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We demonstrate that nonlinearity plays a constructive role in supporting the robustness of dy-
namical localization in a system which is discrete in one dimension, and continuous in the orthogonal
one. In the linear regime, time-periodic modulation of the gradient strength along the discrete axis
leads to the usual rapid spread of an initially confined wave packet. Addition of the cubic nonlinear-
ity makes the dynamics drastically different, inducing robust localization of moving wave packets.
Similar nonlinearity-induced effects are also produced in the presence of a combination of static and
oscillating linear potentials. The predicted dynamical localization in the nonlinear medium can be
realized in photonic lattices and Bose-Einstein condensates.

PACS numbers: 42.65.Tg, 42.65.5f, 42.82.Et, 03.75.Lm

I. INTRODUCTION

optical Kerr nonlinearity was considered too. However,

The possibility of Bloch oscillations (BO) [1], i.e., the
occurrence of a temporally-oscillating (ac) electric cur-
rent originating from spatial oscillations of the electron
charge density in a crystal biased by a static uniform (dc)
electric field, in the absence of scattering effects, was pre-
dicted by Bloch and Zener almost 90 years ago. Being
initially far from feasible experimental realizations, this
prediction caused debates regarding the actual existence
of the BO, which lasted for several decades. The proof
securing that the BO should be physically realizable, as
predicted by effective Hamiltonians that include a finite
number of bands, was theoretically provided in the early
1990s when rigorous upper limits for the interband tun-
neling rates had been established, see, e.g., Ref. [2]. Also
in the 1990s, BO had been first observed experimentally
in the temporal domain in electrically-biased semicon-
ductor superlattices, using optical interband excitation
by femtosecond laser pulses [3]. A few years later, BO
has been realized with the use of ultracold atoms in op-
tical lattices [4] measured in the momentum space. Very
recently BO of a Bose-Einstein condensate (BEC) were
observed by the direct measurement in the real space [5].
Also it was successfully emulated in optics, using arrayed
waveguides [6]. These results prove that BO is a general
physical effect relevant for a large class of systems, as
also shown in detail by many further works were focused
on the subject [7].

In Refs. [6] it was shown that, if the phase velocity of
the waves varies linearly as a function of discrete coor-
dinate n of waveguides in the array, the position of the
light beam is an oscillating function of propagation dis-
tance z, which is the optical counterpart of the electronic
BO dynamics. In the latter context, the influence of the

in models of arrayed waveguides, which include solely the
discrete diffraction, the nonlinearity was shown to pro-
duce a destructive effect on the BO dynamics. On the
other hand, it was shown in a recent work [8] that adding
another dimension, with continuous diffraction in that
direction, may result in a constructive effect of the non-
linearity, viz., localization of the wave packet in space and
the emergence of a quasi-solitonic regime of the propa-
gation. Thus, one may expect the existence of a new
species of robust nonlinear hybrid wave packets, com-
bining features of solitons and Bloch-oscillating waves.
In photonic systems, the robustness of the hybrid wave
packets in the presence of the anomalous group-velocity
dispersion may lead to prediction of resonant radiation
with nontrivial properties, similar to how it was predicted
in the spatial domain under the action of diffraction [9].
This methodology is conceptually different from several
proposed ways to guide nonlinear waves experiencing BO
in a nonlinear regime that includes variation of the non-
linearity strength in the course of the evolution [10, 11],
in the spirit if the “nonlinearity management” [12] tech-
niques.

A phenomenon somewhat related to the BO, which
may be induced by time-modulated gradient poten-
tials, is dynamical localization (DL). It was predicted
in Ref. [13] within the framework of the tight-binding
approximation for electrons in solids. Whereas usually
an initially localized wave packet will spread out when
driven by an oscillating bias, the DL implies that the
wave packet remains localized. This is the case for a
single-band tight-binding system, when the ratio of the
amplitude of the bias and its modulation frequency takes
resonant values, namely, roots of Bessel function Jj.
Thus, the conductance, provided for by the delocalization
of the wave packets, vanishes for such a special choice of



the ac bias. Later, the DL was studied theoretically for
ultracold atoms trapped in optical lattices [14], where
it may be used for the coherent control of atoms and
for the realization of the phase transition between the
superfluid and Mott-insulator states [15]. Furthermore,
spin-orbit coupled atoms allow for implementation of DL
in a two-component spinor system [16]. The DL were also
predicted to exist in nonlinear discrete systems [17, 18].
The same effect was also predicted to significantly alter
the optical absorption in semiconductor superlattices and
the effective dimensionality of excitons [19]. In another
solid-state setting, a similar effect was theoretically stud-
ied under the action of combined dc and ac electric fields
[20]. DL has been experimentally observed in atomic
systems (see, e.g., Refs. [21] and [22]) and in transport
properties of semiconductor superlattices (see Ref. [23]).
DL effects are known too in photonic settings [25], where
periodic corrugation of waveguides makes it possible to
optically emulate the time-periodic linear force acting on
a quantum particle, and thus realize localization of opti-
cal dynamical modes and Bloch oscillations, as was pre-
dicted theoretically in Ref. [24], and realized experimen-
tally in various settings [25], see also a review of photonic
realizations of the DL and related phenomena in Ref. [26].

The main aim of the present work is to demonstrate
that the DL persists in the nonlinear propagation regime
for hybrid soliton-BO wave packets in systems contain-
ing an extra continuous dimension, in addition to the
discrete one. We also report results for a combination
of static and oscillating gradient potentials. In the lat-
ter case, the electronic transport is typically supported
by multi-photon-assisted tunneling [27-30]. As predicted
in Ref. [27] for special relations between the amplitude
and modulation frequency of the fields, one can selec-
tively suppress particular single- or multiple-photon tran-
sitions, thus designing specific transport properties, as
shown in Ref. [30] for semiconductor superlattices. We
demonstrate that, in the semi-discrete system considered
here, these effects may persist in the presence of signif-
icant nonlinearity (note, that exact DL in a nonlinear
system can be observed only in integrable models [17]).

The rest of the paper is organized as follows. In Sect. IT
we introduce the model and present some considerations
for it. Numerical and analytical results are reported
and discussed in Sect. III. The paper is completed by
Sect. IV.

II. THE MODEL AND ANALYTICAL RESULTS
FOR THE LINEAR CASE

Semi-discrete optical systems with intrinsic cubic and
quadratic nonlinearities were theoretically introduced,
respectively, in Refs. [31]-[34] and [35]. Here we start
with the semi-discrete model proposed in Ref. [8] as
the system of linearly-coupled Gross-Pitaevskii equations
(GPEs) [36] for a BEC loaded into an array of waveg-

uides/wires, written here in the normalized form:
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Here uy(z,t) is the mean-field wave function in the n-
th waveguide, k is the array’s coupling constant, (t)
is the strength of the time-dependent gradient potential
acting in the discrete direction (n), and nonlinearity co-
efficient g > 0 accounts for the intrinsic self-attraction
of the BEC. By means of obvious rescaling, we fix val-
ues of Kk = 2 and g = 1, except of setting g = 0 in the
consideration of the linear version of the system.

In terms of optics, Eq. (1), with ¢ and z replaced, re-
spectively, by the propagation distance, z, and reduced
time, 7, is the system of coupled nonlinear Schrédinger
equations (NLSEs) modeling the light propagation in an
array of coupled optical fibers in the presence of a trans-
verse linear gradient of the waveguide’s effective index
[31], with the magnitude of the gradient that may be
modulated along z. In the latter case, u, are scaled en-
velope amplitudes of the electromagnetic waves in the
fibers, the group-velocity dispersion is anomalous, and
the cubic term with g > 0 represents the focusing Kerr
nonlinearity. Alternatively, the same system (1), with
x being the transverse coordinate, models the spatial-
domain light propagation in a stack of parallel planar
waveguides, the second derivative representing the parax-
ial diffraction in the waveguides [34, 37].

As concerns estimates of physical parameters, most rel-
evant are ones for the above-mentioned spatial-domain
realization in the stacked waveguides. For a typical ex-
perimentally relevant value of the transverse waist of the
probe optical beam, ~ 10 um, and its per-layer power,
~ 300 kW [38], the unit of At =1 corresponds to ~ 0.5
mm in physical units, hence the modulation frequency
w ~ 0.1 (relevant to results reported below) implies the
propagation distance ~ 3 c¢m (the actual length of the
waveguide may be up to ~ 10 times larger). Further,
the gradient’s strength v ~ 0.1 (which is also relevant to
the actual results) implies the difference in the refractive
index between adjacent cores of the waveguiding system
An ~ 1073, which is a technologically feasible value.

First, we address the transport mechanism in the lin-
ear system, with ¢ = 0 in Eq. (1), keeping solely the
discrete direction in it. For the harmonic format of the
time modulation of the transverse gradient, with

Y(t) = 7o cos(wt). (2)
The DL is realized if condition
Jo (vo/w) =0, 3)

with Bessel function Jy, is satisfied [13, 14, 17, 18]. The
combined ac-de-driven regime was analyzed in Ref. [27],
and realization of this effect was elaborated for the pho-
toexcited electronic transport in semiconductor superlat-
tices in Ref. [30]. Based on those studies, one can predict
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FIG. 1: (Color online) Evolution of the wave packet in the
linear regime, i.e., with ¢ = 0 in Eq. (1), is displayed in the
(n,t) (a) and (z,t) (b) planes. The gradient strength is 7o =
0.1 and the modulation frequency is w = 0.0416, i.e., the ratio
~Yo/w & 2.4 is very close to the first root of the zeroth-order
Bessel function Jy. Other parameters are k = 2 and g = 0.
The initial condition is taken as per Egs. (7) and (8) with
ap = 0.15 and w = 100 (i.e., the initial Gaussian is quite
broad).

that, for the time modulation of the gradient’s strength
of the form

¥(t) = Ydc + Yo cos(wt), (4)

the dynamical transport is suppressed if the following two
conditions are met simultaneously, for integer m:

Yde = Mw, Jm (’VO/W) =0, (5)

since in this case the m-photon-assisted tunneling van-
ishes in the tight-binding limit.

For an initial pulse that is smooth with respect to n,
one can approximate the finite difference in Eq. (1)
by the continuum limit [39], which leads to the two-
dimensional (2D) equation with two continuous coordi-
nates, x and n:
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Bearing this in mind, in the numerical simulations used
below we consider the initial condition of the form

A(n)
(0) () =
U’ () = CRTA ) A @
with the Gaussian envelope:
A(n) = agexp (—n”/w?) . (8)

Thus, we will consider the evolution of the input localized
as sech in the continuous coordinate, and as the Gaussian
of width w along the discrete coordinate.

FIG. 2:

(Color online) Long-time evolution of the wave
packet in the nonlinear system, displayed in the (n,t) (a)

and (z,t) (b) planes. The figure deminstrates dynamical
localization of the wave packet driven by the time modulation
of the gradient potential, with the strength and frequency
corresponding to the first root of Bessel function Jy. The
parameters are 7o = 0.1 and w = 0.0416. Other parameters
are fixed as kK = 2 and g = 1, as in other numerical simula-
tions.The initial condition is given by Egs. (7) and (8) with
ap = 0.15 and w = 100.

III. RESULTS

First we examine the evolution of the semi-discrete
wave packet in the linear regime by setting g = 0 in
Eq. (1). Figure 1(a) clearly shows that the wave packet
performs regular oscillations in the discrete (n) direction
with period 27 /w of the modulation of the gradient po-
tential. As we chose the values of the gradient strength
Y0 = 0.1 and frequency wy = 0.0416, which correspond
to the first root of Jy in Eq. (3), the wave packet remains
localized in the n-domain in the course of the evolution,
which is typical for the DL; however, the localization de-
gree is decaying with the increase of t. Concomitantly,
the diffraction along the continuous z-axis leads to rapid
spreading of the wave packet, as seen in Fig. 1(b). Thus,
in the linear regime the semi-discrete wave packet suffers
delocalization in the course of its evolution, even when
the DL condition (3) holds.

Next we launch the input into the full nonlinear sys-
tem, corresponding to Eq. (1) with g = 1. The other pa-
rameters are same as in Fig. 1, i.e., the ratio of the gra-
dient’s strength and modulation frequency corresponds
to the first root of Jy in Eq. (3). Figures 2(a) and (b)
display the nonlinear evolution in the (n,t) and (z,t)
planes, respectively. Now, instead of the gradual decay
of the linear wave packet displayed in Fig. 1, robust per-
manent localization of the wave packet is observed, in
both the n- and x-directions. This and other examples
demonstrate that the nonlinear propagation creates sta-
ble 2D dynamical semi-discrete solitons, which do not
exist in the linearized system.
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FIG. 3: (Color online) The long-time evolution of the wave
packet in the nonlinear system in the (n,t) (a) and (z,t) (b)
planes, respectively. Panels (a) and (b) display the dynami-
cal localization of the wave packet driven with the modulation
frequency corresponding to the second root of the Bessel func-
tion Jo [see Eq. (3)]. Accordingly, the parameters are chosen
as v0 = 0.1, wo = 0.0181, and ap = 0.15. Panels (c) and (d)
display the evolution for the same parameters as in (a) and
(b), but with a larger input amplitude, ap = 0.3.

The dynamical localization is also found when modula-
tion frequency w is reduced so that the ratio of 7y and w
corresponds to the second root of Jy in Eq. (3), as shown
in Figs. 3(a) and (b). However, in a still stronger nonlin-
ear regime, corresponding to amplitude ag which is twice
as large, the robustness of the established wave packets
drops significantly, as we reach the quasi-collapse-driven
dynamical regime [31], with the wave packet splittings,
similar to what was reported in Ref. [8]. Figures 3(c)
and (d) illustrate this situation. Thus, similar to the
case of the BO, cf. Ref. [8], the well-pronounced DL
regime occurs at optimal strengths of nonlinearity, which
can be identified by systematic simulations with varying
ap and/or g.

To characterize the dynamics of the wave packet in
both the linear and nonlinear systems, we define the av-
erage of a semi-discrete function, f,(z,t), carried by the

wave packet u,(x,t), as
1 [ree 2
D=5 [ Tl oPe

withnorm P =) | fj;; |ty (2, t)|?dx. This definition al-
lows one to explore average positions of the wave packet
along the z and n directions, i.e., () and (n), respec-
tively. Furthermore, we define a deformation parameter
characterizing “combined” changes of the wave-packet’s
widths in the course of the evolution [8]:

A(t) = VIN({) = NO)]? + [X(1) - X(0)2,  (9)

where average widths of the wave packet in the n and =
directions are

N = VIR = P, X() = V@ - @2 (10)
If deformations with respect to n and x are strongly
anisotropic, A estimates the largest one. For the ideal
case of a totally robust DL, A(¢) would remain time in-
dependent, while growing or decreasing A(t) corresponds
to ongoing deformation of the wave packet. These in-
dicators, pertaining to the dynamical regimes displayed
in Figs. 2(a,b) and 3(a,b), are presented, severally, in
three top and three bottom panels of Fig. 4. It is clearly
observed that the growth of the soliton’s width in the
course of the long-time evolution is strongly suppressed.
Furthermore, the top panel in Fig. 4 demonstrates that
the soliton may even slowly shrink in the z direction.
Thus, we conclude that the optimal nonlinear regime,
supporting the robust wave packets in the semi-discrete
2D model, system was introduced in Ref. [8], supports
the stable DL as well. In Fig. 4, the characteristics
of the linear-propagation regimes are plotted by dashed
curves along with solid curves representing their nonlin-
ear counterparts for the same values of the parameters,
except for ¢ = 0 in the linear system. It is clearly seen
that, in latter system, the packets spread fast in the z
direction, leading to fast growth of A(t), in contrast with
the robust self-trapping of the quasi-solitons in the full
nonlinear model. For the comparison all the parameters
besides the switched off nonlinear interaction were taken
similar. After a very long evolution, such as correspond-
ing to ¢ = 12000 for the case presented in Fig. 2 and in
three upper panels of Fig. 4, the wave packets undergo
splitting, which makes the description in terms of Fig. 4
irrelevant. However, the estimate of the values of phys-
ical parameters for the realization of the present system
in optics, given above, implies that so large values of ¢
correspond to the propagation distance which is ~ 100
times larger than the limit achievable in the experimental
setting.

Our model also proves its effectiveness in the case of the
combined ac-dc modulation of the gradient’s strength,
taken as per Eq. (4). As mentioned above, in this
case the stabilization occurs at frequencies obeying Eq.
(5), i.e., they pertain to zeros of the Bessel functions
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FIG. 4: (Color online) The temporal evolution of the overall
spread of the wave packet A(t), together with its N- and
X-components [see Egs. (9) and (10)]. Examples of the
DL, displayed in Figs. 2(a,b) and 3(a,b), are shown here in
the three top and three bottom panels, respectively. Dashed
curves show the same characteristics for the linear propaga-
tion regimes, with the same values of the control parameters,
except for g = 0.

-400 -200 0 200
n

FIG. 5: (Color online) The evolution of the wave packet
in case of the combined ac-dc modulation of the gradient’s
strength, defined as per Eq. (4), with the parameters corre-
sponding to the first nontrivial zero of Ji, which is yo/w =
3.8317. The parameters are yac = w = 0.0261, which corre-
sponds to m = 1 in Eq. (5), and 70 = 0.1.

of the order higher than zero. In particular, Fig. 5
demonstrates robust long-time evolution of the wave
packet under the action of the combined ac-dc drive with
Ydc = w = 0.0261, which corresponds to m = 1 in Eq.
(5), 70 = 0.1 being the same as in Fig. 2. At other val-
ues of parameters satisfying Eq. (5) the combined dc-ac
modulation pattern (4) produced very similar results.
IV. CONCLUSIONS

To study the effect of the DL (dynamical localization)
in nonlinear settings, we have introduced a semi-discrete
2D system, driven by the gradient potential with the
time-periodic (ac) strength, applied in the discrete di-
rection. In the absence of the nonlinearity, direct sim-
ulations demonstrate straightforward spreading of local-
ized inputs, even if they satisfy the specific DL condition
known from previous studies of linear models. The situa-
tion is found to be altogether different in the system with
the cubic nonlinearity: in a certain range of the nonlin-
earity strength, the system features robust self-trapping
of well-localized wave packets. In the presence of the
nonlinearity, similar DL effects are also produced by the
application of the gradient potential subject to the com-
bined dc-ac temporal modulation. The DL effects pre-
dicted by the present analysis may be implemented in an
effectively 2D BEC, loaded into a quasi-1D lattice po-
tential, as well as in optics, in the temporal and spatial
domains alike, using, respectively, an array of nonlinear
fibers or a stack of planar waveguides.
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