0 → M s
J and returns back. The

fast variable u follows the slow manifold from its original
to the perturbed position and back (Fig.1A green trace).
Both slow parts of the relaxation limit cycle are replaced
by these comb-like traces. The slow variable, however,
keeps progressing towards the knees of the slow mani-
fold leading the trajectory to jump between the branches
of the manifold. As soon as v falls below the left knee
of the unperturbed nullcline, the trajectory jumps from
the left branch to the right branch. As soon as v rises
above the right branch of the perturbed nullcline, the tra-
jectory jumps back from the upper branch to the lower
branch. The trace is a typical shape of a limit cycle rep-
resenting resonance between the intrinsic oscillations and
forcing (n:m synchronous regimes). However, in the clas-
sical case such resonance requires tight parameter tuning
and occupies short intervals in the parameter space being
interrupted by large quasiperiodic and chaotic windows
[24, 25]. In our case, the resonant windows are much
wider because there are only two dominant processes -
the fast oscillations and switching between the branches
of the slow manifold - and both of them are determined
by the same forcing.
As the forcing amplitude grows, the period of the limit

cycle decreases and frequency locking occurs at lower
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FIG. 1. Phase portrait and time series of the McKean sys-
tem for τ = 4, T = 16, ǫ = 0.005. The red curves correspond
to intrinsic oscillations (the unperturbed stable limit cycle,
J = 0), green are the trajectory and time series of the system
with weak forcing (J1 = 0.3) and blue are the forced oscil-
lations (J2 = 1.5). The unperturbed stable manifold of slow
motion Ms

0 consists of two branches: {v = −u, u 6 0.25} and
{v = 1− u, u > 0.75}, the unperturbed unstable manifold of
slow motion is Mu

0 = {v = u − 0.5, 0.25 6 u 6 0.75}. The
perturbed stable slow motion manifold Ms

J : {v = −u−J, u 6

0.25} and {v = 1 − u − J, u > 0.75}, and the perturbed un-
stable slow motion manifold is Mu

J = {v = u− 0.5−J, 0.25 6

u 6 0.75}. Lower panels show the time-course of the u and v

variables (B and C) and changes in the amplitude parameter
J (D).

locking numbers. The mechanism is as follows: Since
dynamics of the slow variable v contributes to the period
most (fast jumps have negligible contribution), reducing
amplitude of v reduces the period most effectively. This
amplitude is well approximated by the distance along v
between the minimum of the manifold of slow motion in
the original position M s

0 , and its maximum in the per-
turbed position M s

J (Fig. 1A). This distance is smaller at
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FIG. 2. The T-maps for different (negative and positive) val-
ues of J (T = 16, τ = 4, k = 0.5, ǫ = 0.005). Stable and
unstable fixed points emerge from a saddle-node bifurcation
as |J | increases.

higher forcing amplitudes due to greater shifting of the
manifold of slow motion. As a result, the amplitude of os-
cillations in the slow variable decreases (Fig. 1C), and the
period does too due to the earlier jumps from M s

j to M s
0 .

The number of the forced oscillations per period of the
limit cycle decreases too as the forcing amplitude grows.
Eventually, the frequencies lock 1:1 (Fig. 1A blue). At
small enough ǫ, this occurs as the vertical location of the
minimum of the original manifold M s

0 coincides with the
maximum of the perturbed manifold M s

J . Then, the slow
variable does not need to change along the limit cycle,
and oscillations become purely forced.

ANALYSIS: THE T-MAP

For (u0, v0) consider the trajectory (u(t), v(t)) of (1)
with the intial condition (u(0), v(0)) = (u0, v0). We de-
fine the image of (u0, v0) by the T-map as (u(T ), v(T )),
where T is the period of the forcing ϕ, see (3). We argue
that the T-map decouples into one-dimensional compo-
nents at lowest order. First note that at the ǫ = 0 order
the fast component of the map consists of the integration
of the first equation of (1), with v corresponding to a con-
stant v0, over the period of the forcing T . It is not hard
to prove that for T sufficiently large, and for each fixed
v0, this map has a unique stable fixed point correspond-
ing to a periodic solution γv0(t) of the fast component
of (1). By substituting γv0(t) into the slow subsystem of
(1) we obtain the O(ǫ) approximation of the v component
of the T-map, independent of v0. This one-dimensional
map can be written in the form:

v 7→ v + ǫP (v). (4)

Using the piecewise-linear structure of the McKean
system, we obtain an explicit formula for γv0(t) and
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FIG. 3. (A) Two-parameter bifurcation diagram showing sta-
bility and region of existence of the fixed point of the T-
map. (B) One-parameter bifurcation diagram calculated nu-
merically for the original system (1) for negative values of J
(T = 16, τ = 4, k = 0.5).

hence for P (v). If J > 0, then P (v) = −Tv −

Jeτ−T (v+0.25)2

(v−0.25)2 + Je−τ (0.0625+J2+(vn−0.5)v−J(2v−0.5))
(0.25−J+v)2 +

τ(1+J)−kT+ln 1
0.25−v

+2(v+0.25) ln v+0.25
v−0.25+2(−J+v−

0.25) ln(−J+v−0.25)−2(−J+v−0.75) ln(0.25+J+v).

If J < 0, then P (v) = T (1 − v) − Jeτ−T (v−0.25)2

(v+0.25)2 +

Je−τ (0.0625+J2+(v+0.5)v−2J(v−0.25))
(0.25−J+v)2 + τ(1 − J) − kT +

ln(−0.25 − v) + 2(v − 0.25) ln v−0.25
v+0.25 + 2(−J + v +

0.25) ln(−J+v+0.25)−2(−J+v+0.75) ln(−0.25+J+v).

Given the decomposition of the dynamics, stability is
determined by the derivative of the reduced T-map de-
fined by (4). Stable fixed points of the reduced T-map
correspond to persistent oscillations at the frequency of
the forcing. Unstable fixed points correspond to regimes
that are not observable in applications and shown here
for the consistency and completeness of analysis. Fixed
points of the T-map are defined by the equation P (vn) =
0. The point is stable if the absolute value of its multi-

plier is less than 1 and unstable if it is greater than 1.
Thus, the stability condition is |ǫ∂P

∂v
(v, J) |v=vn +1| < 1.

Since the system is symmetric, same transitions occur
for J increasing from zero and decreasing from zero. To
shorten the description, below we use the absolute value
of J . As follows from the graph of the map and the stabil-
ity condition above, for weak forcing, the T map has only
one fixed point v = v1, and this point is unstable (Fig.
2 green). At |J | = JF (such that ∂P

∂v
(v, JF )|v=v2,3 = 0)

a fold bifurcation occurs and two additional fixed points
emerge (Fig. 2 orange; Fig. 3 Fold), a stable and an un-
stable (Fig. 2 blue). The central stable fixed point v = v2
corresponds to the high-frequency forced oscillations in
Fig. 1. The oscillation approximated by the map implies
that v remains at a constant level v2, and u changes in
the interval [−v2 − J, 1 − v2] with the period of forcing
T. The fixed point v2 of the T-map corresponding to this
oscillation remains stable at forcing amplitudes above the
bifurcation for low enough values of the small parameter
ǫ. For larger values of ǫ, a period doubling bifurcation (at
J = JPD: ǫ∂P

∂v
(v, JPD)|v=v2 = −2), at which the fixed

point loses its stability, occurs at a forcing amplitudes
above the one for the fold bifurcation (Fig. 3A).
The explanation for the shape of the bifurcation dia-

gram in Fig 3A can be derived from the map (4). First,
the fold bifurcation occurs when the map is tangent to
the diagonal and, hence, ∂P

∂v
(v, JF )|v=v2,3 = 0. Thus, the

condition is independent of ǫ (for any nonzero ǫ), and
the boundary is parallel to the ǫ axis. The period dou-
bling requires the slope of the T-map to reach -1, and
the condition depends on ǫ: (ǫ∂P

∂v
(v, JPD)|v=v2 = −2).

Thus, only for large enough ǫ, as the slope can reach -
2, period doubling occurs (Fig. 3A). These results are in
good agreement with numerical simulations (Fig. 3B). In
case the fixed point looses its stability, the system con-
verges to another stable regime, which, in case of period
doubling, is also described by the T-map.

CONCLUSIONS AND DISCUSSION

In conclusion, we want to emphasize novel features of
the forced regime obtained in this work. Transition to
synchronization is extensively studied in a vast number
of systems. Structurally, the transition occurs through
breakdown of an invariant torus that contains the 1:n
periodic ultraharmonics and quasiperiodic solutions [25].
We note that the mathematical explantation of tran-

sition from 1:1 locking to torus dynamics may involve
generalized canard solutions in a similar way as in [23].
Interestingly, in our case the transition shows massive
periodic regimes and very short chaotic windows in the
parameter space (e.g. Fig. 3), whereas chaos is displayed
much stronger in classical systems [24, 25]. One expla-
nation of lower chaoticity in the transition is that the T
map becomes a diffeomorphism at low ǫ. Another ex-
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planation is that the oscillator has a slow variable which
becomes effectively a constant in the high-frequency os-
cillation, which renders the forced system 2-dimensional
and excludes the possibility of chaotic regimes. At higher
ǫ, this approximation no longer holds, and, accordingly,
the system shows greater chaoticity.

The timescale separation also explains the high ampli-
tude of the fast oscillations in the forced regime: While
the slow variable takes a constant value rendering the
intrinsic oscillatory mechanism not functional, the fast
variable is capable of following the forcing. This makes
a prediction that further growth in the forcing frequency
will decrease the amplitude of the forced oscillations and
limit them in a range where they are insignificant for the
application. For the neuron, this would mean that it is
restricted in a subthreshold range and does not fire any
spikes.

Overclocking of the oscillator reported here gives clear
conditions necessary for it. First, the N-shaped manifold
of slow motion is required not only for the slow relaxation
oscillation, but also for the fast forced oscillations to have
a high amplitude at moderate forcing. Forcing uses the
excitability of the oscillator by moving the trajectory be-
tween the two stable branches of the manifold. Second,
even though the slow variable effectively becomes a con-
stant in the high-frequency regime, the slow equation is
important as it defines the value of this variable and,
thus, affects the dynamics.

The above requirements are quite general, and the
high-frequency forced response can be obtained in a wide
range of systems, yet the effect is not trivial. To empha-
size that, we note that in a range of models the high-
frequency forced response is not represented correctly or
even possible. The trajectory of the forced oscillation
does not belong to a neighborhood of the original low-
frequency limit cycle. Thus, all models that assume that
trajectories do not leave the vicinity of the limit cycle of
the unforced system, such as phase oscillator and phase
response method are unable to reproduce the transition
to forced oscillations. On the other hand, integrate and
fire models not only have no intrinsic frequency, but are
also built for weak inputs, which require summation (in-
tegration) to produce a spike. Thus, our model fills the
gap between these options and provides a highly reduced
model that replicates both low and high frequency oscil-
lations, as well as the transition between them.
Inside the parameter region where the 1:1 periodic so-

lution exists, the solution may loose stability via a period
doubling bifurcation. While this bifurcation is typical, es-
pecially for higher harmonics, here the 1:1 solution looses
stability in period doubling for greater values of the small
parameter ǫ. This means that the instability occurs for
smaller frequency mismatch between the forcing and the
natural frequency of the oscillator (which is determined
by ǫ). Full analysis of the transition is a subject of future
research.

We found this transition to high-frequency oscillations
in a conductance-based model of neuron [17], and we be-
lieve that additional applications will be found once we
describe the phenomenon. In neuroscience, the analyzed
system presents a neuron under the influence of a pul-
satile forcing. We have shown that by this mechanism,
contrary to the intuition, a classical inhibitory (hyper-
polarizing) input can increase the frequency of a down-
stream neuron, i.e. excite them instead of inhibiting [17].
We have shown that the conditions for the frequency in-
crease are physiologically plausible. In particular, the
formation of the pulsatile input requires synchronization
among the neurons forming the input, and we have shown
that synchrony in several neuronal populations, includ-
ing one recorded by us, exceeds that required for the
transition to the high frequency. Additionally, we em-
phasize that the amplitude of this forcing is not required
to be high, but stays at the level of other terms in the
system. Thus, forcing uses excitability of the oscillator
as oppose to completely destroying its internal dynam-
ics. As a result, the amplitude of the forced oscillation
remains high in spite of a great difference in the frequen-
cies. We further believe that the phenomenon we describe
here can be applied to analyze neuronal synchrony in the
gamma oscillatory range: where the pyramidal neurons,
which have a relatively slow intrinsic rhythm, are forced
by rapidly firing fast inhibition [26, 27]. In this case, as
our previous analysis suggested, the pyramidal neurons
are synchronized by the pulsatile inhibitory inputs to the
faster gamma rhythm [28]. In summary, the phenomenon
that we describe here in should be generically applicable
to a wide variety of cross-frequency coupled systems with
pulsatile coupling.
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